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Abstract

Truth maintenance systems have been studied by
many authors and have become powerful tools in Al
reasoning systems. From the viewpoint of
commonsense reasoning, Doyle's TM5 seems most
interesting, for it allows nonmonotonic
justifications. Its semantics, however, has
remained unclear. In this paper, we shall give
its declarative description in terms of
autoepistemic logic, a kind of nonmonotonic logic.
That is, we shall exhibit a one-to-one
correspondence between states acceptable to the
TMS and stable expansions of autoepistemic
formulas attached to justifications. Thus, the
TMS turns out to be a theorem prover of
autoepistemic logic. For the practical interest,
our result also suggests the possibility of
implementing better M5 algorithms by using the
theorem proving method of autoepistemic logic.

1. Introduction

In this paper, we shall give the declarative
semantics of Doyle's TM5 [6]. Our method is based
on autoepistemic logic defined by Moore [14]. The
main result is that there exists a natural one-to-
one correspondence between states acceptable to
the VB and stable expansions of the set. of
autoepistemic formulas attached to the

justifi cations.

In Doyle's first paper on the TMS, his main
iIntention seemed to be to put nonmonotonic
reasoning into practical use. But his description
of the TMS was algorithmic and without semantics.
To provide the semantics is important not only for
a theoretical interest but also for a practical
one in improving M5 implementations.

McDerinott and Doyle [13] attempted to give a
logical background of the TMS. However, their
"non-monotonic logic" has several disadvantages.
Soe attempts to resolve these faults have been
made [12,14]. Among others, Moore's autoepistemic
logic has clear semantics. In addition, it is
shown that autoepistemic logic has remarkable
relations to the modal logic S5 [15] and Reiter's
default logic [10]. But these studies of
nonmonotonic reasoning seem to have little
influence on the work on truth maintenance.

De Kleer [3] presented the AIMS architecture, a
variant of Doyle's TMS. It aims at efficient
search and can process multiple contexts
simultaneously. The AIMS, however, can treat
monotonic justifications only. There are
proposals of the AIMS architecture which allow

nonmonotonic justifications [4,5,7], but they also
lack the semantics.

In this paper, we shall make the semantics of
Doyle's TMB clear by using the technique of
nonmonotonic reasoning. The TMS is a theorem
prover of autoepistemic logic. Our result
suggests the possibility of implementing better
VB and extended AIMS algorithms.

2. Autoepistemic logic

Moore [14] defined autoepistemic logic as a formal
framework of beliefs of the ideally rational agent-
reasoning about her ownn beliefs. Moore [15]
further obtained alternative semantics, which is
based on Krlpke semantics of the modal logic Sb5.
In this section, we shall give a brief account of
his theory.

2.1. The formalism of autoepistemic logic

The language of autoepistemic logic is that of
propositional logic augmented by a unary
connective L. The symbol L is intended to mean
"Is believed"”". We suppose that atomic
propositions are drawn from a finite set P.

Let T be a set of autoepistemic formulas. For
any propositional truth assignment V, we define
the autoepistemic interpretation V? to be the
truth assignment which extends V by the condition

Vi'l(Lp) =1 <= ptT.
If an autoepistemic interpretation Vf satisfies
the condition that Vp(p) -1 for all ptT, we shall
call Vo an autoepistemic model of T.

We define the notions of soundness and
completeness relative to this semantics.

Definition 1. Let A be a finite set of
autoepistemic formulas. A set of autoepistemic
formulas T is sound with respect to a set of
premises A if and only if every autoepistemic
interpretation of T in which every formula of A
Is true is also an autoepistemic model of T.

Definition 2. A set of autoepistemic formulas T
IS seimmtically complete if and only if every
autoepistemic formula which is true in every
autoepistemic model of T lies Iin T.

The set of beliefs that a rational agent might
hold, given a set of premises A, would be
semantically complete theory that is sound with
respect to A.
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Definition 3. A set of autoepistemic formulas T
Is called a stable expansion of a set of premises
A if and only if T satisfies the following
conditions:

1) T contains A.

2) T is sound with respect to A.

3) T is semantically complete.
2.2. The modal logic S5 [9,11]
The logic S5 is a kind of modal logic of
knowledge. Its Kripke semantics is very simple.
An S5 Kripke model is just a set of truth

assignments. These truth assignments can be
considered as the worlds which are possible.

