Building Robust Learning Systems by Combining
Induction and Optimization

David Tcheng* Bruce Lambert

Computer Science

Speech Communication

Stephen C-Y Lu
Mechanical Engineering

Larry Rendell
Computer Science

University of lllinois
Urbana IL 61801
tcheng@rn.cs.uiuc.edu

Abstract

Each concept description language and search strate-
gy has an inherent inductive bias, a preference for
some hypotheses over others. No single inductive
bias performs optimally on all problems. This pa-
per describes a system that couples induction with
optimization to carry out an efficient search of large
regions of inductive bias space. Experimental re-
sults are reported demonstrating the system's capaci-
ty to choose optimal biases even for complex and
noisy problems.

1 Introduction

Research on methods for learning concepts from examples
occupies a central position in the discipline of machine
learning (Michalski, Carbonell, & Mitchell, 1983).
Among those who study the problem of learning from ex-
amples, it is now widely recognized that each concept de-
scription language and search strategy has an inherent in-
ductive bias. Mitchell (1980) defined inductive bias as
"any basis for choosing one generalization over another,
other than strict consistency with the observed training in-
stances." In our research, we give the term inductive bias
a functional definition. Given a set of examples, an induc-
tive bias is a function that produces a hypothesis, mapping
points from a space of input representations to points in a
space of output representations. In this paper we focus on
inductive systems that produce functions that map a set of
input values to a single output function value. A partial
list of inductive systems conforming to this restriction in-
cludes: neural nets (Rumelhart & McClelland, 1986), re-
gresssion (Box, Hunter, & Hunter, 1978), decision-trees
(Rendell 1983; Quinlan 1983; Breiman, Friedman, Olshen,
& Stone, 1984), logic-based approaches (Michalski, 1983),
and exemplar-based approaches (Smith & Medin, 1981).
The best inductive bias for a given problem depends
heavily on the user's objectives (i.e., hypothesis credibility
metric). For instance, if the predominant objective is to
produce a hypothesis that is easy to comprehend, a good in-

* This research was sponsored in part by the National Science
Foundation (DMC-8657116) and by the Applied Intelligent Sys-
tems Group of Digital Equipment Corporation.

806 Machine Learning

ductive bias might represent hypotheses as English sentenc-
es or graphic representations. In other cases, when predic-
tive accuracy is the primary concern, neural nets, decision
trees, and mathematical equations may be preferable. Given
the diversity of user objectives, it is clear that no single in-
ductive bias can be optimal for all situations.

To address this problem, our research seeks to produce a
robust inductive system in accordance with the methodology
first described in Rendell, Seshu, and Tcheng's (1987) dis-
cussion of the Variable-Bias Management System (VBMS).
The original VBMS paper laid out three methods for devel-
oping robust learning systems: integration, optimization,
and meta-learning. Integration involves the representation of
unique inductive biases as points in a multi-dimensional
space (inductive bias space). Optimization is a method for
searching inductive bias space. Meta-learning is a method
for selecting an appropriate bias optimization strategy based
on characteristics of the current problem.

In this paper we present the results of tangible progress
towards integration and optimization. To integrate existing
inductive biases, we developed the Competitive Relation
Learner (CRL), a system that manages a set of diverse induc-
tive biases to produce hybrid concept representations. To
optimize inductive bias, we developed an optimization algo-
rithm called the Induce and Select Optimizer (ISO) and ap-
plied it to the problem of optimizing CRL's inductive bias.

In what follows, we first suggest that well known deci-
sion-tree building algorithms such as ID3 (Quinlan, 1986),
PLSI (Rendell, 1983), and CART (Breiman et al., 1984), as
well as recently developed hybrids like Utgoff s perception
trees (1988), can all be viewed as partial instantiations of an
abstract class of algorithms we call recursive splitting algo-
rithms. Second, we describe CRL, a generalized recursive
splitting algorithm (Tcheng, Lambert, & Lu, 1989) that
provides a framework for integrating multiple methods for
function approximation (learning strategies), multiple meth-
ods for breaking problems into subproblems (decomposition
strategies), and multiple methods for selecting the best set of
subproblems to solve (decomposition evaluation functions).
Next we argue that optimization is the appropriate metho-
dology for searching CRL's bias space. After a general dis-
cussion of optimization, we describe the details of ISO. Fi-
nally, we present experimental results that illustrate the cap-
abilities of both CRL and ISO. In concluding, we outline
plans for applying the combined system to a large database
of real-world learning problems and for learning meta-level

rules for selecting inductive bias optimization strategies.

