
Building Robust Learning Systems by Combining 
Induction and Optimization 

David Tcheng* Bruce Lambert Stephen C-Y Lu Larry Rendell 
Computer Science Speech Communication Mechanical Engineering Computer Science 

University of Illinois 
Urbana lL 61801 

tcheng@rn.cs.uiuc.edu 

Abstract 

Each concept description language and search strate
gy has an inherent inductive bias, a preference for 
some hypotheses over others. No single inductive 
bias performs optimally on all problems. This pa
per describes a system that couples induction with 
optimization to carry out an efficient search of large 
regions of inductive bias space. Experimental re
sults are reported demonstrating the system's capaci
ty to choose optimal biases even for complex and 
noisy problems. 

1 Introduction 
Research on methods for learning concepts from examples 
occupies a central position in the discipline of machine 
learning (Michalski, Carbonell, & Mitchell, 1983). 
Among those who study the problem of learning from ex
amples, it is now widely recognized that each concept de
scription language and search strategy has an inherent in
ductive bias. Mitchell (1980) defined inductive bias as 
"any basis for choosing one generalization over another, 
other than strict consistency with the observed training in
stances." In our research, we give the term inductive bias 
a functional definition. Given a set of examples, an induc
tive bias is a function that produces a hypothesis, mapping 
points from a space of input representations to points in a 
space of output representations. In this paper we focus on 
inductive systems that produce functions that map a set of 
input values to a single output function value. A partial 
list of inductive systems conforming to this restriction in
cludes: neural nets (Rumelhart & McClelland, 1986), re-
gresssion (Box, Hunter, & Hunter, 1978), decision-trees 
(Rendell 1983; Quinlan 1983; Breiman, Friedman, Olshen, 
& Stone, 1984), logic-based approaches (Michalski, 1983), 
and exemplar-based approaches (Smith & Medin, 1981). 

The best inductive bias for a given problem depends 
heavily on the user's objectives (i.e., hypothesis credibility 
metric). For instance, if the predominant objective is to 
produce a hypothesis that is easy to comprehend, a good in-

* This research was sponsored in part by the National Science 
Foundation (DMC-8657116) and by the Applied Intelligent Sys
tems Group of Digital Equipment Corporation. 

ductive bias might represent hypotheses as English sentenc
es or graphic representations. In other cases, when predic
tive accuracy is the primary concern, neural nets, decision 
trees, and mathematical equations may be preferable. Given 
the diversity of user objectives, it is clear that no single in
ductive bias can be optimal for all situations. 

To address this problem, our research seeks to produce a 
robust inductive system in accordance with the methodology 
first described in Rendell, Seshu, and Tcheng's (1987) dis
cussion of the Variable-Bias Management System (VBMS). 
The original VBMS paper laid out three methods for devel
oping robust learning systems: integration, optimization, 
and meta-learning. Integration involves the representation of 
unique inductive biases as points in a multi-dimensional 
space (inductive bias space). Optimization is a method for 
searching inductive bias space. Meta-learning is a method 
for selecting an appropriate bias optimization strategy based 
on characteristics of the current problem. 

In this paper we present the results of tangible progress 
towards integration and optimization. To integrate existing 
inductive biases, we developed the Competitive Relation 
Learner (CRL), a system that manages a set of diverse induc
tive biases to produce hybrid concept representations. To 
optimize inductive bias, we developed an optimization algo
rithm called the Induce and Select Optimizer (ISO) and ap
plied it to the problem of optimizing CRL's inductive bias. 

