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Abstract

Ordering composite hypotheses in a Bayesian network
based on its associated a posteriori probabilities can be ex-
ponentially hard. This paper discusses a qualitative rea-
soning approach which reduces the computational complex-
ity of deriving a partial ordering of composite hypotheses.
Such a reasoning makes use of the meta-knowledge about
the causal relationships among individual hypotheses to
deduce qualitative conclusions about the ordering of local
composite hypotheses. By doing so, we can employ "divide
and conquer" strategy to derive the global ordering of the
composite hypotheses from a set of local ordering in which
consistencies are guaranteed. We view the contribution of
this research is on the integration of qualitative reasoning
with the use of local computations to find not only the most
likely composite hypotheses, but also the partial ordering
of the composite hypotheses.

|. Introduction

A Bayesian network [Pearl 86,87] is a graphical rep-
resentation of probabilistic knowledge about the causal re-
lationships among a set of variables (propositions) in an
expert system. Each of these variables accounts for a set of
possible outcomes, each of which is a hypothesis. A permu-
tation of the outcomes accounted for by different variables
Is referred to as a composite hypothesis. For example, if
the causal relationships among heatstroke (one kind of heat
ililness) and its pathological states (such as body tempera-
ture, level of consciousness, etc.) are represented in terms
of a Bayesian network for use in computer aided medical
diagnosis, one possible composite hypothesis can be: not
heatstroke and high body temperature and Jlow level of
consciousness.

The probabilistic inference of a Bayesian network is
to derive conclusions about the hypotheses. The conclu-
sions can be the most likely composite hypothesis, or the
partial ordering of a set of composite hypotheses, based
on its associated Bayesian beliefs which are quantitatively
expressed in terms of a posteriori (conditional) probabili-
ties. The conclusion about the most likely composite hy-
pothesis is not necessarily sufficient in some applications;
e.g, the assessment of design methodologies suggested by
a CAD system [Sy, 89] for the development of a nonvocal
communication device. In this case, partial ordering of the
composite hypotheses is necessary.
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Several approaches have been proposed to find the
most likely composite hypothesis. These include the use of
linear programming [Cooper, 86] and task decomposition
[Pearl, 87] based on combining local maximum causal and
diagnostic supports. However, the computational complex-
ities of using linear programming have never been addressed
and the consistency of combining local causal and diagnos-
tic supports to derive an ordering of composite hypotheses
cannot be guaranteed. Even worse, finding a partial order-
ing of all composite hypotheses in a straightforward manner
can be exponentially or NP-hard [Cooper, 87][Rege, 88].

In dealing with the class of problems which is NP-
hard, three avenues are proposed in a recent research sym-
posium [Sipser, 88]. They are (i) the study of random guess
versus rigorous problem-solving algorithms, (ii) computa-
tion time versus memory space, and (iii) parallelism. In
our previous research [Sy, 88], we explored the potential of
random guess and found that the random guess approach
can be effective if a set of good prediction rules relevant
to the constraints of probability theory and the topological
structure of a Bayesian network are provided. This finding
motivates the study of prediction rules which are encoded
as meta — knowledge to indicate the qualitative change of
the Bayesian beliefs of the composite hypotheses with re-

spect to the change of the a posteriori probability of each
individual hypothesis.

In section |l the properties of Bayesian networks and
their computational problems are described. In section |1l
we will introduce the notion of conditional influence which
formulates meta-knowledge about the causal relationships
among local composite hypotheses. The details of qualita-
tive reasoning using meta-knowledge are presented in sec
tion IV. In section V the mechanism of qualitative reasoning
Is demonstrated through an example illustration.
the conclusions are summarized in section VI.

Finally,

||. Bayesian Networks and Problem Overview

Bayesian networks are acyclic graphs within which a
set of nodes are connected by a set of arcs. The nodes in
the graph represent variables (propositions) and the arcs
signify causal dependencies among the probabilistic vari-
ables. Each variable is denoted by a lower case letter and
Is quantified by a set of discrete values so that each value
corresponds to one hypothesis — or one possible outcome
accounted for by the variable; for example, the variable rel-



evant to the body temperature can be high, normal, or low.
For the sake of discussion, each variable is assumed to have
only two possible values (e.g. true or false). The uppercase
letter, such as X and X are used to abbreviate x = X and
x = X respectively. A simple Bayesian network is shown
in Fig. 1.

