
Uti l izat ion F i l te r ing : a method for reducing the inherent harmfulness of 
deductively learned knowledge 

Shaul Markov i tch 
Department of Electrical Engineering 

and Computer Science 
The University of Michigan 

Ann Arbor, MI 48109 

Abstract 

This paper h igh l igh ts a phenomenon tha t 
causes deductively learned knowledge to be 
harmful when used for problem solving. The 
problem occurs when deductive problem 
solvers encounter a fa i lu re branch of the 
search tree. The backtracking mechanism of 
such problem solvers w i l l force the program to 
traverse the whole subtree thus vis i t ing many 
nodes twice - once by using the deductively 
learned rule and once by using the rules that 
generated the learned rule in the first place. 
We suggest an approach called utilization 
filtering to solve that problem. Learners that 
use this approach submit to the problem solver a 
f i l ter function together wi th the knowledge that 
was acquired. The function decides for each 
problem whether to use the learned knowledge 
and what part of it to use. We have tested the 
idea in the context of a lemma learn ing 
system, where the f i l ter uses the probability of a 
subgoal fa i l i ng to decide whether to t u rn 
lemma usage off. Exper iments show an 
improvement of performance by a factor of 3. 

1. Int roduct ion 

Most of the work in the field of machine 
learning has concentrated on t r y i ng to create 
programs that acquire knowledge which is used by 
some performance system. The main emphasis in 
this work has been on the acquisition process, and 
the general bel ief has been tha t for correct 
knowledge, the system's performance improves 
monotonical ly as a func t ion of the added 
knowledge. 

Recent works (Minton 1988; Tambe & Newell 
1988; Markovitch & Scott 1988a,1988b) have drawn 
attention to the possibil i ty of correct knowledge 
being ha rmfu l , in the sense tha t the system's 
performance wi thout it would be better than the 

Paul D.Scott 
Center for Machine Intelligence 

2001, Commonwealth Blvd., 
Ann Arbor, Michigan 48105 

performance w i th i t . One type of knowledge that 
has been associated w i t h ha rmfu lness is 
redundant knowledge. Redundant knowledge is 
not always harmful - al l learning systems that use 
deductive processes for acquir ing knowledge are 
in t roduc ing in ten t iona l redundancy in to the 
knowledge base. Such redundancy can improve 
the system's performance signif icantly by saving 
the need to deduce again what has been deduced in 
the past. The reason that redundant knowledge 
can be harmful is that there are costs as well as 
benefits associated wi th using such knowledge. If 
the costs associated w i th an element of the 
knowledge base are larger than its benefits, this 
element is considered harmfu l . 

This paper is concerned w i th a particular type 
of harmfu l redundancy that occurs in deductive 
problem solvers that employ backtracking in their 
search procedure, and use deductively learned 
knowledge to accelerate the search. The problem is 
that in fai lure branches of the search tree, the 
backtracking mechanism of the problem solver 
forces exploration of the whole subtree. Thus, the 
search procedure w i l l v is i t many states twice -
once by using the deductively learned rule, and 
once by using the search path that produced the rule 
in the first place. 

One exist ing approach to avoiding harmful 
knowledge is not to acquire it at the first place (e.g. 
M in ton 1988). The learner t r ies to estimate 
whether a newly learned knowledge element is 
potentially harmful , and rejects it i f i t is estimated 
as such. Such an approach is termed selective 
learning. Another approach is to delete part of the 
knowledge base which is estimated to be harmful 
based on past experience (e.g. Hol land 1986; 
Samuel 1963; Min ton 1988). That approach is 
sometimes termed forgett ing (Markovitch & Scott 
1988a). The problem wi th these approaches is that 
they are basically averaging processes - they must 
decide whether a knowledge element is harmful 

738 Machine Learning 



wi th respect to the whole problem space that the 
performance system faces. However, the 
backtracking problem is an example where the 
usefulness of knowledge depends much on the 
context in which it is being used. Forgetting and 
selective learn ing can not account for the case 
where knowledge is harmful in one context and is 
beneficial in another. 

In (Markovitch & Scott 1989a) we introduce a 
new f ramework for classify ing methods for 
reduc ing harmfu lness of learned knowledge 
called information filtering . Information in a 
learning system flows from the experiences that 
the system is fac ing, through the acquistion 
procedure to the knowledge base, and thence to the 
problem solver. An in format ion fi l ter is any 
process which removes information at any stage of 
this flow. 