In what follows, we first suggest that well known deci
sion-tree building algorithms such as ID3 (Quinlan, 1986), 
PLSI (Rendell, 1983), and CART (Breiman et al., 1984), as 
well as recently developed hybrids like Utgoff s perception 
trees (1988), can all be viewed as partial instantiations of an 
abstract class of algorithms we call recursive splitting algo
rithms. Second, we describe CRL, a generalized recursive 
splitting algorithm (Tcheng, Lambert, & Lu, 1989) that 
provides a framework for integrating multiple methods for 
function approximation (learning strategies), multiple meth
ods for breaking problems into subproblems (decomposition 
strategies), and multiple methods for selecting the best set of 
subproblems to solve (decomposition evaluation functions). 
Next we argue that optimization is the appropriate metho
dology for searching CRL's bias space. After a general dis
cussion of optimization, we describe the details of ISO. Fi
nally, we present experimental results that illustrate the cap
abilities of both CRL and ISO. In concluding, we outline 
plans for applying the combined system to a large database 
of real-world learning problems and for learning meta-level 

806 Machine Learning 



rules for selecting inductive bias optimization strategies. 

2 The CRL System 
The principal factor motivating the design of CRL was the 
observation that the behavior of a recursive splitting algo
rithm depends on three factors: (1) how predictions are 
made within regions of input space; (2) how candidate de
compositions are generated; and (3) how candidate decom
positions are evaluated (see also Breiman et al.., 1984). 
Analysis of traditional recursive splitting algorithms re
veals that each method possesses only one learning strategy 
(i.e., a method for making predictions in each subregion), 
one decomposition strategy, and one decomposition evalua
tion function. For example, ID3 (Quinlan, 1983) creates 
n-way splits on nominal feature dimensions, selects the 
split that minimizes its entropy function, and assigns the 
most frequently occurring class label to each subregion 
(i.e., leaf node). PLS1 creates binary splits perpendicular 
to scalar feature dimensions, chooses the decomposition 
that maximizes the difference in the output functions, and 
attaches the mean output value to each subregion. Utgoff s 
(1988) novel contribution lay in realizing that performance 
could be improved by putting more powerful predictors at 
the leaf nodes. His perceptron-tree algorithm first attempts 
to classify all instances with a perceptron (i.e., a network 
of threshold logic units). Failing that, it imposes n-way 
splits along nominal attribute dimensions, selects the split 
that minimizes its entropy function, and inserts perceptrons 
at the leaf nodes. Figure 1 summarizes how these algo
rithms and CRL instantiate the three crucial component 
processes: prediction, decomposition, and evaluation. 

Figure 1. Characteristic components of four recursive 
splitting algorithms. 

Any fixed combination of prediction, decomposition, 
and evaluation strategies may be ideal for a particular class 
of problems, but will fail to provide optimal performance 
on others. The CRL system was designed to perform well 
across a wide range of problems. This robust performance 

is made possible by CRL's ability to manage multiple, 
competing component strategics. Such competition often 
results in the formation of hybrid concepts that simultane
ously capitalize on the strengths and minimize the weak
nesses of two or more distinct inductive biases (Schlimmer, 
1987; Utgoff, 1988). The current implementation of CRL 
contains multiple learning strategies, multiple decomposi
tion strategies, and multiple decomposition evaluation func
tions. The design is modular, and new strategies can be add
ed incrementally as long as they adhere to CRL's standard in
put-output specifications. Below are relevant details of 
CRL's component strategies. 

2.1 Learning Strategies 
In traditional recursive splitting algorithms, predictions are 
made by traversing the decision tree with a given input ex
ample and then simply returning the mean or mode of the 
output points in the specified subregion. Hypotheses gener
ated by such algorithms take the form of discontinuous step-
functions. In contrast, were regression or a neural network 
used at the leaf nodes, at least two advantages would be 
reaped. The resulting hypothesis would provide a closer fit 
to continuous functions and fewer decompositions would be 
necessary. Expanding on this idea, CRL competitively ap
plies a variety of learning strategies (i.e., inductive biases) at 
the leaf nodes to produce a hypothesis for each subregion. 
In addition to averaging, CRL can be made to fit subregions 
with several different models (i.e., statistical regression, neu
ral nets, averaging, and exemplar based strategies). Compe
tition provides the basis for choosing the learning strategy 
for each region that will be used to form the final hypothe
sis. The availability of several learning strategies allows 
CRL to solve complex problems involving multiple mod
els, and it is one of the novel aspects of the CRL system. 
Below are the learning strategies currently implemented in 
CRL. 

