
of 0.7 for generations 13 to 19 (after creation of a perfect-
scoring cubic polynomial). The fitness level again abruptly 
dropped to virtually 0 for generation 20 when the environment 
again changed. However, by generation 22, a fitness level 
again stabilized in the neighborhood of 0.7 after creation of a 
new perfect-scoring quadratic polynomial. 

6 Theoretical Discussion 

Hierarchical genetic algorithms employ the same automatic 
allocation of credit inherent in the basic string-based genetic 
algorithm described by Holland (1975) and inherent in Dar­
winian reproduction and survival of the fittest amongst bio­
logical populations in nature. In hierarchical genetic algo­
rithms, the individuals in the population are LISP S-expres-
sions (i.e.rooted point-labeled trees in a plane) instead of linear 
character strings. The set of similar individuals sharing com­
mon features (i.e.the schemata) is the hyperspace of LISP S-
expressions sharing common features. This infinite set can be 
partitioned into finite subsets by using the number of points as 
the partitioning parameter. If the subset sharing common 
features with a specified value of this parameter is considered, 
fitness proportionate reproduction causes growth or decay in 
the size of that subset in the new population in accordance with 
the relative fitness of the subset to the average population 
fitness in the same way as it does for string-based linear genetic 
algorithms (with the associated approximately near optimal 
allocation of trials). The deviation from this approximately 
near optimal rate of growth or decay is relatively small if the 
number of points defining the common feature is relatively 
small and to the extent that the points defining the common 
feature are coextensive with one subtree. Thus, the overall 
effect of fitness proportionate reproduction and crossover is 
that subprograms (i.e. sub-trees, sub-lists) from relatively high 
fitness individuals are used as "building blocks" for construct­
ing new individuals and the search is concentrated for succes­
sive populations into sub-hyperspaces of S-expressions of ever 
decreasing dimensionality and ever increasing fitness. 
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