In fo rma t ion f i l t e rs can f i l t e r the set of 
experiences t h a t the learn ing program faces 
{selective experience) or the set of features that the 
program attends to w i th in a particular experience 
{selective attention). 

When the filters process information before it 
has been transformed to a representation that the 
problem solver understands we call them data 
filters - the two above fi l ters are data fi lters. When 
the filters process information after it has been 
processed by the knowledge acquisition procedure, 
we call then knowledge filters. Selective learning 
is a knowledge filter which is inserted between the 
acquisition procedure and the knowledge base (we 
call it selective acquisition). Forgett ing can be 
viewed as a f i l ter whose input and output are both 
connected to the knowledge base (we call it 
selective retention). 

The method that we suggest for reducing the 
harmfulness of deductive knowledge when used by 
backtracking systems falls under the th i rd class of 
knowledge f i l te rs called selective utilization. 
Ut i l i za t ion fi l ter is a f i l te r which is inserted 
between the problem solver and the learned 
knowledge base. Knowledge that is not in the space 
used by the problem solver can not have 
detr imenta l effects on the performance of the 
problem solver. The ut i l izat ion fi lter activates 
only a subset of the knowledge base before solving 
a prob lem, t r y i n g to deact ivate knowledge 
elements which are estimated by the filter to be 
harmful wi th in the context of the specific problem. 

Information filters can be bui l t into the system, 
or can be learned. We call the process of acquiring 
such filters secondary learning to differentiate it 
f rom the primary learning - the process of 
acquir ing knowledge to be used by the problem 
solver. 

We w i l l introduce an ins tant ia t ion of the 
backtracking problem in the context of the lemma 
learning module of the SYLLOG system. We wi l l 
then describe an implementation of a ut i l izat ion 
f i l ter that is used to reduce the harmfulness of 
lemmas. 

Section 2 contains discussion of the harmfu l 
aspects of deductive learned knowledge, in 
particular the backtracking problem and possible 
remedies to the backtracking problem. Section 3 
describes our implementat ion of a knowledge 
filter to reduce the harmfulness of lemmas in a 
Prolog system. Section 4 describes the 
experiments done with the implementation and the 
results obtained. 

2 . T h e i n h e r e n t h a r m f u l n e s s o f 
deductively learned knowledge 

2 . 1 . Deductive learn ing 

A deductive problem solver is a program whose 
basic knowledge is a set of assertions and a set of 
derivation rules to derive new assertions. Thus, 
logic systems are deductive - the set of assertions 
are the axioms, and the derivation rules are the 
logical inference rules. A grammar is a deductive 
system where the basic assertion is the start 
symbol, and the derivation rules are the grammar 
derivation rules. A state space search program is a 
deductive system where the set of in i t ia l states are 
the basic assertions and the operators are the 
derivation rules that allow the program to derive 
new states. 

Any deductive problem solver can form the 
basis of a deductive lea rn ing program. A 
deductive learning program transfers knowledge 
from its impl ic i t form to its explicit form. If the 
problem solver derives B from a set of assertions A 
using a sequence of applications of the program's 
derivation rules, the learner memorizes that B can 
be derived f rom A by adding a specialized 
derivation rule that specifies that fact explicitly. 

There are many learning programs that are 
deductive by nature. A l l the explanation based 
learning programs and macro learning programs 
use such a scheme (e.g. Fikes 73 ; Minton 85; 
Minton 88; Lai rd et al. 86; Korf 83; Priedit is & 
Mostow 1987; Mitchell et a l l986; Dejong & Mooney 
1986; Markovitch & Scott 1988a). The programs 
that use generalization are basically equivalent to 
the more simple schemes, except that they learn 
sets of explicit derivation rules instead of one rule 
at a time. 

The basic idea behind deductive learning is 
that by adding the explicit derivations which the 
system had experienced in the past, the problem 

Markovitch and Scott 739 



solver w i l l be able to solve problems more rapidly 
in the future. The problem is tha t the added 
knowledge has costs in addit ion to i ts potential 
benefits, and if these costs exceed the benefits, then 
the knowledge is harmfu l . 