2.1.1 Mean and Mode 
These strategies take either the mean or mode of all observed 
output vectors and return a constant hypothesis. Due to 
their limitations, the mean and mode learning strategies are 
almost always combined with one or more decomposition 
strategies. 

2.1.2 Exemplar 
The exemplar learning strategy is based on a psychological 
model of human concept acquisition (Smith & Medin, 
1981). In the learning phase, the exemplar strategy random
ly selects and remembers a specified number of examples 
from the training set. In the performance phase, predictions 
are made by looking through all of the memorized examples 
and finding the set of n-examples closest to the new exam
ple in input space (based on normalized euclidean distance). 
The average of the n closest output points is returned as the 
predicted output value. 

2.1.3 Regression Models 
These learning strategies are based on the classical statistical 
regression model (Box, Hunter, & Hunter, 1978). CRL cur
rently contains the linear, quadratic, logarithmic, and expo
nential regression models. 

Tcheng, Lambert, Lu and Rendell 807 



2.1.4 Neural Net Models 
The last of CRL's component learning strategies is a neural 
network. Neural networks are highly interconnected assem
blies of simple computing elements which, when properly 
trained, can learn arbitrary input-output mappings. The 
particular system in CRL is a flexible model designed to 
let the user explore a wide range of architectures, connectiv
ity patterns, and settings of other parameters. The network 
learns by the back-propagation of error signals (Rumelhart 
& McClelland, 1986). 

2.2 Decomposition Strategies 
The general idea of problem decomposition is of fundamen
tal importance in problem solving (Newell & Simon, 
1972). Equipped with a representation of the problem 
space and operators for moving around in that space, the 
problem solver's objective is to break down the given prob
lem into subproblems whose solutions can be achieved by 
applying the available operators. In CRL, the operators are 
learning strategies and the difference to be reduced is the er
ror of the overall hypothesis. 

Mathematically, a decomposition is a function that 
maps every point in the parent region of input space to one 
subregion indexed by a subproblem number. For example, 
if II and 12 are input features, Equation (1) represents a 
simple binary decomposition function of the sort generated 
by PLS1. 

In general, a decomposition function may be defined over 
any or all of the input feature dimensions and may map ex
amples to two or more subregions. In traditional recursive 
splitting algorithms, only one algorithm for generating de
composition functions (i.e., a decomposition strategy) is 
available. Because many decomposition strategies exist, 
CRL allows the user to specify a set of them to use in par
allel. Below are the decomposition strategies currently de
fined in CRL. 

2.2.1 Distance Decomposition Strategy 
This decomposition strategy is a slight variation on that 
used by PLS1. First, the minimal hyper-rectangle that 
contains all the points in input space is calculated. Then a 
set of candidate decompositions is generated by splitting 
each input feature dimension at n evenly spaced points. 

2.2.2 Population Decomposition Strategy 
The major disadvantage of the distance decomposition strat
egy is that it is insensitive to the actual distribution of ex
amples in input space. In the worst case, many of the de
compositions generated will divide input space into two re
gions, one containing all but one of the examples and the 
other containing a single example. To avoid this problem, 
we have developed a method for generating decompositions 
which partitions input space into regions based on popula
tion density. The result is that more densely populated re
gions of input space undergo proportionately more decom
position (Kadie, 1988). 