Syntax. The language of S5 is syntactically
identical to that of autoepistemic logic. The
symbol ~L~ is often abbreviated as M.

Semantics. An S5 Kripke structure is a set of
propositional truth assignments. An S5 model is a
pair (V,K) consisting of a propositional truth
assignment V and an S5 Kripke structure K such
that VEK. The interpretation of an S5 formula p
with respect to this model is given by the usual
truth recursion augmented by conditions:

1) (V.K)|=p <=V |=pifpisa

propositional formula.

2) (V,K)|=Lp <= (W,K)|=p for all WK.
We shall denote by Vk(p) the truth value of a
formula p with respect to an S5 model (V,K).

2.3. Autoepistemic logic and S5 semantics
The formulation of autoepistemic logic given above
IS nonconstructive and makes it difficult to seek
stable expansions. In [15], Moore characterized
semantically complete autoepistemic theories in
terms of S5 semantics. This characterization
enables us to demonstrate the existence of stable
expansions of given set of premises.

Theorem 1.
equivalent.

1) The autoepistemic theory T is semantically
complete.

2) The autoepistemic theory T is given by

T={p| (V,K)|-pforall VEK},
for some Sb Kripke structure K.

(Moore) The following conditions are

By the above theorem, we get simple
characterization of stable expansions, which we
shall use repeatedly.

Proposition 1. Let A be a set of autoepistemic
formulas. Then a stable expansion T of a set of
premises A corresponds bijectively to an S5 Kripke
structure K which satisfies the following
conditions:

1) T-{p]| (V,K)|=p forall VEK }.
2) For any propositional truth assignment V,
VeK<=Vy((p)=1forall p€A.

Proof. Let T be a stable expansion of a set of
premises A and define an S5 Kripke structure K by
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K={V | VT is an autoepistemic model of T }.

From Moore's proof of the above theorem, we have
T=(p|(V,K)|=pforall VEK}.

On the other hand, as T contains A and is sound

with respect to A, VT is an autoepistemic model of

T if and only if Vi(p) = 1 for all p€A. Thus, K

satisfies 1) and 2).

Suppose that an S5 Kripke structure K satisfies
1) and 2). By 2), if V€K, we have Vi(p) =1 for
all p€A. Remark that, for V€K, V1(q) = Vk(q)
for any autoepistemic formula q. Then we have
VK(P) =1 for any peA and VcK. By the definition
of T, we see that TDA. By 2), if a
propositional truth assignment V satisfies the
condition that VT(P) =1 for all peA, we get VeK,
hence VT is an autoepistemic model of T. Thus, T
Is sound with respect to A. This shows that T is
a stable expansion of a set of premises A. Q.E.D.

Combining Proposition 1 and the decidability of
the modal logic S5 [9,11], we know that
autoepistemic logic is also decidable, i.e. we can
obtain all the stable expansions of the given set
of premises.

3. The TMS

A TMS is a part, of the reasoning system. The
reasoning system consists of a problem solver and
a TMS. The problem solver transmits every
inferences made to the TMS. The TMS manages
justifications and answers what, data are believed
("in") and disbelieved ("out") when asked.

In this section, after giving a formulation of
the TMS, we shall define a translation rule from
the TMS theory to autoepistemic logic and show its
properties.

3.1. The formalism of the TMS

Here we give a formulation of Doyle's TMS. For
simplicity, we shall only deal with SL-
justi fications.

Definition 4. A TMS is a triple D= (N,J,C) such
that

1) N is a finite set (The elements of N will be
called nodes.) .

2) J is a subset of Nx2"x2", where 2" denotes
the power set of N (The elements of J will be
called justifications.) .

3) C is a subset of 2" (The elements of C will
be called nogoods.) .

Let j- (n,Ni,N2) J be a justification. Then
the node n is called the consequent node of j.
The subset Ni (resp. N2) of N is called the inlist
(resp. outlist) of the justification j. The
justification | is said to be nonmonotonic if the
outlist N2 is nonempty.

The following definition of admissible states is
intended to formulate states acceptable to a TMS
without "circularity-check".



Definition 6. Let D= (N,J,C) be a TMS and S be a
subset of N. We shall say that S is a*
admissible state of D if S satisfies the following
conditions:

1) Let j = (n,Ni,N2) € J be a justification with
NicS and N2cN\S. Then n lies Iin S.