2 The CRL System

The principal factor motivating the design of CRL was the
observation that the behavior of a recursive splitting algo-
rithm depends on three factors: (1) how predictions are
made within regions of input space; (2) how candidate de-
compositions are generated; and (3) how candidate decom-
positions are evaluated (see also Breiman et al.., 1984).
Analysis of traditional recursive splitting algorithms re-
veals that each method possesses only one learning strategy
(i.e., a method for making predictions in each subregion),
one decomposition strategy, and one decomposition evalua-
tion function. For example, ID3 (Quinlan, 1983) creates
n-way splits on nominal feature dimensions, selects the
split that minimizes its entropy function, and assigns the
most frequently occurring class label to each subregion
(i.e., leaf node). PLS1 creates binary splits perpendicular
to scalar feature dimensions, chooses the decomposition
that maximizes the difference in the output functions, and
attaches the mean output value to each subregion. Utgoff s
(1988) novel contribution lay in realizing that performance
could be improved by putting more powerful predictors at
the leaf nodes. His perceptron-tree algorithm first attempts
to classify all instances with a perceptron (i.e., a network
of threshold logic units). Failing that, it imposes n-way
splits along nominal attribute dimensions, selects the split
that minimizes its entropy function, and inserts perceptrons
at the leaf nodes. Figure 1 summarizes how these algo-
rithms and CRL instantiate the three crucial component
processes: prediction, decomposition, and evaluation.

Inductive Laarning Decsmpesition Bacomperlilen |, i & Gutput
System Siraiegim Sirataghen %:":::':l:: Festara Typm
- lits inal i
1D3 mode o) daries| CoWopy | ominalinpuie
boolean outprits
hinnry splits oo outpal scaler inputs
PLS Teskh scalar .zmm function
dissimilarity scalas sutputs
Perceptron percepiron h-way splita on ; mpats
convergence p i triggered by
Trees B Doatinal attributes nrom-Ii boolean
sepanability
buwey splits on efTor metrica: baolean,
nominal o average doviation nominal,
T scalur aributes aid error and poaler
mode oHtropy Inpuis
CRL. |back-propegation | hinery splits on | vector dilferencs
ox empler all attribuios
regrassion irmath by b lean,
distmce based resubstitution nominai,
st pample and scalar
populstion based v-fold vallation outputs
Figure 1. Characteristic components of four recursive

splitting algorithms.

Any fixed combination of prediction, decomposition,
and evaluation strategies may be ideal for a particular class
of problems, but will fail to provide optimal performance
on others. The CRL system was designed to perform well
across a wide range of problems. This robust performance

is made possible by CRL's ability to manage multiple,
competing component strategics. Such competition often
results in the formation of hybrid concepts that simultane-
ously capitalize on the strengths and minimize the weak-
nesses of two or more distinct inductive biases (Schlimmer,
1987; Utgoff, 1988). The current implementation of CRL
contains multiple learning strategies, multiple decomposi-
tion strategies, and multiple decomposition evaluation func-
tions. The design is modular, and new strategies can be add-
ed incrementally as long as they adhere to CRL's standard in-
put-output specifications. Below are relevant details of
CRL's component strategies.

2.1 Learning Strategies

In traditional recursive splitting algorithms, predictions are
made by traversing the decision tree with a given input ex-
ample and then simply returning the mean or mode of the
output points in the specified subregion. Hypotheses gener-
ated by such algorithms take the form of discontinuous step-
functions. In contrast, were regression or a neural network
used at the leaf nodes, at least two advantages would be
reaped. The resulting hypothesis would provide a closer fit
to continuous functions and fewer decompositions would be
necessary. Expanding on this idea, CRL competitively ap-
plies a variety of learning strategies (i.e., inductive biases) at
the leaf nodes to produce a hypothesis for each subregion.
In addition to averaging, CRL can be made to fit subregions
with several different models (i.e., statistical regression, neu-
ral nets, averaging, and exemplar based strategies). Compe-
tition provides the basis for choosing the learning strategy
for each region that will be used to form the final hypothe-
sis. The availability of several learning strategies allows
CRL to solve complex problems involving multiple mod-
els, and it is one of the novel aspects of the CRL system.
Below are the learning strategies currently implemented in
CRL.