2.2.3 Hyperplane Decomposition Strategy 
All of the previously mentioned decomposition strategies in
sert region boundaries perpendicular to attribute dimensions. 
Instead of a single attribute test, this strategy generates arbi
trarily placed hyperplane decomposition functions (see Brei-
man et a/.., 1984). The position of the hyperplane is con
trolled by a parameter which determines how many randomly 
selected input points will be used to compute the location of 
an origin. If this parameter is set to ∞, all hyper-planes 
pass through the centroid of the input space vectors and the 
population tends to be divided equally. If this parameter is 
set to 1, the hyperplanes pass through a single, randomly se
lected point (not necessarily the center), yielding a greater 
variety of decompositions. Once the origin has been cho
sen, the orientation of the hyperplane is randomly deter
mined. 

2.3 Decomposition Evaulation Functions 
Recursive splitting algorithms, such as ID3, typically rely 
on mathematical measures of a subregion's entropy to evalu
ate decompositions. Decomposition evaluation functions of 
this sort favor splits that partition the input space into mini
mally entropic regions. The logic behind such a strategy 
(based on information theory) predicts that regions of low 
entropy will be easier to learn. As such, entropy measures 
are indirect measures of the overall hypothesis error reduc
tion that a given decomposition will bring about. In con
trast to the entropy-based heuristic, the CRL approach to de
composition evaluation is to measure directly the overall er
ror reduction of a candidate decomposition by actually evalu
ating competing learning strategies in the newly created sub-
regions (see Fig. 2). CRL's decomposition evaluation func
tions consist of two components, a hypothesis error metric 
and a error validation strategy. 

2.3.1 Hypothesis Error Metrics 
A CRL hypothesis error metric is a function taking the 

actual example and predicted output vector as input and re
turns a value indicating the error of the prediction. General 
purpose hypothesis error metrics include average deviation, 
standard error, entropy, and vector difference. The user can 
also define domain-specific error metrics. For example, 
when CRL is used to create diagnostic rules, the relative 
cost of false positives and false negatives can be built into 
the error metric and thus used to bias decomposition accord
ingly. This advantage is unavailable to systems that use 
only general error metrics because such metrics are insensi
tive to the type of misclassifications that may result from a 
given split. 

2.3.2 Error Validation Strategies 
Whereas an error metric measures the error of a prediction 

based on a single example, a validation strategy uses the er
ror metric to estimate the average hypothesis error across 
across an entire example set. CRL currently possesses three 
error validation strategies, resubstitution, test-sample, and v-
fold cross validation (Breiman et al., 1984). Resubstitution 
tests a hypothesis on the same examples that were used to 
create the hypothesis. Test-sample requires the user to divide 
the available examples into training and testing sets. Train
ing examples are used to form the hypothesis, and testing 

808 Machine Learning 



examples are used to estimate the error of the hypothesis. 
V-fold cross validation is a method for estimating the error 
of a hypothesis, where the number of folds is the number 
of groups to partition the examples into. For example, if 
the number of folds is 10, then the examples are randomly 
partitioned into 10 equal-sized groups. Next, the examples 
from all but 1 of the subgroups are used to create a hypoth
esis with the given learning strategy. The accuracy of the 
hypothesis is then estimated using the unseen group of ex
amples as test cases. This process is repeated for each 
group of examples, and the average hypothesis error is cal
culated. When more than one learning strategy is compet
ing, v-fold cross validation prevents learning strategies 
with a high degree of freedom from unjustly dominating 
(e.g., by memorizing all the examples). 

2.4 The C R L A l g o r i t h m 
Figure 2 shows how CRL takes a given set of active learn
ing and decomposition strategies and decides which wi l l be 
used to form the final hypothesis. This method is a 
straightforward generalization of the simple recursive split
ting algorithm — the difference being that CRL uses a 
best-first search (without backtracking) strategy to evaluate 
multiple learning and decomposition strategy combinations 
in parallel. CRL begins with a single input space region 
containing every example and estimates the error in the re
gion. The error of a region is determined by applying each 
active learning strategy to the examples and recording the 
error of the most accurate hypothesis. 