Both the arcs and nodes in a Bayesian network are
quantified by probability functions. The probability func-
tion of a node with variable x is the a priori probabil-
ity distribution Pr(x). The probability function of an arc
connecting a node with variable y to a node with variable
x is the conditional probability Pr(z|y) '. The joint dis-
tribution of the variables can be obtained by multiplying
appropriate probability functions together. For example,
Pr(abedef) = Pr(a{bc)Pr(b)Pr(c)Pr(d|c)Pr(e|df)Pr(f)
in Fig. 1.

A permutation of the variables in a Bayesian network
can be a composite hypothesis (H) or an evidence (S,) de-
pending upon whether the variables are observable or not.
In general, a composite hypothesis refers to a permutation
of a set of quantified variables which include all the vari-
ables in a Bayesian network except those appears in S..
However, if this is not the case, such a composite hypothe-
sis is referred to as local composite hypothesis. For exam-
ple, there are 6 variables (a,b,cd, e,f) in Fig. 1; if Sg =
EF, then ABCD is a composite hypothesis while BCD
and DEF are local composite hypotheses °.

The inference process of a Bayesian network is based
on computing Pr(H|S,) to derive the conclusions about
the most likely H* (i.e. Max;[Pr(H;|S.)]), or the partial
ordering of all H;s, given S... When the Bayesian beliefs of
all H;s (i.e. Pr(H;|S.)) are computed, a complete partial
ordering of all H;s can be generated. In above example,
16 combinations of different values of the variables, a, b,
¢ d(given S. = EF) have to be considered in order
to find a complete partial ordering of all H;s. When k
the number of variables in H; — increases, the number of
Bayesian beliefs to be considered correspondingly increases
in the order of 2*. It is clear the computational load will
soon be a problem when k becomes large. It is unlikely
in any application that we need to find a complete partial
ordering of the composite hypotheses. However, if we are
interested in, for example, the largest four Pr(abcd\EF),
applying straightforward approach (i.e. exhaustive evalua-
tions of all Pr(abcd\EF)) will still require the consideration
of all combinations which complexity is in the order of 2
In next section, we will discuss a set of meta-rules which re-
duces the computational complexities of deriving a partial

ordering of composite hypotheses.

' Whenever necessary, the conditional joint probability

will also be stored; for example, Pr(a]bc) and PT’("'|df) in

Fig. 1 and table 1.
° Note that a permutation of all variables in a Bayesian

network is also a local composite hypothesis by definition.
However, this special case is useless to our discussions,
thus is excluded from our considerations of local composite
hypotheses.

|1l. Prediction Rule and Conditional Influence
Within the framework of probability theory, Bayesian
networks exhibit two properties which lead to a prediction
rule for the derivation of a partial ordering of composite
hypotheses.

(i) The composite hypotheses, H;s, of a Bayesian networks
are mutually exclusive to each other. Mathematically,

Pr(U;Hi|S.) = )  Pr(H,|S.) (1)

(ii) The set of all H;, H = U;H,, exhaustively covers all
the possible combinations of different values of the variables
in a Bayesian network. That is:

2!:
Y Pr(Hi|S.) = Pr(Hy U .. UHn|S.) = 1 (2)
1=]

Remark: Consider Pr(H; = abed|EF) discussed above,
Hy U ..U Hye (fork = 4) will lead to AUA, BUB, CUC,
DU D. The Bayesian belief of any of these (i.e. Pr(H|S,.))
18 1.