2) Conversely, for any neS, there exists a
justification j - (n,Ni,N2) ed with Ni c S and
Np. ¢ N\S.

3) For any nogood c, c4S.

Let S be an admissible state of D. By the above
definition, for any node n€S, there exists a
justification j- (n,Ni,N2) such that Ni c S and
N2CN\S. We shall call such j a supporting
justification of n.

Doyle tried to get rid of "in" nodes supported
by circular arguments. His TMS singles out one
supporting justification to each "in" node and
tries to ensure that the set of supporting
justifications is without circularity. The
following definition of well-founded admissible
states is intended to formulate states acceptable
to the TS with "circularity-check”. Although
Doyle classified three patterns of circular
arguments, we shall consider the first one only.
The second type of circularity is an example of
Mmultiple-extension problem which are cormon in
nonmonotonic reasoning. The third type of
circularity is unsatisfiable one and it has no
admissible state In our sense.

Definition 6. Let D and S be as in the above
definition. We shall say that S is a minimal
admissible state of D if S is an admissible state
of D and any proper subset of S is not an
admissible state of D.

Definition 7. Let D and S be as in the above
definition. AN admissible state S of D is said to
be a well-founded admissible state ii, for any
nes, there exists a supporting justification j,
of n such that S is a minimal admissible state of
the T™MS (N, { jn I NE S },0) (Such a set {jo I N*:. S}
is called a set of well-founded supporting
justifications.).

The following example shows our definition
precludes admissible states which are based on
circul ararguments.

Example 1. Let J-{ (p, {p},0), (g,0, {p}) } = Then
there are two admissible states, i.e. {p} and {q},
which are both minimal. The supporting
justification (p,{p},0) of the node p is circular,
hence {p} is not well-founded. On the other hand,
the supporting justification of gq is (q,0,{p}) and
{g} is a minimal admissible state of {(q, O, {p})}.
Thus, the state {q} is the unique well-founded
admissible state of J.

Remark. In the first version of this paper, we
formulated the states acceptable to the TMS5 with
circularity-check to be minimal admissible states.

But as we can see in the above example, it is
insufficient. The authors also considered yet
another truth maintenance system [8] based on
stratified logic programming technique [16], which
accepts only the state {q} of the above example.
Thus, we felt a need to reformulate states
acceptable to the TMS. The definition given here
is a natural formalization of Doyle's original
one.

A TMS may have no well-founded admissible states
and may have more than one. As long as we allow
the full use of nonmonotonic justifications, there
seems to be little hope to resolve this
difficulty. The set of justifications of the
following example has two well-founded admissible
states, but there seems to be no reasonable way to
select one of them as canonical. Later we shall
discuss the class of the set of justifications
w=>ich has one and only one well-founded admissible
state.

Example 2. Consider the set of justifications

J={(p.0,{qa})., (q.0,{p}) }.
Then there are two admissible states of J, i.e.

{p} and {qg}. It is easily checked that both are
well-founded.

The following proposition shows that well-
foundedness subsumes MmMinimality.

Proposition 2. Let D and S be as in the above
definition. If S is a well-founded admissible
state of D, then it is also a minimal admissible
state of D.

Proof. Suppose that S is not a minimal admissible
state of D. Then there exists a proper subset To
of S which is an admissible state of D.

From this assumption, we shall construct an
admissible state T of the T™™M5 (N, {jn | NneS},0).
Denote by Jo~ (jn I " *=° 1} the set of well-founded
supporting justifications. Let J* be the set
consisting of justifications jn~ (n,Ni,N2) € Jo
with Ni ¢ To and Tj] be the union of TQ and the set
of consequent nodes of J\

T] - Tou{ n | jn - (N,Ni,N3) t jo with Ni c To }.
Let J= be the set consisting of justifications
jn = (N,Ni,N2) " JO) with N] < Ti and T2 be the union
of To and the set. of consequent nodes of J2
T2=Tou{ 11 1l in- (n,N],N2) <= JO with N> C T] }.
As J2 contains J], Ty contains Ti. By repeating
this argument, we get a chain of sets
TocTic.cTjc....
Denote by T the union of all the sets Ti (i 2 0).
Then it is easily checked that T is an admissible
state < f the M5 (N,Jo,0).