2.2. The Back t rack ing Anoma ly 

Assume tha t a search program performs a 
depth first search (with backtracking) in the space 
i l lustrated in Figure 1. Assume that the program 
is given a problem to get from state A to state D. 
Assume tha t dur ing th is search, the learn ing 
program learned a new macro - it is possible to get 
from B to C (we w i l l call this macro/rule B-C). 
Assume that the problem solver receives another 
problem - to get from A to E. Assume that there is 
no route from B to E. The problem solver wi l l get to 
B and use the macro B-C to get to state C. The search 
from C wi l l not lead to E, thus the problem solver 
wi l l backtrack to B. Since there is no route from B 
to E, the problem solver is bound to search the whole 
subtree of B, including the search that generated 
B-C in the first place. The whole subtree under C 
wi l l be searched twice because the problem solver 
wi l l get to C twice - once by using the macro B-C, 
and once by going through the path that generated 
B-C. Thus, the system would be better off not using 
the macro in the first place. 

then the interpreter w i l l use lemmas of the type 
q(c), where c is a constant, to generate bindings for 
X. If r(X) rejects al l the bindings generated by q, 
then q w i l l be forced to reinvoke the rules that 
generated the lemmas in the f i r s t place. In 
addition to the fact that the execution of q(X) by 
itself w i l l be more costly than it would have been 
without using lemmas at a l l , r(X) w i l l be invoked 
twice on every binding that was generated by q's 
lemmas (since the same binding w i l l be generated 
again us ing the rules). Thus the system 
performance w i l l be harmed by using the lemmas 
instead of being benefited. 

The backt rack ing anomaly should not be 
taken l ightly. Almost every problem solver spends 
a large portion of i ts search time exploring failure 
branches. When Prolog is used as it meant to be 
used - as a declarative language - the rate of 
failures during the proof process is very high. The 
lemmas learned by our lemma learning system 
described in section 3 were found to be harmful in 
many cases when the rate of failure wi th in a proof 
was high. A l l rule systems which use depth first 
search (wi th backtracking) are bound to have 
similar problems if they use deductively learned 
knowledge. 

2.3. Possible Solutions 

In this section we wi l l explore several possible 
solutions to the backtracking problem. 

One possible solution is to add to the problem 
solver a procedure that checks whether a node has 
been visited before . In a case l ike the search 
problem of figure 1, that wi l l save the program the 
second search of the subtree of C. There are two 
problems with adding such a check to the problem 
solver. The first is that such a test has potentially 
very high costs in terms of both memory and time. 
The second problem is that it does not eliminate the 
problem - only reduces the costs that are caused by 
the problem (the problem solver would sti l l get to 
state C twice). 

Prolog i tself has no faci l i ty for implementing 
such a feature. We modified a Prolog interpreter to 
allow a version of such a check: Whenever a child 
of an Or node was returned successfully, the 
bindings that were generated by the child were 
compared to the bindings that had been generated 
before by its siblings. If two sets of bindings were 
identical, the interpreter marked the new child as 
fai lure and went to the next alternative. Such a 
mechanism would not stop q(X) from generating 
the same bindings twice, but would save r the 
necessity to run again wi th the same bindings . 
The check improved the performance of the 

740 Machine Learning 



interpreter by a factor of two compared wi th the 
performance without the check. 

A second possible solution is to use what we 
term "lemma groups". The idea behind lemma 
groups is tha t if an OR node had failed dur ing 
learning t ime, the learner can be sure that al l 
possible bindings to the subgoal were found, and 
can learn them al l as a group together w i th a 
lemma that says "and these are al l the possible 
bindings" (by using the Prolog cut operator). In 
such a case, there wi l l be no need to go to the rules if 
all the axioms fa i l , since the interpreter knows that 
the rules can not generate new bindings that have 
not already been tr ied yet. 

Lemma groups can be very benef ic ia l 
especially for problems wi th high fai lure rate. In 
some cases, for problems that required very large 
space trees wi th a high rate of backtracking, using 
lemma groups made execution up to 30 times 
faster. 

Unfortunately, lemma groups have their own 
disadvantages. It is extremely hard to maintain 
lemma groups in a system that is changed over 
time. If a new axiom is added to the database, there 
is a possibility that the lemma group is not val id 
anymore. 