21.1 Mean and Mode

These strategies take either the mean or mode of all observed
output vectors and return a constant hypothesis. Due to
their limitations, the mean and mode learning strategies are
almost always combined with one or more decomposition
strategies.

21.2 Exemplar

The exemplar learning strategy is based on a psychological
model of human concept acquisition (Smith & Medin,
1981). In the learning phase, the exemplar strategy random-
ly selects and remembers a specified number of examples
from the training set. In the performance phase, predictions
are made by looking through all of the memorized examples
and finding the set of n-examples closest to the new exam-
ple in input space (based on normalized euclidean distance).
The average of the n closest output points is returned as the
predicted output value.

21.3 Regression Models

These learning strategies are based on the classical statistical
regression model (Box, Hunter, & Hunter, 1978). CRL cur-
rently contains the linear, quadratic, logarithmic, and expo-
nential regression models.

Tcheng, Lambert, Lu and Rendell 807

214 Neural Net Models

The last of CRL's component learning strategies is a neural
network. Neural networks are highly interconnected assem-
blies of simple computing elements which, when properly
trained, can learn arbitrary input-output mappings. The
particular system in CRL is a flexible model designed to
let the user explore a wide range of architectures, connectiv-
ity patterns, and settings of other parameters. The network
learns by the back-propagation of error signals (Rumelhart
& McClelland, 1986).

2.2 Decomposition Strategies

The general idea of problem decomposition is of fundamen-
tal importance in problem solving (Newell & Simon,
1972). Equipped with a representation of the problem
space and operators for moving around in that space, the
problem solver's objective is to break down the given prob-
lem into subproblems whose solutions can be achieved by
applying the available operators. In CRL, the operators are
learning strategies and the difference to be reduced is the er-
ror of the overall hypothesis.

Mathematically, a decomposition is a function that
maps every point in the parent region of input space to one
subregion indexed by a subproblem number. For example,
if I and 12 are input features, Equation (1) represents a
simple binary decomposition function of the sort generated
by PLS1.

1) DM, I =i (11 < 3),
then Subproblem 1
else Subproblem 2

In general, a decomposition function may be defined over
any or all of the input feature dimensions and may map ex-
amples to two or more subregions. In traditional recursive
splitting algorithms, only one algorithm for generating de-
composition functions (i.e., a decomposition strategy) is
available. Because many decomposition strategies exist,
CRL allows the user to specify a set of them to use in par-
allel. Below are the decomposition strategies currently de-
fined in CRL.

2.2.1 Distance Decomposition Strategy

This decomposition strategy is a slight variation on that
used by PLS1. First, the minimal hyper-rectangle that
contains all the points in input space is calculated. Then a
set of candidate decompositions is generated by splitting
each input feature dimension at n evenly spaced points.

2.2.2 Population Decomposition Strategy

The major disadvantage of the distance decomposition strat-
egy is that it is insensitive to the actual distribution of ex-
amples in input space. In the worst case, many of the de-
compositions generated will divide input space into two re-
gions, one containing all but one of the examples and the
other containing a single example. To avoid this problem,
we have developed a method for generating decompositions
which partitions input space into regions based on popula-
tion density. The result is that more densely populated re-
gions of input space undergo proportionately more decom-
position (Kadie, 1988).

808 Machine Learning

2.2.3 Hyperplane Decomposition Strategy

All of the previously mentioned decomposition strategies in-
sert region boundaries perpendicular to attribute dimensions.
Instead of a single attribute test, this strategy generates arbi-
trarily placed hyperplane decomposition functions (see Brei-
man et a/.., 1984). The position of the hyperplane is con-
trolled by a parameter which determines how many randomly
selected input points will be used to compute the location of
an origin. If this parameter is set to «, all hyper-planes
pass through the centroid of the input space vectors and the
population tends to be divided equally. If this parameter is
set to 1, the hyperplanes pass through a single, randomly se-
lected point (not necessarily the center), yielding a greater
variety of decompositions. Once the origin has been cho-
sen, the orientation of the hyperplane is randomly deter-
mined.