On the other hand, as To is an admissible state
of D, we see that the set of consequent nodes of
Jl1 is a subset of To. Hence we get TQ=T] =T2=...
=T. Thus, we obtain an admissible state To of
the M5 (N,Jo,0), which is a proper subset of S.
This contradicts the assumption that S is a well-
founded admissible state of D. Q.E.D.
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3.2. The TMS and autoepistemic logic

If | is a finite set of formulas, we shall denote
by Al (resp. VI) the conjunction (resp.
disjunction) of the formulas in |I.

Let D = (N,J,C) be a TMS. By considering N as a
set of atomic propositions, we associate to any
justification j = (n,Ni,N2) an autoepistemic
formula F(j) defined by

A{Lk | KeNj] }AaA{~L1 | 1 €Np2} Dn.
Put F(D) = {(F(3j) | J€J}. For any subset S of N,
we define an S5 Kripke structure k(S) by

kK(S) = {V|V(s) =1 for all se€ S}
and an autoepistemic theory t(S) by

t(S) = {pl (V,k(S))I=p for all Vek(5) }.

Remark. The above translation rule has a natural
interpretation. The node is "in" if and only if
the corresponding atomic proposition lies Iin the
autoepistemic theory (the set of "beliefs"). It
Is Iinteresting that the above rule iIs very similar
to the rule used in Konolige's proof [10] of the
"equivalence" of default logic [19] and
autoepistemic logic.

We can now state our main result.

Theorem 2. The mapping S -> t(S) gives a
bijection between the following sets.

1) The set of admissible states of D.
2) The set of stable expansions T of F(D) with
Ac¢g T for all C € C.

Proof. For any autoepistemic theory T, define a
subset s(T) of N by s(T) = (nE€ENINnET).

It suffices to show the theorem for the case
that C - 0. We shall proceed in three steps:

Step 1. If 5 is an admissible state of D, t(S) is
a stable expansion of F(D).

Step 2. If T is a stable expansion of F(D), s(T)
IS an admissible state of D.

Step 3. s(t(5)) = S for any subset S of N and
t(s(T)) = T for any stable expansion T of F(D).

Proof of Step 1. Let S be an admissible state
of D. By Proposition 1, to prove our claim, it
suffices to show that
Vek(S) <=> V; (s) (F(j) ) =1 for all j€J.

We first show the implication =>. Let V be an
element of k(S). By the fact that S is an
admissible state of D, we have V{(S) (F(j)) = 1.

For the other implication, suppose that a
propositional truth assignment V satisfies the
RHS. By the definition of k(S), it suffices to
show that V(s) =1 for all s€ S. Let s be any
element of S. As S is an admissible state of D,
there exists a supporting justification j of s.
Thus, Vi(S)(F(j)) =V«(S)(s) = V(s) = 1. This
shows the other implication.
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Proof of Step 2. Let T be a stable expansion of
F(D) and K be the corresponding S5 Kripke
structure as in Theorem 1. Let us show that s(T)
satisfies 1) and 2) of Definition 5. To show 1),
let ] - (n,N1,N2) be an element of J such that
Nics(T) and N2 c N\s(T). Since T is a stable
expansion of F(D), any V of K satisfies the
condition VT(FJ)) = 1 for all j€J. Thus, we

have V(n) =-1 for VEK. This implies that n€ T.

Now we show that s(T) satisfies 2) of Definition
5. Let s be an element of s(T). Suppose that
there exists no justification j = (s,Ni,N2) with
Nics(T) and N2CN\s(T). Let V be any element of
K and W be a propositional truth assignment such
that W(h) = V(n) (n # s) and W(s) = 0. Then it is
easily observed that Wx(F(j)) =1 for all j€ J. As
T is a stable expansion of F(D), we have WEK by
Proposition 1. Since s belongs to the set

S(T - {pEN|V(P) -1 for all VEK},

we have W(s) - 1, a contradiction.

Proof of Step 3. The equality st S)) - S is
trivial. Let T be a stable expansion of F(D) and
K be the corresponding S5 Kripke structure. To
prove the equality t(s(T)) - T, it suffices to
show that k(s(T)) = K. Note that
K(s(T)) - {V | V(s) - 1 for all s€s (T) }
={V | V() =1 for all node s€T }.
The inclusion k(s(T)) Is clear. Suppose that
Vek(s(T)). By using the fact that s(T) is an
admissible state of D, we easily see that
V+(F()) - 1 for all j€J. As T is a stable

expansion of F(D), we have VEK by Proposition 1.
This shows the other inclusion. Q.E.D.