The th i rd solution is to use a knowledge f i l ter 
in order to reduce the probability that lemmas wi l l 
be used where they can be harmful . Since using 
lemmas in a subtree of a goal which fails is bound 
to be harmfu l , the f i l ter tr ies to tu rn off lemma 
usage when it estimates that the probability for such 
a fai lure is high. 

3. Implement ing Knowledge filters 

We have investigated the idea of knowledge 
filters wi th in the context of the lemma learner of 
our SYLLOG system . The learning system uses 
inductive and deductive learning mechanisms to 
accelerate proof generation in Prolog databases. 
Lemma learning (Kowalski, 1979; Loveland 1969) 
is one deductive mechanism used to increase the 
execution speed, and the anomaly described above 
was encountered dur ing experimentat ion wi th 
lemmas. Our lemma learner di f fers f rom 
PROLEARN (Prieditis & Mostow, 1987) in that it 
does not perform generalization over the lemmas 
that are learned. 

We have implemented a filter function that 
decides whether to use lemmas or not whenever a 
new OR node is created and added to the search 
tree. Basically the filter tries to minimize the use 
of lemmas in the subtree below a subgoal that is 
l ikely to fai l . Using lemmas in a subtree that fails 
is bound to have detrimental effect on the search 

t ime because back t rack ing w i l l force the 
interpreter to search the whole subtree. 

Since it is impossible to know in advance 
whether a goal w i l l fa i l , the filter estimates the 
probability of failure from past experience. In the 
current scheme, if the probability of a goal fai l ing 
is above some threshold, the filter disables lemma 
usage for the subtree below the goal. 

The probabi l i t ies are updated dur ing the 
learning phase. Currently, there are four types of 
failure probabilities that the system maintains: 
1. The probabi l i ty of a goal w i t h a specific 

predicate fai l ing. 
2. The probability of goal with a specific predicate 

and specific arguments bound fai l ing. 
3. The probabil i ty of a specific goal w i th in a 

specific rule body fai l ing. 
4. The probabi l i ty of a specific goal w i th in a 

specific ru le body and w i t h a specific 
arguments bound fai l ing. 

The reason that the context of the rule is taken into 
account is that many times a subgoal wi th in a 
rule body w i l l succeed at f i rst, but w i l l 
eventually fai l because a subsequent subgoal 
in the rule body keeps rejecting the bindings 
generated by the subgoal. For example assume 
that a database of the l i v ing members of a 
family contains the following rule: 

greatgrandfather(X) <- male(X) & parent(X,Y) & 
grandparent(Y,Z) 

If the rule is used to find a greatgrandfather (i.e. 
greatgrandfather(X) is called w i t h unbound X), 
then the probability of parent(X,Y) fa i l ing wi th in 
this rule is very high. The reason is that male(X) 
w i l l generate males, parent(X,Y) w i l l succeed in 
f i nd i ng ch i ldren of the given males, but 
grandparent(X,Y) wi l l keep fa i l ing because most 
l iv ing people are not greatgrandparents. On the 
other hand, the probability of parent(X,Y) fai l ing 
by itself is lower since a substantial portion of the 
people in the database are parents. This example 
demonstrates why it is preferable to use more 
specific informat ion. 

The b ind ing in format ion specifies which 
arguments are bound and which are not 
(regardless of the values that arguments are bound 
to). The above example i l lustrates why bindings 
can be significant to the probability to fai l . A goal 
greatgrandfather(X) is l ikely to succeed when X is 
not bound assuming that there is at least one 
greatgrandfather in the database. However, the 
probability of greatgrandfather(c), where c is some 
constant, fai l ing is very high since most people in 
the database are not greatgrandparents. 

Markovitch and Scott 741 



Whenever a subgoal is called (an Or node is 
created), the learning program updates 4 CALL 
counters associated wi th the 4 types of probabilities 
described above. Whenever a subgoal fails (has 
tried al l i ts OR branches thus exhausting the whole 
search subtree), the learning program updates 4 
F A I L counters. A probabi l i ty is computed by 
dividing the FAIL counter by the CALL counter. 

