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A b s t r a c t 

We report on a learning system MIRO which performs su­
pervised concept formation in an abstraction space. Given 
a domain theory, the method constructs this abstraction 
space by deduction over instances, and then performs in­
duction in it rather than the ini t ia l space defined by in­
stances alone. It is also possible to regard MIRO as a vari­
ant of constructive induction. The Vapnik-Chervonenkis 
model suggests that learning in an abstraction space can 
result in a substantial speedup, and we provide empirical 
studies which validate this proposition. We also show that 
learning in an abstraction space can reduce the number of 

false negative and false postive classifications because co­
incidental patterns are filtered by the deduction process. 
The method is able to extend an incomplete domain the­
ory represented as at tribute-value pairs wi th a set of rules 
that represent a disjunctive concept derived from a batch 
of training instances. 

1 . I n t r o d u c t i o n 

The concept of abstraction has played an important 
and well-known role in artificial intelligence since the mid 
1960's. The difficulty in making use of abstraction has al­
ways been the construction of an explicit mapping between 
the problem definition in the ini t ial space and its definition 
in an abstraction space [1]. In this paper we report on the 
learning system MIRO which performs supervised concept 
formation in an abstraction space which is constructed by 
the process of deduction on rules composed of attr ibute-
value pairs. The mapping is exactly the set of proof struc­
tures used in this construction. It then performs induction 
over a language defined by the process of deduction rather 
than the language defined by the instances, to yield a new 
characteristic concept description. The set of descriptors 
(or predicates) which are consequences of this deduction 
is viewed as the abstraction space, the set of descriptors 
used to describe the instances is viewed as the init ial space, 
and the set of proof structures is viewed as the mapping 
between the two spaces. 
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This method can also be regarded as a form of construe 
tive induction in which "useful" patterns are encoded in 
the domain theory. However, we propose a strong form 
of deductive bias as a means of l imi t ing the number of 
constructed descriptors. While the concept description 
formed is not justifiable in the sense of explanation-based 
generalization [3,12], the descriptors from which it is com­
posed are justifiable." The method is able to extend an 
incomplete domain theory wi th a set of rules that repre­
sent a disjunctive concept derived from a batch of training 
instances. These inductively derived rules may be used in 
the same way as the original domain theory, when a new 
batch of instances is presented, and can support incremen­
tal refinement of the concept. 

We present empirical studies which yield evidence for 
the following conjectures about learning in an abstraction 
space (as opposed to learning in the init ial space). First, 
such learning can be more efficient because the abstrac­
tion space can be by construction more compact than is 
the ini t ial space. Both the Vapnik-Chervonenkis charac­
terization [16,17] of the complexity of learning from exam-
ples and our own studies suggest typical problems exist 
in which substantial speedup is expected. Second, learn 
ing in mi abstraction space can reduce the number of false 
negative and false postive classifications because coinci­
dental patterns are filtered by the deduction process. We 
show evidence that a significant decrease in the number 
of misclassifications can be expected. The empirical stud­
ies mentioned are based on controlled, randomized, and 
exhaustive testing of many thousands of trials. This pa­
per is a summary version, prepared for this conference, of 
reference [4] which is available by request. 

2 . C o n s t r u c t i o n o f an A b s t r a c t i o n Space 

In essence, the basic idea presented here is a two stage 
process: first, construct an abstraction space, and then 
apply an induction method over this space. We wil l de­
fine the method for domain theories of rules composed 
of descriptor-values and an induction method similar to 
the Aq algorithm [9], but it is important to emphasize 
that the concept of induction in an abstraction space is 
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description language and an element of G covers a sub­
set of Pos including the seed. In general, this is a partial 
concept description that covers a subset of Pos, the posi­
tive training set. In case an empty G set is returned, one 
non-maximal descriptor is selected by a heuristic similar 
to Quinlan's decision tree heuristic [14] and added to L. 
This may be repeated unti l a nonempty G is returned, and 
a single conjunction C is selected that covers a subset of 
the positive instances. Selection from the G set depends 
on a heuristic measure of credibility [15] which balances 
the number of instances covered by a conjunction wi th an 
extra-evidential component that measures the amount of 
domain knowledge in the proof structure of each instance. 

In order to obtain a characteristic partial description, 
each discriminant partial description is specialized by the 
addition of descriptors from an augmented language into 
the conjunction. The specialization entails a search guided 
by the same heuristic measure used to select an element 
from the G set. The instances covered by each partial 
characteristic description are then removed from the set 
Pos. A complete concept description is a disjunction of 
partial concept descriptions. Since we require a complete 
description, candidate elimination is applied repeatedly in 
order to construct a disjunction of terms. A new seed is 
used and one partial concept description is selected from 
the G set on each cycle. The algorithm terminates when 
either a complete description is found, or some positive in­
stances remain which have been tried as seeds and cannot 

be discriminated from the set Neg. We summarize the 
method in pseudo-code as follows. 

28 observable, structural features. Many of the interesting 
classes that are represent able in this language share func­
tional properties (e.g. insulated against heat) that are not 
included in the instance language. We invented a domain 
theory of 36 rules that represents such a functional prop­
erty as the consequent of a rule, or chain of rules grounded 
in the instance language. These included four rules that 
could be interpreted as defining a class (glass, cup, plate, 
cooking vessel), but did not include any rules defining the 
target class for our learning experiments. 