Next, the algorithm determines whether further decom
position w i l l reduce the overall hypothesis error. To do 
this, CRL applies all active decomposition strategies and 
evaluates the resulting candidate decompositions by com
puting the error of the resulting regions in the manner de
scribed above. The most valuable decomposition, the one 
that brings about the greatest overall error reduction, is 
used to create new subregions. This process is recursively 
applied to each subregion until one of the following three 
stopping criteria is met: (1) the error of the overall hy
pothesis ceases to decrease more than a specified threshold; 
(2) the number of examples in a candidate subregion falls 
below a specified threshold; or (3) the time consumed ex
ceeds a specified threshold. 

From the user's perspective, the main advantage of CRL 
is that it creates an environment in which one can easily ex
periment with a diverse set of learning strategies without 
having to recode data or jump from system to system. Un
fortunately, the diversity of choices has a cost. With so 
many alternative inductive biases to choose from, finding 
the best bias for a problem is di f f icul t One way around the 
problem of bias selection is to activate a large, representa
tive set of CRL's learning and decomposition strategies and 
to let them compete. This approach can be immensely ex
pensive - especially if the user wants to ensure that all sig
nificantly different biases are tried. We do not advocate such 
a brute force solution. Instead, an independent optimization 
system can be used to search for the inductive bias that is 
optimal with respect to a given set of user objectives. 

To say that optimization should be used to search induc
tive bias space is insufficient because as many optimization 
biases as inductive biases exist. Therefore, to complete the 
definition of our methodology, we must decide on a frame-
work for optimization. In the fol lowing section, we de
scribe both weak optimization methods, such as random 
search, and strong methods, which themselves employ in
ductive biases to guide the search for the optimum. Rather 
than choosing between weak and strong methods, we eventu
ally propose a methodology that allows us access to both. 

3. Relating Optimization and Induction 
3.1 What is Opt imizat ion? 

From the perspective of decision making, optimization is 
the process of finding the best decision among a range of un
tested alternatives (Buchanan, 1986). Optimization prob
lems are defined in terms of a decision space and a means 
for evaluating candidate decisions (the evaluator, see Fig. 3). 

Figure 2. Pseudo code for the CRL algorithm. 

Figure 3. Simple view of optimization. 

For example, if the goal is to design an aircraft wing that 
produces maximal l i f t, the dimensions of the decision space 
are attributes of the wing design (e.g., material type, wing 
curvature, wing length, etc.). In this case, candidate deci
sions can be evaluated either by building and testing the 
wing or by estimating the wing performance through com
puter simulation. The goal of the optimization process is to 
find the best point in decision space using the least effort. 

An optimizer takes as input a set of examples and em
ploys some heuristic to generate new candidate decisions. A 
continuum of optimization biases ranges from the weak to 
the strong. Random selection of candidate decisions is a 
weak heuristic which can be quite effective when the cost of 

Tcheng, Lambert, Lu and Rendell 809 



evaluating decision points is negligible. If the cost of 
evaluation is high, stronger (and less efficient) selection 
heuristics are justified. Strong selection heuristics employ 
some inductive bias to create a hypothesis that describes 
the objective surface over decision space (see Fig. 5). This 
hypothesis is used to guide further selection. 

Response surface fitting (Box et al, 1978) is an exam-
ple of a strong optimization strategy which uses an induc
tive bias to aid in the selection of new candidate decisions. 
Response surface fitting typically uses polynomial regres
sion to estimate the relationship between decision variables 
and objective score. To generate new candidate decisions, 
the selector component of a response surface fitting algo
rithm first calculates the decision point maximizing its 
polynomial hypothesis and then selects that point as the 
next decision to evaluate. For each selected point, an ob
jective score is calculated by the evaluation function and as
sociated with the decision space point to form an example 
for the next iteration of polynomial regression. The pro
cess continues until some stopping criterion is met (e.g., 
the objective score ceases to increase or resources are ex
hausted). 

3.2 The Induce and Select Optimizer 
Recognizing that a versatile optimization system ought to 
posess both the strong and weak methods described above, 
we designed the Induce and Select Optimizer (ISO). The 
ISO framework is schematically represented in Figure 4. 