23 Decomposition Evaulation Functions

Recursive splitting algorithms, such as ID3, typically rely
on mathematical measures of a subregion's entropy to evalu-
ate decompositions. Decomposition evaluation functions of
this sort favor splits that partition the input space into mini-
mally entropic regions. The logic behind such a strategy
(based on information theory) predicts that regions of low
entropy will be easier to learn. As such, entropy measures
are indirect measures of the overall hypothesis error reduc-
tion that a given decomposition will bring about. In con-
trast to the entropy-based heuristic, the CRL approach to de-
composition evaluation is to measure directly the overall er-
ror reduction of a candidate decomposition by actually evalu-
ating competing learning strategies in the newly created sub-
regions (see Fig. 2). CRL's decomposition evaluation func-
tions consist of two components, a hypothesis error metric
and a error validation strategy.

2.3.1 Hypothesis Error Metrics

A CRL hypothesis error metric is a function taking the
actual example and predicted output vector as input and re-
turns a value indicating the error of the prediction. General
purpose hypothesis error metrics include average deviation,
standard error, entropy, and vector difference. The user can
also define domain-specific error metrics. For example,
when CRL is used to create diagnostic rules, the relative
cost of false positives and false negatives can be built into
the error metric and thus used to bias decomposition accord-
ingly. This advantage is unavailable to systems that use
only general error metrics because such metrics are insensi-
tive to the type of misclassifications that may result from a
given split.

2.3.2 Error Validation Strategies

Whereas an error metric measures the error of a prediction
based on a single example, a validation strategy uses the er-
ror metric to estimate the average hypothesis error across
across an entire example set. CRL currently possesses three
error validation strategies, resubstitution, test-sample, and v-
fold cross validation (Breiman et al., 1984). Resubstitution
tests a hypothesis on the same examples that were used to
create the hypothesis. Test-sample requires the user to divide
the available examples into training and testing sets. Train-
ing examples are used to form the hypothesis, and testing

examples are used to estimate the error of the hypothesis.

V-fold cross validation is a method for estimating the error
of a hypothesis, where the number of folds is the number
of groups to partition the examples into. For example, if
the number of folds is 10, then the examples are randomly
partitioned into 10 equal-sized groups. Next, the examples
from all but 1 of the subgroups are used to create a hypoth-
esis with the given learning strategy. The accuracy of the
hypothesis is then estimated using the unseen group of ex-
amples as test cases. This process is repeated for each
group of examples, and the average hypothesis error is cal-
culated. When more than one learning strategy is compet-
ing, v-fold cross validation prevents learning strategies
with a high degree of freedom from unjustly dominating
(e.g., by memorizing all the examples).

2.4 The CRL Algorithm

Figure 2 shows how CRL takes a given set of active learn-
ing and decomposition strategies and decides which will be
used to form the final hypothesis. This method is a
straightforward generalization of the simple recursive split-
ting algorithm — the difference being that CRL uses a
best-first search (without backtracking) strategy to evaluate
multiple learning and decomposition strategy combinations
in parallel. CRL begins with a single input space region
containing every example and estimates the error in the re-
gion. The error of a region is determined by applying each
active learning strategy to the examples and recording the
error of the most accurate hypothesis.

Next, the algorithm determines whether further decom-
position will reduce the overall hypothesis error. To do
this, CRL applies all active decomposition strategies and
evaluates the resulting candidate decompositions by com-
puting the error of the resulting regions in the manner de-
scribed above. The most valuable decomposition, the one
that brings about the greatest overall error reduction, is
used to create new subregions. This process is recursively
applied to each subregion until one of the following three
stopping criteria is met: (1) the error of the overall hy-
pothesis ceases to decrease more than a specified threshold;
(2) the number of examples in a candidate subregion falls
below a specified threshold; or (3) the time consumed ex-
ceeds a specified threshold.

CRI(examples)
G = Best-Ground- Hypothesis{(examples)
) = Best-Decomposed- Hypothesig{examples)
If accuracy of I > G,
Then recursively call CRL on each subpreblem in I
and rcirm decision tree of results,
Else remm G.

Best-Ground-Tlypothesis{(examples)
For each active leaming strategy:
Create hypothesis and measure ils accuracy.
Retum most accurate hypothesis.

