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A b s t r a c t 
Ordering composite hypotheses in a Bayesian network 

based on i ts associated a posteriori probabi l i t ies can be ex­
ponential ly hard. This paper discusses a qual i tat ive rea­
soning approach which reduces the computat ional complex­
i ty of deriving a par t ia l ordering of composite hypotheses. 
Such a reasoning makes use of the meta-knowledge about 
the causal relationships among ind iv idua l hypotheses to 
deduce qual i tat ive conclusions about the ordering of local 
composite hypotheses. By doing so, we can employ "d iv ide 
and conquer" strategy to derive the global ordering of the 
composite hypotheses f rom a set of local ordering in which 
consistencies are guaranteed. We view the cont r ibut ion of 
this research is on the integrat ion of qual i tat ive reasoning 
w i t h the use of local computat ions to f ind not only the most 
l ikely composite hypotheses, but also the par t ia l ordering 
of the composite hypotheses. 

I . I n t r o d u c t i o n 
A Bayesian network [Pearl 86,87] is a graphical rep­

resentation of probabi l ist ic knowledge about the causal re­
lationships among a set of variables (proposit ions) in an 
expert system. Each of these variables accounts for a set of 
possible outcomes, each of which is a hypothesis. A permu­
tat ion of the outcomes accounted for by different variables 
is referred to as a composite hypothesis. For example, if 
the causal relationships among heatstroke (one k ind of heat 
illness) and its pathological states (such as body tempera­
ture, level of consciousness, etc.) are represented in terms 
of a Bayesian network for use in computer aided medical 
diagnosis, one possible composite hypothesis can be: not 
heatstroke a n d high body temperature a n d low level of 
consciousness. 

The probabil ist ic inference of a Bayesian network is 
to derive conclusions about the hypotheses. The conclu­
sions can be the most likely composite hypothesis, or the 
par t ia l ordering of a set of composite hypotheses, based 
on its associated Bayesian beliefs which are quant i tat ively 
expressed in terms of a posteriori (condit ional) probabi l i ­
ties. The conclusion about the most l ikely composite hy­
pothesis is not necessarily sufficient in some applications; 
e.g, the assessment of design methodologies suggested by 
a C A D system [Sy, 89] for the development of a nonvocal 
communicat ion device. In this case, par t ia l ordering of the 
composite hypotheses is necessary. 

Several approaches have been proposed to f ind the 
most l ikely composite hypothesis. These include the use of 
l inear programming [Cooper, 86] and task decomposit ion 
[Pearl, 87] based on combining local max imum causal and 
diagnostic supports. However, the computat ional complex­
ities of using linear programming have never been addressed 
and the consistency of combining local causal and diagnos­
tic supports to derive an ordering of composite hypotheses 
cannot be guaranteed. Even worse, f inding a par t ia l order­
ing of al l composite hypotheses in a straightforward manner 
can be exponential ly or N P - h a r d [Cooper, 87][Rege, 88]. 

In dealing w i t h the class of problems which is N P -
hard , three avenues are proposed in a recent research sym­
posium [Sipser, 88]. They are (i) the study of random guess 
versus rigorous problem-solv ing algor i thms, ( i i ) computa­
t ion t ime versus memory space, and ( i i i ) paral lel ism. In 
our previous research [Sy, 88], we explored the potent ia l of 
random guess and found that the random guess approach 
can be effective if a set of good predict ion rules relevant 
to the constraints of probabi l i ty theory and the topological 
structure of a Bayesian network are provided. Th is f inding 
motivates the study of predict ion rules which are encoded 
as meta — knowledge to indicate the qual i tat ive change of 
the Bayesian beliefs of the composite hypotheses w i t h re­
spect to the change of the a posteriori probabi l i ty of each 
ind iv idual hypothesis. 

In section I I the properties of Bayesian networks and 
their computat ional problems are described. In section I I I 
we w i l l introduce the not ion of conditional influence which 
formulates meta-knowledge about the causal relationships 
among local composite hypotheses. The details of qual i ta­
t ive reasoning using meta-knowledge are presented in sec­
t ion IV . In section V the mechanism of qual i tat ive reasoning 
is demonstrated through an example i l lus t ra t ion. Final ly, 
the conclusions are summarized in section V I . 