Figure 4. Component view of optimization. 

As its name suggests, ISO includes two main compo
nents: an inducer and a selector. The role of the inducer is 
to describe, for the selector's benefit, the objective surface 
over decision space (see Fig. 5). Optimization strategies 
such as response surface fitting use induction, but they are 
equipped with only one inductive bias (e.g., quadratic re
gression). This is fine if the objective surface over deci
sion space happens to be similar to a quadratic function. If 
it is not, however, using the induced quadratic hypothesis 
to guide the selection of new decisions adds little benefit, 
and may actually impede progress toward the optimum. 
ISO escapes this limitation because its inducer manages a 
collection of competing inductive biases. With many in
ductive biases to choose from, the inducer within ISO has a 
much higher probability of accurately describing the objec
tive surface over decision space. ISO is, therefore, much 
more likely to find a strong optimization method. 

The second component of ISO is its selector. Selection 
is the process of using both the examples and the induced 

810 Machine Learning 

hypothesis to guide the selection of new candidate decisions. 
In ISO, selection is based on two control parameters called 
novelty and performance. A high novelty setting causes 
ISO to prefer points in decision space that are maximally 
distant from those already attempted. If novelty were the 
only consideration, ISO would ignore the induced hypothesis 
describing the objective surface over decision space, and in
stead perform random, non redundant search. If performance 
were the only consideration, ISO would attend only to the 
induced hypothesis, choosing new candidate decisions that 
maximize that hypothesis. In this way, the novelty and per
formance parameters allow ISO to exhibit both strong and 
weak optimization biases. 

4 Optimizing Inductive Bias With ISO 
The availability in CRL of multiple decomposition strate
gies, learning strategies, and decomposition evaluation func
tions increases the size of the inductive bias space through 
which ISO may search. Here we encounter a classic trade
off. Larger search-spaces are more likely to contain better 
solutions, but they are also more difficult to search. In this 
section we describe how ISO optimizes hypothesis credibili
ty over CRL's inductive bias space. 

Conceptually, CRL's bias space is a feature space defined 
by a set of variables that jointly specify which learning and 
decomposition strategies to use, their control parameters, the 
hypothesis error metric, how the hypothesis error is to be 
measured, and the minimum error reduction needed to justify 
a decomposition. Simply put, a point in bias space com
pletely determines CRL's hypothesis formation behavior. 

By selecting which component processes are eligible to 
be considered, the experimenter defines the region of CRL's 
inductive bias space in which ISO can seek an optimum. In 
the first stage of optimization, ISO probes randomly in bias 
space. Each probe (X) is evaluated by forming a hypothesis 
with the prescibed inductive bias. The bias point (X) is as
sociated with the achieved hypothesis credibility (O) to form 
an example. These examples are fed to the induction com
ponent of ISO. The inducer within the optimizer outputs a 
hypothesis (O(X)) that describes the credibility surface over 
bias space. The selector component of the optimizer uses 
O(X) and the existing examples to select the next point in 
bias space to evaluate. This process is the same as that de
scribed in Figures 4 and 5, but the decision space is CRL's 
inductive bias space, and the objective surface is defined in 
terms of hypothesis credibility (e.g., accuracy, evalution 
cost, formation cost, comprehensibility, etc.). 

5 Experimental Results 
CRL's task in this example is to predict the surface rough-



ness of a machined part based on the control parameters of 
the cutting tool and on the dimensions of the work piece. 
Examples were generated by a mechanistic simulator for 
the turning process (Boothroyd, 1975). The simulator 
mapped four input variables — feed rate (F), depth of cut 
(D), nose radius (N), and work piece diameter (W) to one 
output variable — surface roughness (S). Noise was added 
to the examples so they would more closely approximate 
real world observations. 