Best-Decomposed-Hypothesis (examples)
lFor each active decomposition strategy:
Decompose problem inlo candidate subproblems,
For each candidate subproblem:
Best-Ground- Hypothesis(subproblem-examples)
Relumn most accurate decomposed hypothesis,

Figure 2. Pseudo code for the CRL algorithm.

From the user's perspective, the main advantage of CRL
is that it creates an environment in which one can easily ex-
periment with a diverse set of learning strategies without
having to recode data orjump from system to system. Un-
fortunately, the diversity of choices has a cost. With so
many alternative inductive biases to choose from, finding
the best bias for a problem is difficult One way around the
problem of bias selection is to activate a large, representa-
tive set of CRL's learning and decomposition strategies and
to let them compete. This approach can be immensely ex-
pensive - especially if the user wants to ensure that all sig-
nificantly different biases are tried. We do not advocate such
a brute force solution. Instead, an independent optimization
system can be used to search for the inductive bias that is
optimal with respect to a given set of user objectives.

To say that optimization should be used to search induc-
tive bias space is insufficient because as many optimization
biases as inductive biases exist. Therefore, to complete the
definition of our methodology, we must decide on a frame-
work for optimization. In the following section, we de-
scribe both weak optimization methods, such as random
search, and strong methods, which themselves employ in-
ductive biases to guide the search for the optimum. Rather
than choosing between weak and strong methods, we eventu-
ally propose a methodology that allows us access to both.

3. Relating Optimization and Induction

3.1 What is Optimization?

From the perspective of decision making, optimization is
the process of finding the best decision among a range of un-
tested alternatives (Buchanan, 1986). Optimization prob-
lems are defined in terms of a decision space and a means
for evaluating candidate decisions (the evaluator, see Fig. 3).

Decision (X) Cvaluator Exumple (X,)
Qptimizer
l timal
(X, 0)s

¥

Figure 3. Simple view of optimization.

For example, if the goal is to design an aircraft wing that
produces maximal lift, the dimensions of the decision space
are attributes of the wing design (e.g., material type, wing
curvature, wing length, etc.). In this case, candidate deci-
sions can be evaluated either by building and testing the
wing or by estimating the wing performance through com-
puter simulation. The goal of the optimization process is to
find the best point in decision space using the least effort.

An optimizer takes as input a set of examples and em-
ploys some heuristic to generate new candidate decisions. A
continuum of optimization biases ranges from the weak to
the strong. Random selection of candidate decisions is a
weak heuristic which can be quite effective when the cost of

Tcheng, Lambert, Lu and Rendell 809

evaluating decision points is negligible. If the cost of
evaluation is high, stronger (and less efficient) selection
heuristics are justified. Strong selection heuristics employ
some inductive bias to create a hypothesis that describes
the objective surface over decision space (see Fig. 5). This
hypothesis is used to guide further selection.

Response surface fitting (Box et al, 1978) is an exam-
ple of a strong optimization strategy which uses an induc-
tive bias to aid in the selection of new candidate decisions.
Response surface fitting typically uses polynomial regres-
sion to estimate the relationship between decision variables
and objective score. To generate new candidate decisions,
the selector component of a response surface fitting algo-
rithm first calculates the decision point maximizing its
polynomial hypothesis and then selects that point as the
next decision to evaluate. For each selected point, an ob-
jective score is calculated by the evaluation function and as-
sociated with the decision space point to form an example
for the next iteration of polynomial regression. The pro-
cess continues until some stopping criterion is met (e.g.,
the objective score ceases to increase or resources are ex-
hausted).

3.2 The Induce and Select Optimizer

Recognizing that a versatile optimization system ought to
posess both the strong and weak methods described above,
we designed the Induce and Select Optimizer (ISO). The
ISO framework is schematically represented in Figure 4.

Decision (X)
Evaluator

Hypothesis
O(X)

Sclector

Figure 4. Component view of optimization.