Based on the equations (1) and (2), we can derive the
following prediction rule:

PRR1 (Prediction rule): Given a partial ordering of the
probability of m (out of 2¥) mutually exclusive hypotheses
Pr(H,|S.) > Pr(H,|S.) > ... > Pr(H,,|S,.), there is a “—;ﬁ
probability that the largest Pr(H;|S.) is within the bound
18, a] where

H; € {Hn1+1 IIzk},

C=1-Pr(H,U..UH,|S,),

a and f are some constants such that Pr(H,, ., U ... U
H)e|Se) 2 a > B

Remark: The proof of above prediction rule (PRR1) can
be found in [Sy, 88].

Consider an extreme case that m = 1 and Pr(H,|S,)
> 0.5. This implies that the value of C in PRR1 is
less than 0.5. If we set # = 0, « = Pr(H,U..U
Hyx|Se), then PRR1 indicates that H, is the most likely
composite hypothesis with certainty. Next suppose we have
m = 3 and Pr(H,|S.) = 035 > Pr(H,|S.) =02 >
Pr(H;|S.) = 0.15. Now Maz|[Pr(H4U ...U Hu|S,)] = C
0.3. fweset § = 0,0 = Mazx[Pr(HsU ...U Hy|S,)]
Maziy, 2.3|Pr(H|Se)], we will once again find that
Pr(H|S,) is the most likely composite hypothesis with cer-
tainty.

From the example shown above, we can see that the
rate of reaching a conclusion (about finding either the most
likely composite hypothesis or the partial ordering of com-
posite hypotheses) depends on how and what composite hy-
potheses are selected for evaluation. That is, if the compos-
ite hypotheses selected for evaluation have relatively large
values of Bayesian beliefs, the faster a conclusion can be
reached. Referring to the discussion in Section |l and Fig.
1, the Bayesian belief of any arbitrary composite hypothe-
sis, for example, Pr(abrd|S. = EF), can be rewritten as a
joint probability normalized by a priori probability of the
variables in S, (Bayes rule). That is:

AVARR]
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Pr(abchS )
= (s s Pr (a]be)Pr(b)Pr(c)Pr(d|c)Pr(E|dF)Pr(F) (3)

Each term in the nght side (except B Se)) can be

considered as a probability function for a local composite
hypothesis. The change of the Bayesian belief of a per-
mutation of variables (i.e. abed) depends on the change
of the local probabilities (i.e. the terms in the right hand
side). The relative changes and the bound of changes are
the meta-knowledge for qualitative reasoning and are en-
coded in terms of "conditional influence”".

The probability function for a local composite hypoth-

esis has a general form Pr(z|y,y2...yn) as is observed in (3).
Each varniable, z or y;, can have two possible values; 1.e. X,
X or Y;, Y; respectively 3. Given the value of z, let s say,

= X, we can compare two local plObabllltleS with dif-
ferent values of y;, let’s say, Pr(X|Y1Y;) and Pr(X YQ)
(for n = 2). Suppose Pr(X|V1Y,) > Pr(X|Y,), w
denote such an inequality by (XYY, XY Y2). Slrmlarly,
(Y] |Z1 , Yl IZ}) denotes PT‘(Y] |Zl) > P?"(Y] |Z]) and
(Zy,Z,) denotes Pr(Z,) > Pr(Z;). To simplify our dis-
cussion, we use Y; to represent one permutation of the
quantified value of y,y;...y,. For example, Y, = Y1 Y5,
Yz = }71}/2, Y3 — Y] )72, and Y4 = Y]ng forn = 2. In ad-
dition, we use "I” to denote the collection of all (e)s. Using
these notations, Conditional influence can be defined as a
relation over IxI as follows:

If there exists (X|Y;, X|Y;) and (Yk|Z,,Y,|Z)) such
that Y3 occurs in Y; and Y, occurs in Y (for any k #
v), then these two (e)s are related to each other under
conditional influence relation and the relation 1s represent-
ed as an ordered pair shown below *

((XY;, X|Y;), (Yi|Zh, Yo |Zy))

Referring to the Bayesian network in Fig. 1 and the numer-
ical values of the probabilistic information shown in table
1, there are 19 such relations. They are:

Clo1 : ({(A|BC, A|BC),(B, B))

CI02 : ((A|BC, A|BC), (B, B))

CI03 : ((A|BC, A|BC),(C,C))

Clo4 : ((A|BC, A|BC),(C,C))

CI05 : ((A|BC, A|BC),(C,C))
Cl06 : ((A|BC, A|BC), (C,C))
CI07 : ({(A|B, A|B),(B, B))

Cl08 : ((A|C, A|C),(C,C))

CI09 : ({(D|C,D|C),{C,C))

CI10 : ((E|DF, E|DF),(D|C,D|C))

* Note that the discussion here can be generalized for
variables with multi-values other than binary values.