In the original definition of autoepistemic
logic, all the st.abie expansions are considered to
be of the same rank. For example, let
A ={LpDp}. Then there are two stable expansions
of A, one has p as a belief and one has not. But
in the former, p is believed on tenuous bases.
The proposition p is derived because Lp is
derived. This is a circular argument. The latter
seems more appropriate for the belief set of the
rational agent. This problem is similar to the
circularity-check problem of the TMS.

Konolige [10] introduced strongly grounded
stable expansions to get rid of stable expansions
based on circular arguments. By using his idea,
we can extend the correspondence given above to
the TM5 with circularity-check.

To introduce the notion of strongly grounded
stable expansions, we first give the definition of
minimal stable expansions.

Definition 8. Let A be a finite set of
autoepistemic formulas. A set of autoepistemic
formulas T is called a minimal stable expansion of
A if T is a stable expansion of A and the
corresponding 5b Kripke structure is maximal among
all the S5 Kripke structures corresponding to
stable expansions of A.



Then the following characterization of minimal
admissible states is a direct consequence of
Theorem 2.

Theorem 3. The mapping S -> t(S) gives a
bijection between the following sets.
1) The set of minimal admissible states of D.
2) The set of minimal stable expansions T of
F(D) with Ac¢T for all cecC.

Proof. It is sufficient to show that, for a
minimal admissible state S of D, the stable
expansion t(S) of F(D) is minimal. Let K denote
the S5 Kripke structure which corresponds to t(S).
Suppose that t(S) is not minimal. Then there
exists a stable expansion T' such that the
corresponding S5 Kripke structure K' includes K
properly. Since Ac ¢t (S), we immediately have
AC & T! Thus, T' also corresponds to an
admissible state of D, a contradiction. Q.E.D.

An autoepistemic formula is said to be normal if
it is of the form

Lo~ aLoapAr~LByr.r~LBp 2y (i, 32 0),
where «i, B4 and y are prepositional formulas.
The autoepistemic formula F(j) attached to the
justification j is normal. Konolige [10] defined
the notion of strongly grounded stable expansions
for the set of normal autoepistemic formulas.
Notice that the strongly grounded stable
expansions of the given set of premises is
dependent on the presentation of the formulas.

Definition 9. Let A be a finite set of normal
autoepistemic formulas and T be a stable expansion
of A. The set T is said to be a strongly grounded
stable expansion of A if T is a minimal stable
expansion of A', where A' is the subset of A
defined as follows:

{((Lap ... ~lioapr~LB1~.. ~~LBpn>y) € Alye T, { B3 (1sisn) }nT= @)

The following theorem shows that states
acceptable to the TS5 (with "circularity-check")
are completely characterized as strongly grounded
stable expansions of the normal autoepistemic
formulas attached to justifications.

Theorem 4. The mapping S -> t(S) gives a
bijection between the following sets.

1) The set of well-founded admissible states of
D

-2) The set of strongly grounded stable
expansions T of F(D) with Ac¢ T for all ceC.

Proof. Suppose that S is a well-founded
admissible state of D. By the definition, there
exists a set of well-founded supporting
justifications { jp I n€S}. Denote by Jo the
subset of J such that

Jo={ 9= (n,N1,N2) € J|n€es, NpcN\S}.
Remark that i€ Jgp for all n€S and that S is also
a well-founded admissible state of (N,Jo,C). To
show that the stable expansion t(S) of F(D) is
strongly grounded, it is sufficient to show that

t(S) is a minimal stable expansion of F(JO). By
Proposition 2 and the above remark, we see that S
IS a minimal admissible state of (N, JO,C). By
Theorem 3, we conclude that t(S) is a minimal
stable expansion of F(JO).