As its name suggests, I1SO includes two main compo-
nents: an inducer and a selector. The role of the inducer is
to describe, for the selector's benefit, the objective surface
over decision space (see Fig. 5). Optimization strategies
such as response surface fitting use induction, but they are
equipped with only one inductive bias (e.g., quadratic re-
gression). This is fine if the objective surface over deci-
sion space happens to be similar to a quadratic function. If
it is not, however, using the induced quadratic hypothesis
to guide the selection of new decisions adds little benefit,
and may actually impede progress toward the optimum.
ISO escapes this limitation because its inducer manages a
collection of competing inductive biases. With many in-
ductive biases to choose from, the inducer within ISO has a
much higher probability of accurately describing the objec-
tive surface over decision space. ISO is, therefore, much
more likely to find a strong optimization method.

The second component of ISO is its selector. Selection
is the process of using both the examples and the induced

810 Machine Learning

hypothesis to guide the selection of new candidate decisions.
In ISO, selection is based on two control parameters called
novelty and performance. A high novelty setting causes
ISO to prefer points in decision space that are maximally
distant from those already attempted. If novelty were the
only consideration, ISO would ignore the induced hypothesis
describing the objective surface over decision space, and in-
stead perform random, non redundant search. If performance
were the only consideration, ISO would attend only to the
induced hypothesis, choosing new candidate decisions that
maximize that hypothesis. In this way, the novelty and per-
formance parameters allow ISO to exhibit both strong and
weak optimization biases.

High

Score in
Objective Spaci

Low

Decision Space
Flgure 5. Hypothesis predicting the cbjective surface
over a decision space.

4 Optimizing Inductive Bias With ISO

The availability in CRL of multiple decomposition strate-
gies, learning strategies, and decomposition evaluation func-
tions increases the size of the inductive bias space through
which ISO may search. Here we encounter a classic trade-
off. Larger search-spaces are more likely to contain better
solutions, but they are also more difficult to search. In this
section we describe how ISO optimizes hypothesis credibili-
ty over CRL's inductive bias space.

Conceptually, CRL's bias space is a feature space defined
by a set of variables that jointly specify which learning and
decomposition strategies to use, their control parameters, the
hypothesis error metric, how the hypothesis error is to be
measured, and the minimum error reduction needed to justify
a decomposition. Simply put, a point in bias space com-
pletely determines CRL's hypothesis formation behavior.

By selecting which component processes are eligible to
be considered, the experimenter defines the region of CRL's
inductive bias space in which ISO can seek an optimum. In
the first stage of optimization, ISO probes randomly in bias
space. Each probe (X) is evaluated by forming a hypothesis
with the prescibed inductive bias. The bias point (X) is as-
sociated with the achieved hypothesis credibility (O) to form
an example. These examples are fed to the induction com-
ponent of ISO. The inducer within the optimizer outputs a
hypothesis (O(X)) that describes the credibility surface over
bias space. The selector component of the optimizer uses
O(X) and the existing examples to select the next point in
bias space to evaluate. This process is the same as that de-
scribed in Figures 4 and 5, but the decision space is CRL's
inductive bias space, and the objective surface is defined in
terms of hypothesis credibility (e.g., accuracy, evalution
cost, formation cost, comprehensibility, etc.).

5 Experimental Results

CRL's task in this example is to predict the surface rough-

ness of a machined part based on the control parameters of
the cutting tool and on the dimensions of the work piece.
Examples were generated by a mechanistic simulator for
the turning process (Boothroyd, 1975). The simulator
mapped four input variables — feed rate (F), depth of cut
(D), nose radius (N), and work piece diameter (W) to one
output variable — surface roughness (S). Noise was added
to the examples so they would more closely approximate
real world observations.

For this problem, the user's objective was defined in
terms of two factors: hypothesis accuracy (in terms of the
variance between predicted and actual outputs) and hypothe-
sis formation time. Accuracy was measured by training
ISO on 200 examples and testing on 1000 different exam-
ples. For each trial, both training and testing examples
were randomly selected. Hypothesis formation time was
controlled by an ISO control parameter that placed an upper
limit on the amount of CPU time that could be used to
form any single hypothesis. For the results reported below,
the time limit was 600 CPU seconds (on a SUN/3 180
with 24 Meg).

Figure 6 shows the two best CRL hypotheses produced
during the optimization process. Figure 7 shows CRL's
performance improvement over time with a 95% confidence
interval for the mean hypothesis error superimposed. The
minimum possible error was 100 because of the amount of
noise added to the examples. The actual function used by
the turning simulator to predict surface roughness is given
in Equation (2).