* If Y; and Y, have no ”parents” in the Bayesian net-
work, then the relation will be ((X|Y;, X|Y;), (Yi,Y)).
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V. Recognition,

Cll1: ((E|DF,E|DF),(D|C, D|C))
Cl12: ((E|DF,E|DF),(D|C, D|C))
CI13: ((E|DF,E|DF),(F,F))

Cl14 : ((E|DF,E|DF),(F, F))
Cl15: ((E|DF,E|DF),(D|C, D|C))
Cl16: ((E|DF,E|DF),(F, F))
C117 : ((E|D, E|D),(D|C, D|C))
CI18 : ((E|D, E|D),{D|C, D|C))
CI19 : ((E|F, E|F), (F, F))

In next section we will show how the conditional influ-
ence relations are used in qualitative reasoning.

Combination,

Using the conditional influence relations discussed in
Section Ill, we can examine the qualitative change of the
Bayesian belief of a composite hypothesis (i.e. a permuta-
tion of quantified variables) with respect to the change of
the probabilities of local composite hypotheses. For exam-
ple, when the composite hypothesis accounted for by abed
Is changed from ABCD to ABCD, CIl04 and CI09 indi-
cate an increase in the probabilities Pr(albc), Pr(d|c), and
Pr(c), thus the Pr (abcd\S,).

The selection of composite hypotheses for evaluation
during the reasoning process can be based on the condi-
tional influence relations which induce partitions > among
the local composite hypotheses. For example, the Bayesian

belief of the composite hypothesis ABCD (given S. = EF)
iIn Fig. 1 can be expressed as below:

Pr(ABCD|S, = EF)
Pr(AIB(")P:(B)Pr((’)Pf LD[(")P?(FIDP)P:(P)
Pr(EF)

There are six terms (e xcl u

Pr(‘lﬁ:ﬁ‘))i n the right
hand side of above expression. These terms can be parti-
tioned into 4 classes according to the conditional influence
relations. They are:

Class 1 (according to Cl04) : Pr(A|BC)Pr(C)
Class 2 (not exist in CI) : Pr(B)

Class 3 (according to CI09) : Pr(D|C)Pr(C)
Class 4 (according to Cl14) : Pr(E|DF)Pr(F)

Formally, a class refers to the collection of local com-
posite hypotheses which achieve local consistency; I.e.,
the change of the probability value of one variable (due
to the change of its quantified value) will lead to the same
qualitative change of the overall probability of the class. For
example, when the value of the variable ¢ is changed from C
to C, the values of b o Pr(c) and Pr(alc) will decrease,
thus the overall probability Pr(ajbc)Pr(c) in class 1 will de-
crease. Similarly, when the value of a is changed from A to
A, the probability Pr(a|bc) increases, so as Pr(a|bc)Pr(c).

It is possible to change the value of one variable in

° The partition is not necessarily mutually exclusive.

and Propagation Rules



one class, which simultaneously leads to the change of the
overall probabilities of other classes in an inconsistent way.
For example, when the value of d is changed from Dto D,
P"(E|dF) will increase as does the overall probability of
class 4. However, this will also cause the decrease of the
probability Pr{d\c) in class 3, thus causing a decrease in
the overall probability of class 3.

In order to determine which composite hypotheses sh-
ould be selected for evaluation, we need to identify those
composite hypotheses with which local composite hypothe-
ses are consistent not only within a class, but also among
classes. In the selection of composite hypotheses for evalua-
tion, three kinds of rules are required in qualitative reason-
ing. They are (i) the recognition rule, (ii) the combination
rule, and (iii) the propagation rule.