Let T be a strongly grounded stable expansion of
F(D). Then T is a minimal stable expansion of
F(J'), where J' is the set of justifications given
by JJ={3j=(n,N1,N2)e€J | neT, N2nT=p@}. Thus,
s(T) ={n€EN | ri€T } is a minimal admissible state
of J' by Theorem 3. Let J1 be the set of

justifications j= (n,N1,N2) € J' with N1 =g and S1
be the set of consequent nodes of J1

S1={n| 3j3=(n,e,Ny) e J'}.
Let J2 be a set of justifications j= (n,N1,N2) € J'
with N1 cS1 and S2 be the set of consequent nodes
of J2

S2={nl j=(N,N1,N2) € J' with N1 c S1}.
As J2 contains J1, S2 contains S7. By repeating
this argument, we obtain a chain of sets

51 C Sy ... 51 <. s5(T).
Denote by S the union of all Si (i=0). Then it
Is easily checked that the subset S of s(T) is an
admissible state of J'. By the minimality

assumption of s(T), we get S=s(T). Let n be an
element of s(T) and i be the least integer such

that neSj. We define the supporting
justification j, of the node n to be the
justification j- (n,N1,N2) € J' such that

N'<si-1 (In the case that i =0, we let S-1=g.).
It is easy to see that the set { jo, | n€s } is a
set of well-founded supporting justifications of
S. Q.E.D.

4. Stratified case

In general, a M5 may have no well-founded
admissible state and may have more than one. But
If we impose suitable restrictions on the use of
outlists, we can guarantee that the TMS has a
unigue well-founded admissible state. In the rest
of this paper, we shall discuss such a class.

The problem of nonmonotonic justifications in
truth maintenance has a strong similarity to that
of negation in logic programming. In the field of
logic programming, there are also many attempts to
extend logic programming incorporating the full
use of negation [2,18]. However, all of them have
severai difficulties. Especially, any positive
use of negation in the presence of recursion has
not been obtained [20].

Apt, Blair, Walker and Van Gelder [1,21]
introduced a class of sets of clauses which
prohibit recursion "through negation”". From the
semantic viewpoint, in such a set of clauses, we
only negate propositions whose meanings are fixed
beforehand. Then a "canonical” model is assigned
to such a set of clauses.

We here adopt their idea. We shall consider the
set of justifications which is "stratified”. Our
result says that a stratified set of
justifications has a unique well-founded

Fujiwara and Honiden 1203



admissible state. We suppose that this result is
of practical importance in the use of the TMS.

Definition 10. A partition
J=J1u...udn (disjoint wunion)

iIs called a stratification of J if the
two conditions hold:

1) If a node n occurs in a justification in Ji,
its definition is contained within uk¢iJk.

2) If a node n occurs in the outlist of a
justification in Ji, its definition is contained
within ukx«¢iJk. (The definition of n is the subset

of J consisting of all the justifications whose
consequent nodes are n.)

Then J is said to be stratified by Jjv..0oJdp and
each Ji is called a stratum of J.

following

Example 3. Let J1={(p,2,{q}), (q,@,{p})}. Then
there exists no stratification of JT7.

Let J2={ (pip},@), (q,2,{p}) }. Then the

partition J2 = {(p,{pl},@)1u{(q,s,{p})} is the
stratification of J2.

Let D= (N, J,C) be a TMS. We shall say that D is
stratified if J is stratified. Our result is

Theorem 5. Let D= (N,J,@) be a stratified TMS.
Then D has one and only one well-founded
admissible state.

Proof. Let the partition J=Jiu...udJ, be the

stratification of J. We first construct a well-
founded state S by using this stratification.

Put So=0. For an integer i such that 1< i< n,
we shall define sets of nodes Si. Suppose that
Si-1 is already defined. Define the set of

justifications Ji ") by
J4 1) ={4=(n,N7,N2) €J4 | N € Sj-1, N2nSj_]1 =0 }

and define the set of nodes Sj (1) by
si (1) =s5.7u{n] j= (n,Ny,N2) e Jy (1)},
Define the set of justifications Ji (¢) by

Ji1 () ={ 9= (n,N1,N2) €J4IN1cSs{ (1), NonSj-1=2}

and define the set of nodes Si (¢) by

S4 (2) =8Sij-1v{n}| j=(n,N1,N2) € J{ (2) .
As Ji(z) contains Ji(l), Si(z) contains Si(l).
Define Ji (3) by

J1(3) ={3=(n,N1,N2) € Jj| N € S} (2), N2NnSj-1=@}

and define the set of nodes 81(3) by

5i(3) =sy-1u{n| = (n,N7,N2) €Iy 3 }.
By repeating this construction, we obtain a chain
of sets of nodes

51 (1) cs54(2) c.csy(M) .
Denote by Si the union of all Sy (M) m:0).
we obtain S§ for all 1¢<i<n. We put S=8Sj.