I I . B a y e s i a n N e t w o r k s a n d P r o b l e m O v e r v i e w 
Bayesian networks are acyclic graphs w i th in which a 

set of nodes are connected by a set of arcs. The nodes in 
the graph represent variables (proposit ions) and the arcs 
signify causal dependencies among the probabi l ist ic var i­
ables. Each variable is denoted by a lower case letter and 
is quanti f ied by a set of discrete values so that each value 
corresponds to one hypothesis — or one possible outcome 
accounted for by the variable; for example, the variable rel-
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evant to the body temperature can be high, normal, or low. 
For the sake of discussion, each variable is assumed to have 
only two possible values (e.g. t rue or false). The uppercase 
letter, such as X and X are used to abbreviate x = X and 
x = X respectively. A simple Bayesian network is shown 
in Fig. 1. 

Both the arcs and nodes in a Bayesian network are 
quanti f ied by probabi l i ty functions. The probabi l i ty func­
t ion of a node w i t h variable x is the a priori probabi l­
i ty d is t r ibu t ion Pr(x). The probabi l i ty funct ion of an arc 
connecting a node w i t h variable y to a node w i t h variable 
x is the condit ional probabi l i ty The jo in t dis­
t r i bu t ion of the variables can be obtained by mul t ip ly ing 
appropriate probabi l i ty functions together. For example, 

in F ig. 1. 
A permutat ion of the variables in a Bayesian network 

can be a composite hypothesis (H) or an evidence (Se) de­
pending upon whether the variables are observable or not. 
In general, a composite hypothesis refers to a permutat ion 
of a set of q u a n t i f i e d variables which include all the vari­
ables in a Bayesian network except those appears in Se. 
However, if this is not the case, such a composite hypothe­
sis is referred to as local composite hypothesis. For exam­
ple, there are 6 variables (a, b, c,d, e , f ) in Fig. 1; if Se = 
EF, then ABCD is a composite hypothesis while BCD 
and DEF are local composite hypotheses 2. 

The inference process of a Bayesian network is based 
on comput ing to derive the conclusions about 
the most l ikely or the part ia l 
ordering of al l His, given Se.. When the Bayesian beliefs of 

are computed, a complete part ia l 
ordering of all H is can be generated. In above example, 
16 combinations of different values of the variables, a, b, 
c d have to be considered in order 
to find a complete par t ia l ordering of al l H is. When k 
the number of variables in H i — increases, the number of 
Bayesian beliefs to be considered correspondingly increases 
in the order of 2* . It is clear the computat ional load wi l l 
soon be a problem when k becomes large. It is unlikely 
in any appl icat ion that we need to find a complete part ia l 
ordering of the composite hypotheses. However, if we are 
interested i n , for example, the largest four Pr(abcd\EF), 
apply ing straightforward approach (i.e. exhaustive evalua­
tions of al l Pr(abcd\EF)) w i l l st i l l require the consideration 
of al l combinations which complexity is in the order of 2 . 
In next section, we wi l l discuss a set of meta-rules which re­
duces the computat ional complexities of deriving a part ia l 
ordering of composite hypotheses. 

1 Whenever necessary, the condit ional jo int probabi l i ty 
9 

wi l l also be stored; for example, in 
F ig. 1 and table 1. 

2 Note that a permutat ion of all variables in a Bayesian 
network is also a local composite hypothesis by definit ion. 
However, this special case is useless to our discussions, 
thus is excluded f rom our considerations of local composite 
hypotheses. 

I I I . P r e d i c t i o n R u l e a n d C o n d i t i o n a l I n f l u e n c e 
W i t h i n the framework of probabi l i ty theory, Bayesian 

networks exhibit two properties which lead to a predict ion 
rule for the derivation of a part ia l ordering of composite 
hypotheses. 