Recognition rule - This rule is for class composition.
It is used to recognize the pattern(s) of conditional influence
existing in a given composite hypothesis and to partition it
into classes, or to combine two classes together if the local
composite hypotheses of two classes are consistent with one
another. The recognition rule used for class composition
can be formulated as below:

RRI (Recognition rule):

(i) If a local composite hypothesis does not exist in any
ordered pairs of conditional influence, it is a separate class

by itself.

(ii) Otherwise, a class is generated using the composition
operation, &, defined as below:

(V,U), (W, Z)) ® ((W,L), (M,N)) = < V.W. M >

where €< @ > denotes a collection of local composite hy-
potheses which are consistent to each other in the same
class (i.e. local consistency).

Combination rule This rule is used during the
course of reasoning to seek out new hypothesis (i.e. quan-
tified propositional variable) which can be categorized into
a given class. The combination rule is defined through the
combination operation ® described below:

CR1 (Combination rule):
(V,U), (W, 2)) ® ((V, L), (M,N)) = < V,W,M >

Propagation rule This rule is for generating con-
clusion about the potential change of a Bayesian belief due
to the change of the probabilities of the partitioned classes.
It is used to propagate the conclusions about the combined
qualitative changes of the probabilities of two classes; i.e.,
increase (1), steady (-), decrease (]), or unknown (?). The
following table summarizes the qualitative change of the
overall probability of a combined class with respect to the
change of the probability of each individual class.
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Qualitative reasoning is envisioned as a process of ap-
plying the rules described above in a certain sequence for
the selection of composite hypotheses for evaluation, and
for the generation of conclusions about the qualitative val-
ues of the Bayesian beliefs of the composite hypotheses.
Within the scenario of finding the partial ordering of
Pr(Hi|Se), the mechanism of reasoning follows as below:

Step 1:

Randomly select a new composite hypothesis for ex-
amination.
Step 2:

Apply the recognition rule to the composite hypothesis
for class partition.

Step 3:

Modify the value of a propositional variable in the com-
posite hypothesis and re examine the local consistency of
a class using the combination rule.

Step 4.

Apply the propagation rule to generate a conclusion
about the overall change of the Bayesian belief of a permu-
tation of propositional variables.

Step 5:

Re-iterate step 2 to 4 until maximum global consis-

tency is obtained.

Step 6:

Evaluate the quantitative value of the Bayesian belief
of the selected composite hypothesis.
Step 7:

Use prediction and/or heuristic rules to determine
whether the conclusion is reached and whether the reason-

Ing process can be terminated.

V. Example

Qualitative reasoning of the Bayesian belief discussed
In this paper can be illustrated through the Bayesian net-
work shown in Fig. 1. The problem is to determine the
partial ordering of three most likely composite hypothesis
given S, = EF. To start the reasoning process, assume
H = ABCD is selected (according to C101) for consid-
eration. The mechanism of qualitative reasoning is shown

below:

QR1:

Consider CI01, initial setting of abed is H = ABC D
Apply the recognition rule to H = ABCD

Pr(A|BC)Pr(B)

Pr(C)

Pr(D|C)

Pr(E|DF)Pr(F)

Clas. 1 (according to CI01) :
Class 2 (not exist in Cl) :
Class 3 (not exist in CI)
Class 4 (according to CI14) :
Consider C102, the value of abed is modified to H = ABCD
Apply the combination rule to Classes 1 and 2
Class 1 (according to CI02, 03) : Pr(A|BC)Pr(B)Pr(C)
Class 2 (according to C109) Pr(D|C)Pr(C)
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Class 3 (according to CI14) : Pr(E|DF)Pr(F)

Apply the propagation rule to trace the change of H
from ABCD to ABCD, we can conclude Pr(ABCD|EF)
> Pr(ABCD|EF).

Evaluate Pr(ABCD|EF) = Pr(ABCD|EF) = 0.178.