0.032 (1000F)2

@ Ss=
N

Note that only 2 of the 4 input variables were actually
arguments o the target function, and that CRL did not pos-
sess a learning strategy that could adequately solve the
problem without decomposition.

The Best CRL Hypothesis...

1IF (105F - 10.2D - 31.1N - 0.17W) > -1.30
THEN
IF (248F + 74D - 46.5N - 0.23W) > (.12
THEN S = 24500F + 20.1D - 4000N - 2. 48W - 4.20
ELSE S =15800F - 56.1D - 1670N - .73W - 4.11
ELSE
S=12400F - 10.6D - 1730N - 0.35W - 22.24

Emmor = 103.5

The Runner Up...
IFN <003
THEN § = eA277F - 0.03D - 54.8N + 0.00W + 3.52)
ELSE § = 13300F - 53.6D - 1000N + 0.26W -9.82
Error = 103.7

Figure 6. The two best hypotheses produced by CRL.

To form a basis for comparison, the problem was also at-
tempted with PLSI, a neural network, and linear regression,
where each of these strategics received optimization roughly
equivalent (in CPU seconds) to that received by CRL. The
accuracies of the best hypotheses from each method are sum-
marized in Figure 8.
550
450
490
154, L]
30D,

Hypotesry Erer
L]
-

250
04
158

C 1000 2000 3000 4000 5000 600D TOOC 8000 900D
Accumdniued CPU Tima

Flgure 7. CRL's learning curve for the machine ol prediction
problem.

Linear Back-
CRL Repression PLS1 Propagation
[Acoracy] 1035 | 1216 | 1259 | 1326 |

Figure 8. Comparision of accuracy of hypotheses produced
by CRL and traditional inductive biases.

6 Conclusions and Future Research

The work presented here reflects initial progress toward our
ultimate goal: an inductive system which takes as input a
problem description (consisting of examples and the user's
objectives), returns the hypothesis which is optimal with re-
spect to those objectives, and improves its performance over
time by learning from problem solving experience. There is
more work to be done before such a system is a reality.

Obvious extensions to the existing implementation in-
clude the addition of more component strategies. We plan to
add logic-based learning strategies such as AQ (Michalski,
1983), more sophisticated decomposition strategies (that go
beyond binary splits), improved selection strategies for ISO
(e.g., genetic optimizers (Holland, 1975) and simple hill
climbing), and facilities for feature selection and construc-
tion.

Beyond adding component strategies to the existing
framework, the framework itself needs to be expanded before
the system will learn from its own experience. For exam-
ple, we have shown how an optimizer can be used to find a
good inductive bias for a particular problem. However, opti-
mizers themselves have biases such as the method for gener-
ating an initial candidate decision to evaluate. ISO begins
the optimization process by generating a candidate decision
randomly. The system would be more efficient, however, if
it possessed meta-level knowledge relating problem charac-
teristics (e.g., number of examples, number of features, type
of features, problem domain, maximum hypothesis forma-
tion time, etc.) to good points in inductive bias space at
which to begin optimization.

To gain this added efficiency, we are currently in the pro-
cess of implementing the third component of the VBMS
framework: meta-learning. Meta-knowledge takes the form
of hypotheses that relate problem characteristics to optimal
points in inductive bias space (or at least good points at

Tcheng, Lambert, Lu and Rendell 811

which to begin further optimization). There are at least
two approaches to learning this relationship: (1) The sys-
tem could take problem-description/optimal-bias pairs
(saved from past experience) as examples and do induction
as usual to learn Best-Bias(Problem). To select a bias
point for a particular problem, the system just evaluates
this function with the current problem description as its ar-
gument; or (2) The system could take problem/bias/
objective-score triples (saved from optimization experience)
and induce the function describing the objective surface
over problem/bias space [i.e., Objective(Problem, Bias)].

To use this function to select the best starting point in in-
ductive bias space, one replaces the problem argument with
the current problem description and optimizes Objec-
tive(Bias) in the usual manner. Eventually, we plan to test
these meta-learning strategies on a large database of real-
world machine learning problems (Aha, 1989).