Thus,

1204 Knowledge Representation

We now prove that S constructed above is a well-
founded admissible state of D. First we show that
S is admissible. Let j= (n,N1,N2) be a
justification such that N1c S and N2NS = @. Let
us show that neS. Suppose that je€Ji{. Then we
have Nic Si, hence Nic s{¥ for some positive
integer k. Because Si-1¢cS, we see that |
belongs to the set Ji(*"') , hence

n€Si<**'> c Sij.

On the other hand, suppose that neS. Then
there exists an integer 1 such that
j= (n,N1,N2) € Ji with Nic Si and N2nSj-1=@. By
the construction of S, we see that N2nS=0.
Thus, | is a supporting justification of s.

We now prove that S is well-founded. We

associate a node n€ S with its supporting
justification j, as follows: Let i be the least

integer such that n€ Si. Then there exists an
integer k such that nesi{™\Si (*'). By the
construction, there exists a justification
in= (n,N1,N2) such that NicSi'*"" and
N>nSij-1=@. It is easy to check that

{jn | neS } is the set of well-founded supporting

justifications of S.
Conversely, let T be a well-founded admissible

state of D. Denote by N* the set of nodes whose
definitions are contained within kii'k- To show
that S and T coincide, it is sufficient to prove
that S =SnN! =TANL for all i by using
induction on i. Notice that, by the
stratifiability of J, Si and TnN' are well-
founded admissible states of the TMS (N', ujciidlc,0)

for all 1.
For i =0, both sides are empty.

that Si =TnNL. We first show that
Si+1<:TVwNi+1. It suffices to prove that
Si+1(k)c:T for all k by induction on k. Let
nezsi+1(1). By the construction of S, there
exists a justification j= (n,N3,N2) such that

N1 <S4y and N2nS{ =o. By the assumption, we have
N1 <CT and NonT=@. Thus, n€T. Suppose that
Si+1 (k) ¢ T for an integer k. Let ne Si+3 (k¥1),
Then there exists a justification j= (n,Njp,N2)
with Nj c Sj+1 k) and NpnS; =@. By the
assumption, we have N] C T and N2nT =g, hence
n€T. Thus, we get Si+1(k+1) Cc T. Hence we know
that Si+1chNi+1. But Sj+1 and TANL*l are
both well-founded admissible states of
(Ni+1,kik$i+1Jk,@), hence minimal admissible states
of (Ni+1,uk$i+1Jk,z) by Proposition 2. Thus, we
obtain Si+1 =TnNitl  This establishes our
induction step. Q.E.D.

Let us assume

Remark. Theorem 5 suggests a relationship between
the semantics of the TMS and that of logic
programming. In fact, the fixpoint semantics can
serve as yet another semantics of the TMS. In
[8], the authors clarified the semantics of the



basic ATMS in terms of propositional Horn logic.
The correctness of the label update algorithm
follows from the least fixpoint semantics. We
also proposed an extended ATMS architecture based
on the iterated fixpoint semantics of stratified
logic programming. We hope to discuss the
relationships among these results in the
subsequent paper.

5. Comparison with related work

Reinfrank and Dressier [17] independently have
established the relationship between the TMS and
autoepistemic logic. Their result and ours are
essentially equivalent. The differences between
them lie mainly in technical subtleties: Our
method is based on Moore's possible world
formulation and theirs is based on Konolige [10].
Our definition of states acceptable to the TMS
with circularity-check seems to be nearer to

Doyle's original one than theirs, but they turn
out to be the same.

We suppose that the uniqueness of the well-
founded admissible state of the stratified TMS is
suggestive to proposals of extended ATMS
architectures.

Conclusion

To make nonmonotonic inference a practical
technique, we must fully understand the semantics
of Doyle's TMS. In this paper, we have shown that
Its semantics is completely described in terms of
autoepistemic logic. States acceptable to a TMS
correspond bijectively to stable expansions of a
set of autoepistemic formulas attached to
justifications. The implementation of the new TMS
algorithm based on autoepistemic logic is to be
explored.
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