D u r i n g prob lem so lv ing, whenever the 
interpreter creates a new OR node for a subgoal, it 
consults the fai lure probability to decide whether to 
append the lemmas for the subgoal predicate to the 
database axioms for i t . If the probability of failure 
is above a preset threshold, lemmas wi l l not be 
used, and a f lag w i l l be propagated down the 
subtree of the OR node to tu rn off lemma usage for 
the whole subtree. 

The probability that is taken into account is the 
most specific one that is available, i.e. it first looks 
for probabil ity type 4, if not available, it looks for 
probability type 3 etc. 

4. Experimental results 

The domain used for the experiments is a 
Prolog database which specifies the layout of the 
computer network in our research lab. It contains 
about 40 rules and several hundreds facts about the 
basic hardware that composes the network and 
about connections between the components. The 
database is used for checking the val id i ty of the 
network as well as for diagnostics purposes. 

The problems for learning and for testing were 
generated randomly f rom a given problem space. 
For the experiments described in this section we 
have used a problem space specified as a l is t of 
three elements. The first element is a l is t of 
domain names w i t h thei r associated domains, 
where each domain is a l ist of constants from the 
database. The second element is a l i s t of 
predicates wi th a domain specified for each of their 
arguments. The th i rd elements is a l ist of problem 
templates w i th associated weights. A problem 
template is a l is t consisting of a predicate name 
and a l ist of flags, one for each argument. A flag 
of value 1 means that the argument in a problem 
that satisfies that template should be bound to a 
constant. A f lag of value 0 means that the 
corresponding argument should be a variable. 

To generate a problem from a problem space a 
problem template is selected w i t h probabi l i ty 
proport ional to i ts weight. Then a problem is 
generated by selecting a random member of the 
appropr ia te domain for each of the bound 
arguments. 

An exper iment comprises two phases: a 
learn ing phase fol lowed by a performance & 
testing phase. Visiting-check and lemma groups 
were turned off for the whole durat ion of this 
exper iment. D u r i n g the lea rn ing phase, a 
t r a i n i n g set of 50 problems was randomly 
generated in the way described above, and the 
problem solver was called to solve those 50 
problems. Dur ing the learning phase the learning 
program generated two types of in format ion: 
positive lemmas, and fai lure probabilit ies. 

Dur ing the performance phase, a set of 20 
problems was randomly generated using the same 
method and the same problem space specifications 
as in the learning phase. The batch of 20 problems 
was solved, vary ing values of the probabi l i ty 
threshold (the values tr ied were 0, 0.05, 0.1, 0.25, 
0.5, 0.75, 0.9, 0.95, 1.01, where 0 threshold means 
never use lemmas, and 1.01 means always use 
lemmas) . 

Figure 2. 

The results of the experiments are shown in 
Figure 2. A number of features of the result graph 
are worthy of note. First , the performance with 
lemmas (and no filter) was slightly worse than the 
performance w i th no lemmas at a l l . This is 
another example of knowledge tha t is harmfu l . 
Second, the performance was substant ia l l y 
improved by us ing knowledge f i l tering. The 
performance w i th filter of 0.5 threshold is three 
times better than the performance wi thout f i l ter 
(and also three t ime better than the performance 
wi thout lemmas). 

The U shape of the graph makes it clear that 
filtering should not be taken to the extremes. If the 
filter is too ref ined, knowledge w i l l not be used 
where it could be useful, if the filter is too coarse, 
knowledge wi l l be used where it could be harmful . 

742 Machine Learning 



5. Conclusions 

The problem of inherent harmfulness of 
deductive knowledge when used w i th in fa i lure 
branches of the search tree was presented. The 
exist ing solutions for reducing harmfulness of 
knowledge, selective learn ing and forget t ing, 
could not cure this problem, because the question of 
whether a piece of knowledge wi l l be harmful does 
not depend in this case on the knowledge itself, but 
on the context in which it is being used. 

We suggested a di f ferent approach, called 
ut i l izat ion f i l te r ing to reduce the harmfulness of 
deductive knowledge. The f i l ter that we have 
implemented uses probabil i ty estimates of a goal 
fa i l ing to decide whether to disable lemma usage 
for the search subtree of that goal. 

The experiments we have conducted have 
shown that ut i l izat ion filtering is a very effective 
mechanism for reducing the harmfu l effects of 
knowledge caused by the backtracking problem. 
The average performance of the system was 
improved by a factor of 3 using the filter. 