Training instances were created by pseudorandom me­
chanical generation of structure and features, in order to 
preclude the introduction of unconscious bias by the in-
vestigators. Several thousand rather bizarre objects re­
sulted, and these were screened and mechanically sorted 
into training classes by using a classification rule base that 
was unknown to the learning program. A total of 78 usable 
instances resulted, of which 30 "spoons11 were chosen for a 
pool of positive training instances. A l l remaining instances 
were used in the negative pool. An average instance of 
"spoon" has 14 features, and an average instance of any 
type has 15 features. The target concept is exactly repre­
sented by an 8-term-DNF expression in instance space. 

A single learning tr ial consists of choosing k, 2 < k < 
20, positive and k negative training instances from each 
pool, running MIRO to give a set of classification rules (i.e. 
a characteristic concept description), and then testing that 

concept against 10 positive and 10 negative instances cho­
sen randomly from each pool excluding training instances 
used in that tr ial . By varying k from 2 through 20 by 2 
we obtain a series. Each point in an error rate curve re­
ported here is an average of 10 series. Figure 4.1 presents 
the false negative (solid line) and false positive (dotted 
line) error rates obtained in the ini t ial feature space, using 
no domain theory. Here the false negative rate has not 
stabilized after 16 positive and negative instances, beyond 
which these trials often could not be completed due to ex-
hausting LISP virtual memory. This explosion of memory 
use is clearly visible from figure 4.2, which plots growth 
of the version space G set during candidate elimination. 
The independent axes are the number of training instances 
(horizontal) and the number of negative instances elimi­
nated (projection of axis perpendicular to the page). The 
dependent vertical axis shows the average size of G. We 
see clearly that induction is very under-constrained, owing 
to the highly disjunctive nature of the target concept when 
represented in the init ial feature space. 
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a slow growth in the G set as more training instances are 
used. These experiments suggest that an appropriate do­
main theory can reduce both the dimensionality and dis-
junctiveness of a learning problem, even though very l i t t le 
effort was made to engineer a "correct" or "complete" do­
main theorv. 

F igu re 4.2 Init ial space G set growth 

The following experiment defines the performance base-
line for MIRO in our synthetic domain, using a concept 
description language that was constructed as described in 
section 3 to exclude any init ial descriptors. The resulting 
error rates in figure 4.3, now extended through 20 training 
instances, reach low plateaus far more rapidly. An aver­
age concept was observed to converge at 1-term 3-DNF 
around 4 training instances, and essentially no cases of G 
set collapse were observed. The effect of fully exploiting 
deductive bias is more visible in figure 4.4, which shows 

F igure 4.4 Abstraction space G set growth 

5 . Re la t ionsh ip to O t h e r W o r k 

The work reported in this paper is directly related to 
constructive induction as mentioned in the introduction, 
and to recent attempts to integrate explanation-based and 
inductive learning. However, there are important differ­
ences. Reference [4] also contains numerous other compar­
isons to work that is indirectly related, such as learning by 
analogy and various extensions to and uses of explanation-
based learning, such as [11]. Lebowitz [8] develops a sys­
tem UNIMEM which searches a database of voting records 
for empirical generalizations, and verifies these general-
izations via a domain theory. He proposes an inductive 
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method that is used to control the search space for a ver­
sion of a deductive method. This work can be considered 
the dual of the work reported in this paper, in the sense 
that we use a deductive technique to formulate a situa­
tion for induction. However, the work is very different in 
details, is presented by example and explanation, and nei­
ther includes an algorithm nor empirical studies. Pazzani, 
Dyer and Flowers [13] describe a system OCCAM in which 
causal theories are preferred to correlational or inductive 
information in forming generalizations, which are subse­
quently used to suggest additional causal and intentional 
relationships. The work is also not directly related, since 
OCCAM does not have a uniform language that is used in 
both the deductive and inductive stages, that is, it is not 
actually a form of constructive induction. Flann and Diet-
terich [6] propose a general learning architecture that uses 
a multiple representation strategy: the system translates 
task training examples into a ' 'natural" representation for 
induction and then translates the learned concept back 
into the appropriate task representation. The paradigm 
is il lustrated by the system Wy l which learns concepts in 
board games such as checkers and chess. It is similar to 
the work reported in this paper because in Wy l all possible 
board positions consistent wi th a functional description of 
a concept in logic are constructively generated, but the 
architecture upon which Wy l is based appears to be more 
general. 

6. Conc lus ions 

We have presented evidence that induction defined over 
an abstraction space constructed via the process of deduc­
tion can result in substantial speed up for some induction 
problems, and that it is also possible for the number of 
false negative and false positive classifications to be re­
duced. In addition, it can be shown [5] that even wi th 
injection of 25% of attr ibute noise into the training set, 
the method presented here is able to construct a "cor­
rected" characteristic concept description, and that wi th 
certain "ad hoc" assumptions, the method can accept do­
main theories in the Horn subset of first-order logic. 
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