For this problem, the user's objective was defined in 
terms of two factors: hypothesis accuracy (in terms of the 
variance between predicted and actual outputs) and hypothe
sis formation time. Accuracy was measured by training 
ISO on 200 examples and testing on 1000 different exam
ples. For each tr ial, both training and testing examples 
were randomly selected. Hypothesis formation time was 
controlled by an ISO control parameter that placed an upper 
l imit on the amount of CPU time that could be used to 
form any single hypothesis. For the results reported below, 
the time l imi t was 600 CPU seconds (on a SUN/3 180 
with 24 Meg). 

Figure 6 shows the two best CRL hypotheses produced 
during the optimization process. Figure 7 shows CRL's 
performance improvement over time with a 95% confidence 
interval for the mean hypothesis error superimposed. The 
minimum possible error was 100 because of the amount of 
noise added to the examples. The actual function used by 
the turning simulator to predict surface roughness is given 
in Equation (2). 

Figure 8. Comparision of accuracy of hypotheses produced 
by CRL and traditional inductive biases. 

6 Conclusions and Future Research 
The work presented here reflects initial progress toward our 
ultimate goal: an inductive system which takes as input a 
problem description (consisting of examples and the user's 
objectives), returns the hypothesis which is optimal with re
spect to those objectives, and improves its performance over 
time by learning from problem solving experience. There is 
more work to be done before such a system is a reality. 

Obvious extensions to the existing implementation in
clude the addition of more component strategies. We plan to 
add logic-based learning strategies such as AQ (Michalski, 
1983), more sophisticated decomposition strategies (that go 
beyond binary splits), improved selection strategies for ISO 
(e.g., genetic optimizers (Holland, 1975) and simple hi l l 
climbing), and facilities for feature selection and construc
tion. 

Beyond adding component strategies to the existing 
framework, the framework itself needs to be expanded before 
the system wi l l learn from its own experience. For exam
ple, we have shown how an optimizer can be used to find a 
good inductive bias for a particular problem. However, opti
mizers themselves have biases such as the method for gener
ating an initial candidate decision to evaluate. ISO begins 
the optimization process by generating a candidate decision 
randomly. The system would be more efficient, however, if 
it possessed meta-level knowledge relating problem charac
teristics (e.g., number of examples, number of features, type 
of features, problem domain, maximum hypothesis forma
tion time, etc.) to good points in inductive bias space at 
which to begin optimization. 

To gain this added efficiency, we are currently in the pro
cess of implementing the third component of the VBMS 
framework: meta-learning. Meta-knowledge takes the form 
of hypotheses that relate problem characteristics to optimal 
points in inductive bias space (or at least good points at 

Tcheng, Lambert, Lu and Rendell 811 



which to begin further optimization). There are at least 
two approaches to learning this relationship: (1) The sys
tem could take problem-description/optimal-bias pairs 
(saved from past experience) as examples and do induction 
as usual to learn Best-Bias(Problem). To select a bias 
point for a particular problem, the system just evaluates 
this function with the current problem description as its ar
gument; or (2) The system could take problem/bias/ 
objective-score triples (saved from optimization experience) 
and induce the function describing the objective surface 
over problem/bias space [i.e., Objective(Problem, Bias)]. 
To use this function to select the best starting point in in
ductive bias space, one replaces the problem argument with 
the current problem description and optimizes Objec-
tive(Bias) in the usual manner. Eventually, we plan to test 
these meta-learning strategies on a large database of real-
world machine learning problems (Aha, 1989). 

In closing, it is important to emphasize that this partic
ular implementation is just the beginning of a much larger 
project. It reflects, for the most part, the work of a small 
group of researchers working primarily on engineering 
problems. Achieving the three design goals of VBMS 
(integration, optimization, and meta-learning [Rendell et al, 
1987]) was relatively easy in such a small, focused group. 
The challenge over the long term, however, is to achieve 
these design goals at the level of entire scientific commu
nities. In this paper, we have taken some small steps to
ward that end. 