The threshold method used here is rather 
pr imi t ive , and we are current ly work ing on a 
more sophisticated ways of us ing the fa i lure 
probabilities. These methods consider the expected 
benefit from using lemmas in case of a success, 
and the expected cost of using lemmas in case of 
failure. In order to use lemmas, the probability of 
fa i l ing mul t ip l ied by the expected cost should be 
lower than the probability of succeeding mult ipl ied 
by the expected gain. 

Uti l izat ion filtering is not l imi ted to deductive 
learning systems. The SYLLOG system also 
contains an induct ive component tha t uses 
statistics about the costs of executing goals to 
reorder subgoals in order to increase efficiency 
(Markovitch & Scott 1989b). Dynamic ordering is 
usually needed in such cases, because the expected 
cost of executing a subgoal depends on what 
arguments are bound. The problem wi th dynamic 
ordering is that it has high cost. A uti l ization filter 
turns ordering off if the expected cost is higher than 
the expected benefit. 

References 

Dejong,G. & Mooney,R. , 1986 , Explanation-based 
Learning: An Alternative View , Machine 
Learning 1 pp 145-176 

Fikes,R.E., Har t ,P.E. & Ni lsson,N.J. , 1972 , 
Learning and Executing Generalized Robot 
Plans , Art i f ic ial Intelligence 3 pp 251-288 

Holland, J. H. (1986). Escaping brittleness: The 
possibilities of general-purpose learning 
algorithms applied to parallel rule-based 
systems. In R. S. Michalski, J. G. Carbonell, & 
T. M. Mitchel l (eds.), Machine learning: An 
ar t i f ic ia l intell igence approach (Vol. 2). Los 
Altos, CA: Morgan Kaufmann. 

Korf,R.E., 1983, Learning to Solve Problems by 
Searching for Macro-Operators, P i tman, 
Marshf ield, Mass. 

Kowalski, R. A. (1979). Logic for Problem Solving 
. New York: Elseveir North Holland. 

Laird,J.E., Rosenbloom,P.S. & Newell,A. , 1986 , 
Chunking in Soar: The Anatomy of a General 
Learning Mechanism , Machine Learning 1 pp 
11-46. 

Loveland. (1969). A Simpl i f ied Format for the 
Model Elimination Procedure. JACM; July 1969 
, 349 - 363. 

Markovi tch,S. & Scott,P.D., 1988a The Role of 
Forgetting in Learning, Proceedings of Fif th 
I n t e r n a t i o n a l Conference on Mach ine 
Learning, June 1988. 

Markovitch, S. & Scott, P.D., 1988b, Knowledge 
Considered Harmful, (TR #030788), Center for 
Machine Intelligence, Ann Arbor, Michigan 

Markovitch, S., & Scott, P. D. (1989). Information 
filters and their implementation in the 
SYLLOG system. Proceedings of The Sixth 
International Workshop on Machine Learning 
. Ithaca, New York: Morgan Kaufmann. 

Markovitch, S., & Scott, P. D. (1989). Automatic 
Ordering of Subgoals - a Machine Learning 
Approach (TR 008). Center for Machine 
Intelligence, Ann Arbor, Michigan. 

M in ton , S. 1988 , Learning Search Control 
Knowledge: An Explanation-Based Approach, 
Klower Academic Publishers, Boston, mass. 

Mitchel l ,T.M., Kel ler,R.M. & Kedar-Cabelli,S.T. 
, 1986 , Explanation-based Generalization: A 
Unifying View , Machine Learning 1 pp 47-80 

Pr iedi t is , A.E. and Mostow, J. PROLEARN: 
Toward a Prolog In terpreter tha t Learns. 
Proceedings of the sixth National conference on 
Art i f ic ial Intelligence, Seattle, WA, 1987. 

Samuel,A.L., 1963 , Some Studies in Machine 
Learning Using The Game of Checkers , In 
Computers and Thought, Eds E.Feigenbaum & 
J.Feldman, McGraw-Hi l l , New York. 

Tambe, M., Newell A., 1988 Some Chunks Are 
Expensive, Proceedings of Fi f th International 
Conference on Machine Learning, June 1988. 

Markovitch and Scott 743 