( i) The composite hypotheses, H is, of a Bayesian networks 
are mutual ly exclusive to each other. Mathematical ly, 

(1) 

( i i ) The set of all exhaustively covers all 
the possible combinations of different values of the variables 
in a Bayesian network. That is: 
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From the example shown above, we can see that the 
rate of reaching a conclusion (about finding either the most 
likely composite hypothesis or the part ia l ordering of com­
posite hypotheses) depends on how and what composite hy­
potheses are selected for evaluation. That is, if the compos­
ite hypotheses selected for evaluation have relatively large 
values of Bayesian beliefs, the faster a conclusion can be 
reached. Referring to the discussion in Section II and Fig. 
1, the Bayesian belief of any arbi t rary composite hypothe­
sis, for example, can be rewr i t ten as a 
jo int probabi l i ty normalized by a priori probabi l i ty of the 
variables in Se (Bayes rule). That is: 



(3) 
Each term in the r ight side (except can be 

considered as a probabi l i ty funct ion for a local composite 
hypothesis. The change of the Bayesian belief of a per­
muta t ion of variables (i.e. abed) depends on the change 
of the local probabil i t ies (i.e. the terms in the r ight hand 
side). The relative changes and the bound of changes are 
the meta-knowledge for qual i tat ive reasoning and are en­
coded in terms of "condi t ional inf luence". 

Referring to the Bayesian network in Fig. 1 and the numer­
ical values of the probabilistic information shown in table 
1, there are 19 such relations. They are: 

In next section we w i l l show how the condit ional inf lu­
ence relations are used in qual i tat ive reasoning. 

I V . R e c o g n i t i o n , C o m b i n a t i o n , a n d P r o p a g a t i o n R u l e s 
Using the condit ional influence relations discussed in 

Section I I I , we can examine the qual i tat ive change of the 
Bayesian belief of a composite hypothesis (i.e. a permuta­
t ion of quanti f ied variables) w i th respect to the change of 
the probabil i t ies of local composite hypotheses. For exam­
ple, when the composite hypothesis accounted for by abed 
is changed f rom ABCD to ABCD, CI04 and CI09 indi ­
cate an increase in the probabil i t ies and 

(c), thus the (abcd\Se). 
The selection of composite hypotheses for evaluation 

dur ing the reasoning process can be based on the condi­
t ional influence relations which induce part i t ions 5 among 
the local composite hypotheses. For example, the Bayesian 
belief of the composite hypothesis ABCD (given = EF) 
in F ig. 1 can be expressed as below: 

There are six terms ( e x c l u d i n g i n the r ight 

hand side of above expression. These terms can be par t i ­
t ioned in to 4 classes according to the condit ional influence 
relations. They are: 

Class 1 (according to CI04) : 

Class 2 (not exist in CI) : 

Class 3 (according to CI09) : 

Class 4 (according to CI14) : 

Formally, a class refers to the collection of local com­
posite hypotheses which achieve l o c a l c o n s i s t e n c y ; i.e., 
the change of the probabi l i ty value of one variable (due 
to the change of i ts quanti f ied value) w i l l lead to the same 
qual i tat ive change of the overall probabi l i ty of the class. For 
example, when the value of the variable c is changed f rom C 
t o the values o f b o t h a n d Pr(a\bc) w i l l decrease, 
thus the overall probabi l i ty in class 1 w i l l de­
crease. Similar ly, when the value of a is changed f rom A to 
A, the probabi l i ty increases, so as 

It is possible to change the value of one variable in 

5 The par t i t ion is not necessarily mutua l ly exclusive. 
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one class, which simultaneously leads to the change of the 
overall probabi l i t ies of other classes in an inconsistent way. 
For example, when the value of d is changed f rom D t o D , 

wi l l increase as does the overall probabi l i ty of 
class 4. However, this w i l l also cause the decrease of the 
probabi l i ty Pr{d\c) in class 3, thus causing a decrease in 
the overall probabi l i ty of class 3. 

In order to determine which composite hypotheses s h ­
ould be selected for evaluation, we need to identify those 
composite hypotheses w i t h which local composite hypothe­
ses are consistent not only w i th in a class, but also among 
classes. In the selection of composite hypotheses for evalua­
t ion , three kinds of rules are required in qual i tat ive reason­
ing. They are ( i ) the recognit ion rule, ( i i ) the combination 
rule, and ( i i i ) the propagation rule. 

R e c o g n i t i o n r u l e - Th is rule is for class composit ion. 
It is used to recognize the pattern(s) of condit ional influence 
exist ing in a given composite hypothesis and to par t i t ion it 
in to classes, or to combine two classes together if the local 
composite hypotheses of two classes are consistent w i th one 
another. The recognit ion rule used for class composition 
can be formulated as below: 

R R l (Recognit ion rule): 
( i ) If a local composite hypothesis does not exist in any 
ordered pairs of condit ional influence, it is a separate class 
by itself. 
( i i ) Otherwise, a class is generated using the composition 
operat ion, defined as below: 

where denotes a collection of local composite hy­
potheses which are consistent to each other in the same 
class (i.e. local consistency). 