In closing, it is important to emphasize that this partic-
ular implementation is just the beginning of a much larger
project. It reflects, for the most part, the work of a small
group of researchers working primarily on engineering
problems. Achieving the three design goals of VBMS
(integration, optimization, and meta-learning [Rendell et al,
1987]) was relatively easy in such a small, focused group.
The challenge over the long term, however, is to achieve
these design goals at the level of entire scientific commu-
nities. In this paper, we have taken some small steps to-
ward that end.

Acknowledgements

Special thanks to Dr. Guangming Zhang for help in run-
ning the turning simulator. Thanks also to David Lambert
and Dr. Barbara O'Keefc for helpful comments on an earlier
draft. Funding for this research was provided in part by the
Applied Intelligent Systems Group of Digital Equipment
Corporation, by the National Science Foundation (DMC-
8657116).

References

Aha, D. (1989). UCI repository of machine learning do-
mains. Dept. of Computer Science, University of Cali-
fornia at Irvine, Irvine: CA.

Boothroyd, G. (1975). Fundamentals of metal machining
and machine tools. New York: Scripta.

Box, G., Hunter, W., & Hunter, J. (1978). Statistics fo-
rexperimenters. New York: Wiley.

Breiman, L., Friedman, J., Olshen, R.A., & Stone, C. J.
(1984). Classification and regression trees. Belmont,
CA: Wadsworth.

Buchanan, T. (1986). Multiple objective mathematical
programming: A review. New Zealand Operational Re-
search, 14: 1,(pp. 1-27).

Holland, J. (1975). Adaptation in natural and artificial

systems. Ann Arbor, MI: University of Michigan
Press.
Kadie, C. (1988). Diffy-S: Learning Robot Operator

Schemata from Examples. Proc. of the Sixth Interna-
tional Workshop on Machine Learning. San Mateo,
CA: Morgan Kaufmann. (pp. 430-436).

Lu, S. C-Y., & Chen, K. (1987). A machine learning ap-

812 Machine Learning

proach to the automatic synthesis of mechanistic knowl-
edge for engineering decision making. Journal of Artifi-
cial Intelligence for Engineering Design, Analysis, and
Manufacturing, 1:2, (pp. 109-118).

Michalski, R., Mozetic, |., Hong, J., & Lavrac, N.
(1986). The AQ inductive learning system: An overview
and experiments. Technical report ISG 86-20, Dept. of
Computer Science, University of lllinois.

Michalski, R., Carbonell, J., & Mitchell, T. (Eds.).
(1983). Machine learning: an artificial intelligence ap-
proach. Palo Alto, CA: Tioga Publishing.

Mitchell, T. (1980). The need for bias in learning general
izations. Technical report CBM-TR-117. Dept. of
Computer Science, Rutgers University.

Newell, A. & Simon, H. (1972). Human problem solv-
ing. Englewood Cliffs, NJ: Prentice-Hall.

Quinlan, R. (1983). Induction of decision trees. Machine
Learning. 1:1, (pp. 81-106).

Rendell, L. (1983). A new basis for state-space learning
systems and a successful implementation. Artificial In-
telligence. 20:4, (pp. 369-392).

Rendell, L., Seshu, R., & Tcheng, D. (1987). Layere con-
cept learning and dynamically-variable bias management.
Proc.IJCAI '87. (pp. 308-314). Cambridge, MA: Mor-
gan Kaufmann.

Rumelhart, D., & Mc Clelland, J. (Eds.). (1986). Parallel
distributed processing, Vol. 1. Cambridge, MA: MIT
Press.

Schlimmer, J. (1987). Learning and representation
change. Proc. AAAI '87. (pp. 511-515). Cambridge,
MA: Morgan Kaufmann.

Smith, E. & Medin, D. (1981). Categories and concepts.
Cambridge, MA: Harvard University Press.

Tcheng, D., Lambert, B., & Lu, S. C-Y. (1989). General-
ized recursive splitting algorithms for learning hybrid
concepts. Proc. Sixth International Workshop on Ma-
chine Learning. San Mateo, CA: Morgan Kaufmann.

Utgoff, P. (1986). Machine learning of inductive bias.
Dordrecht: Kluwer.

Utgoff, P. (1988). Perceptron trees: a case study in hybrid
concept representation. Proc. AAAl '88. (pp. 601-
606). San Mateo, CA: Morgan Kaufmann.