Acknowledgements 
Special thanks to Dr. Guangming Zhang for help in run
ning the turning simulator. Thanks also to David Lambert 
and Dr. Barbara O'Keefc for helpful comments on an earlier 
draft. Funding for this research was provided in part by the 
Applied Intelligent Systems Group of Digital Equipment 
Corporation, by the National Science Foundation (DMC-
8657116). 

References 
Aha, D. (1989). UCI repository of machine learning do

mains. Dept. of Computer Science, University of Cali
fornia at Irvine, Irvine: CA. 

Boothroyd, G. (1975). Fundamentals of metal machining 
and machine tools. New York: Scripta. 

Box, G., Hunter, W., & Hunter, J. (1978). Statistics fo-
rexperimenters. New York: Wiley. 

Breiman, L., Friedman, J., Olshen, R.A., & Stone, C. J. 
(1984). Classification and regression trees. Belmont, 
CA: Wadsworth. 

Buchanan, T. (1986). Multiple objective mathematical 
programming: A review. New Zealand Operational Re
search, 14: l,(pp. 1-27). 

Holland, J. (1975). Adaptation in natural and artificial 
systems. Ann Arbor, MI : University of Michigan 
Press. 

Kadie, C. (1988). Diffy-S: Learning Robot Operator 
Schemata from Examples. Proc. of the Sixth Interna-
tional Workshop on Machine Learning. San Mateo, 
CA: Morgan Kaufmann. (pp. 430-436). 

Lu, S. C-Y., & Chen, K. (1987). A machine learning ap

proach to the automatic synthesis of mechanistic knowl
edge for engineering decision making. Journal of Artifi
cial Intelligence for Engineering Design, Analysis, and 
Manufacturing, 1:2, (pp. 109-118). 

Michalski, R., Mozetic, I., Hong, J., & Lavrac, N. 
(1986). The AQ inductive learning system: An overview 
and experiments. Technical report ISG 86-20, Dept. of 
Computer Science, University of Illinois. 

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.). 
(1983). Machine learning: an artificial intelligence ap
proach. Palo Alto, CA: Tioga Publishing. 

Mitchell, T. (1980). The need for bias in learning general 
izations. Technical report CBM-TR-117. Dept. of 
Computer Science, Rutgers University. 

Newell, A. & Simon, H. (1972). Human problem solv
ing. Englewood Cliffs, NJ: Prentice-Hall. 

Quinlan, R. (1983). Induction of decision trees. Machine 
Learning. 1:1, (pp. 81-106). 

Rendell, L. (1983). A new basis for state-space learning 
systems and a successful implementation. Artificial In
telligence. 20:4, (pp. 369-392). 

Rendell, L., Seshu, R., & Tcheng, D. (1987). Layere con
cept learning and dynamically-variable bias management. 
Proc.IJCAI '87. (pp. 308-314). Cambridge, MA: Mor
gan Kaufmann. 

Rumelhart, D., & Mc Clelland, J. (Eds.). (1986). Parallel 
distributed processing, Vol. 1. Cambridge, MA: MIT 
Press. 

Schlimmer, J. (1987). Learning and representation 
change. Proc. AAAI '87. (pp. 511-515). Cambridge, 
MA: Morgan Kaufmann. 

Smith, E. & Medin, D. (1981). Categories and concepts. 
Cambridge, MA: Harvard University Press. 

Tcheng, D., Lambert, B., & Lu, S. C-Y. (1989). General
ized recursive splitting algorithms for learning hybrid 
concepts. Proc. Sixth International Workshop on Ma
chine Learning. San Mateo, CA: Morgan Kaufmann. 

Utgoff, P. (1986). Machine learning of inductive bias. 
Dordrecht: Kluwer. 

Utgoff, P. (1988). Perceptron trees: a case study in hybrid 
concept representation. Proc. AAAI '88. (pp. 601-
606). San Mateo, CA: Morgan Kaufmann. 

812 Machine Learning 