Mark ABCD, reinvokes the qualitative reasoning pro-
cess to search another likely composite hypothesis with the

same initial consideration; i.e., H = ABCD.

QR2: o
Consider CI01, we get H = ABCD as is in QRI1. o
Consider CI15, the value of abed is modified to H = ABCD
Apply the combination rule to classes 3 and 4 shown
in QR1.
Class 1 (according to CI01) : Pr(A|BC)Pr(B)
Class 2 (not exist in CI) : Pr(C)
Class 3 (based on CI15, 16) : Pr(D|C)Pr(E|DF)Pr(F)
Apply the propagation rule to trace the change of H

from AB“C'_D_ to ABCD, we can conclude Pr(ABCD|EF)
> Pr(ABCD|EF).

Evaluate Pr(ABCD|EF) = Pr(ABCD|EF) = (0.140.
QR3:

Consider CI04, the initial setting of abcd 1s H = ABCD.
Apply the recognition rule to H = ABCD.

Class 1 (according to C104) :
Class 2 (not exist in CI) :
Class 3 (according to CI14) :

Pr(A|BC)Pr(C)
Pr(B)
Pr(E|DF)Pr(F)

Evaluate Pr(ABCD|EF) = Pr(ABCD|EF) = 0.159.

Combining the results obtained from QR1, QR2, and
QR3, the partial ordering of three most likely composite
hypotheses is °:

Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCD|EF)

VI. Conclusion

This paper presents a qualitative reasoning approach
for the derivation of partial ordering of composite hypothe-
ses in a Bayesian network. The mechanism of the reason-
ing process is based on a set of rules which are used to de-
rive qualitative conclusions about the ordering of the causal
relationships of the hypotheses encoded as conditional in-
fluence relations. This approach features several distinct
significances which make it an attractive alternative to be
considered for use in probabilistic reasoning. First, the par-
titions induced by conditional influence permit local rea-
soning, thus concurrent processing. Second, reasoning in a
partitioned class reduces computational complexities, and
yet its consistencies between local and global levels are as-
sured. Third, this approach can be used to infer not only

° A complete partial ordering of Pr(abcd\EF) is shown

In table 2.
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the most likely composite hypothesis, but also the ordering
of composite hypotheses. Finally, it is equally important
to note that (i) the conclusions generated by qualitative
reasoning are usually weaker; e.g., the ordering of the com-
posite hypotheses are known but not their quantitative val-
ues, (ii) the efficiency of this approach depends on both the
topological structures of a Bayesian network and its prob-
ability distribution, and (iii) several other approaches are
available and equally attractive if our interest is only on the
most likely composite hypothesis.
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Fig. 1: Bayesian Network
[ Pr(B) = 0.4 | Pr(C) =065 [ Pr(F) = 0.55 }
| Pr(D|C) =0.2 Pr(D|C) =0.8 |
* Pr(A|B) = 0.3 L Pr(A|B) = 0.65 [ Pr(A|C) =04 Pr(A|C) = 0.714 |
Pr(E|D) = 0.4 Pr(E|D) = 0.17 Pr(E|F) = 0.1 Pr(E|F) = 0.465 |
Pr(A|BC) = 0.8 Pr(A|BC) = 0.6 Pr(A|BC) = 0.4 Pr(A|BC) = 0.2
Pr(E|\DF) = 0.26 1 Pr(E|DF) = 0.14 Pr(E|DF) = 0.74 Pr(E|DF) = 0.06 1

Pr(abcdef) = Pr(albc)Pr(b)Pr(c)Pr(d|c)Pr(e|df)Pr(f)

‘-— O S—

Table 1 ;: Probabilistic Knowledge of Fig. 1

Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCD|EF) >
Pr(ABC'DIE'F) > Pr(ABCD|EF) > Pr(ABCD|EF) > Pr( BCD\|EF) >
Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCDI|EF) >

Pr(ABCD\|EF) > Pr(ABCD|EF) > Pr(ABCD|EF) > Pr(ABCD|EF)
Table 2 : Complete Partial Ordering of Pr(abed|EF)
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