C o m b i n a t i o n r u l e Th is rule is used during the 
course of reasoning to seek out new hypothesis (i.e. quan­
t i f ied proposit ional variable) which can be categorized into 
a given class. The combinat ion rule is defined through the 
combinat ion operat ion ® described below: 

CR1 (Combinat ion rule): 

P r o p a g a t i o n r u l e This rule is for generating con­
clusion about the potent ia l change of a Bayesian belief due 
to the change of the probabil i t ies of the part i t ioned classes. 
It is used to propagate the conclusions about the combined 
qual i tat ive changes of the probabil i t ies of two classes; i.e., 
increase ( ↑ ) , steady ( - ) , decrease ( ↓ ) , or unknown (?). The 
fol lowing table summarizes the qual i tat ive change of the 
overall probabi l i ty of a combined class w i t h respect to the 
change of the probabi l i ty of each ind iv idual class. 

Qual i tat ive reasoning is envisioned as a process of ap­
plying the rules described above in a certain sequence for 
the selection of composite hypotheses for evaluation, and 
for the generation of conclusions about the qual i tat ive val­
ues of the Bayesian beliefs of the composite hypotheses. 
W i t h i n the scenario of f inding the par t ia l ordering of 
P r ( H i | S e ) , the mechanism of reasoning follows as below: 

Step 1: 

Randomly select a new composite hypothesis for ex­
amination. 
Step 2: 

Apply the recognition rule to the composite hypothesis 
for class par t i t ion. 
Step 3: 

Modify the value of a proposit ional variable in the com­
posite hypothesis and re examine the local consistency of 
a class using the combination rule. 
Step 4: 

Apply the propagation rule to generate a conclusion 
about the overall change of the Bayesian belief of a permu­
tat ion of propositional variables. 
Step 5: 

Re-iterate step 2 to 4 unt i l max imum global consis­
tency is obtained. 
Step 6: 

Evaluate the quanti tat ive value of the Bayesian belief 
of the selected composite hypothesis. 
Step 7: 

Use prediction and/or heuristic rules to determine 
whether the conclusion is reached and whether the reason­
ing process can be terminated. 

V . E x a m p l e 
Quali tat ive reasoning of the Bayesian belief discussed 

in this paper can be i l lustrated through the Bayesian net­
work shown in Fig. 1. The problem is to determine the 
part ia l ordering of three most likely composite hypothesis 
given Se = EF. To start the reasoning process, assume 
H = ABCD is selected (according to C101) for consid­
eration. The mechanism of qual i tat ive reasoning is shown 
below: 
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V I . C o n c l u s i o n 
This paper presents a qual i tat ive reasoning approach 

for the derivation of par t ia l ordering of composite hypothe­
ses in a Bayesian network. The mechanism of the reason­
ing process is based on a set of rules which are used to de­
rive qual i tat ive conclusions about the ordering of the causal 
relationships of the hypotheses encoded as condit ional in­
fluence relations. This approach features several dist inct 
significances which make it an at t ract ive al ternat ive to be 
considered for use in probabil ist ic reasoning. F i rs t , the par­
t i t ions induced by condit ional influence permi t local rea­
soning, thus concurrent processing. Second, reasoning in a 
part i t ioned class reduces computat ional complexit ies, and 
yet its consistencies between local and global levels are as­
sured. T h i r d , this approach can be used to infer not only 

6 A complete par t ia l ordering of Pr(abcd\EF) is shown 
in table 2. 
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the most likely composite hypothesis, but also the ordering 
of composite hypotheses. Finally, it is equally important 
to note that ( i) the conclusions generated by qualitative 
reasoning are usually weaker; e.g., the ordering of the com­
posite hypotheses are known but not their quantitative val­
ues, ( i i ) the efficiency of this approach depends on both the 
topological structures of a Bayesian network and its prob­
abil i ty distr ibut ion, and (i i i ) several other approaches are 
available and equally attractive if our interest is only on the 
most likely composite hypothesis. 
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