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Abstract 

This paper provides a unifying mathematical 
framework for orders of magnitude models 
used in Qualitative Physics. An axiomatic of 
the qualitative equality is provided and a 
general algebraic structure called qualita­
tive algebra is defined. It is shown that 
the usual model (+,-,0,?) and the extended 
model recently introduced by Dubois and Pra-
de are particular cases in the class of mo­
dels that are generated from a part i t ion of 
the real l ine. Any of these models can be 
structured as qualitative algebra. On the 
other hand, we characterize those qual i tat i ­
ve algebras that are isomorphous, in a qua­
l i t a t i ve sense. Besides, it is shown that 
a l l these models can be embedded into one 
another as qualitative subalgebras. 

Key words. Qualitative Physics, Qualitative 
Algebras, Order of Magnitude Reasoning. 

1. Introduction 

Economists made a handsome contribution to the in­
terest of reasoning about systems behaviour in a 
qualitative way. In the sixt ies, they showed that-
qualitative models could provide a good represen­
tation of some economic systems and that meaning­
fu l conclusions could be drawn from pure qualita­
tive data. Without elaborating on a well-defined 
mathematical framework, such concepts as qualita­
tive vectors and matrices, qualitative linear sys­
tems, qualitative solutions, were introduced. A 
number of methods l ike comparative statics were 
then proposed to solve qualitative-model-based 
problems [Lancaster, 1962, Lancaster, 1966, May-
bee, 1980, Quirk, 1981, Ritschard, 1983]. 

After sometime, the qualitative approach reemerged 
at the beginning of the eighties in such varied 
areas as Control Theory [Caloud, 1987, Gentil et 
al., 1987, Trave and Kaszkurewicz, 1986, Trave, 
1988, Trave-Massuyes, 1989] and A r t i f i c i a l Inte l ­
ligence [De Kleer and Brown, 1984, Dormoy, 1987, 
Dormoy, 1988, Forbus, 1984, Kuipers, 1984, Raiman, 
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1986, Piera and Trave-Massuyes, 1989, Trave-Massu-
yes et al., 1989]. The interest of the A r t i f i c i a l 
Intelligence community in qualitative methods was 
motivated by the need for a representation of the 
physical world close to human patterns. Indeed, 
Qualitative Physics [De Kleer and Brown, 1984, 
Forbus, 1984, Kuipers, 1984] originate from the 
idea of modeling human understanding and reasoning 
about the physical systems in order to implement 
computer modules including this specific i n t e l l i ­
gence. As a matter of fact, when they examine a 
device, humans do not solve di f ferent ial equations 
Instead, reasoning relies on structural decomposi­
tions, common sense and basic physical laws. These 
basic "reasoning pieces" are then combined by some 
qualitative calculus so that, "mysteriously", such 
questions as: "What is the use of the device?", 
"How does it work?", "Why does not it work normal­
l y?" . . . can be answered. Humans are therefore able 
to provide a scheme of the functionality and beha­
viour of systems in a very eff icient way without 
requiring formal physics. Qualitative Physics try 
to reproduce this procedure. 

Although new approaches, such as order of magnitu­
de reasoning [Dubois and Prade, 1988, Raiman, 
1986], are currently presented, the word "qualita­
tive" s t i l l remains associated with a qualitative 
calculus based on signs. People using qualitative 
methods in different areas of application have 
provided models, tools, and methods for handling 
the qualitative space {+,-,0,?} and a set of ma­
thematical qualitative concepts are now available 
for solving qualitative-model-based problems. Howe­
ver, they were introduced without connection, when­
ever practical problems required new theoretical 
investigations. 

To our knowledge, no pure theoretical work has 
been developed towards a well-defined qualitative 
algebraic structure. Even the mathematical proper­
ties of {+,-,0,?} are not accurately known. It is 
the authors opinion that henceforth, advances in 
applied investigations w i l l closely depend on 
theoretical knowledge. 

It therefore seems natural in this paper to f i r s t 
present the axiomatic of the qualitative equality. 
Then, these properties of the qualitative equality 
necessary for a good understanding of the main re­
sults of the paper are given. 

On the other hand, we consider the interesting 
extension of the sign-based model, involving order 
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of magnitudes, recently introduced in [Dubois and 
Prade, 1988]. The major aim of this paper is to 
show that both models can be unif ied under a gene­
ra l algebraic structure called qualitative algebra 
Moreover, they can be viewed as two part icular ca­
ses of those models which are generated from a 
real l ine par t i t ion . The f iner the par t i t i on , the 
sharper the degree of refinment of order of magni­
tude becomes. Thus any of these models can be 
structured as a qual i tat ive algebra (Theorem 5.1). 

Further, it is shown that these models are embed­
ded into one another as qual i tat ive subalgebras 
(Theorem 5.2). This has a very important pract ical 
implication since during a calculation, one can 
move from one model to the next, depending on the 
degree of refinment local ly required. 

then, it clearly appears that b≈a, a≈c and b≈c. 

On the other hand, the order relat ion may be such 
that a l l the elements of S are Q-equal, implying 
that the Q-equality is t r i v i a l l y t ransi t ive. This 
corresponds to what we ca l l degenerated Q-equality. 
Notice however that, in a l l cases, t rans i t i v i t y is 
preserved if the middle element is < to the two 
others. 

Characterizing the order relations which induce 
transi t ive Q-equalities on one side and degenera­
ted Q-equalities on the other side is part icular ly 
interest ing. A detailed study can be found in 
[Piera and Trave-Massuyes, 1989]. 

3. Basic elements 

2. Qualitative equality 

In Qualitative Physics, reasoning about magnitudes 
of objects has often been addressed by considering 
a model based on three labels: posit ive, negative, 
and zero. This has not, however, been suf f ic ient 
to satisfy some elementary mathematical proper­
t ies , e.g. closeness of addition. A good model was 
shown to require a lower level of specif ication 
given by the label "indeterminate",that i s , either 
posit ive, negative or zero. Put together, these 
four labels make up what is referred to as the 
Universe of Description1 of the qual i tat ive model 
(Q-model). Indeed, this part icular case i l l us t ra ­
tes a general rule of major importance "the same 
object can have di f ferent qual i tat ive descriptions 
(Q-descriptions) according to the level of speci­
f icat ion considered". The higher a Q-description, 
the more quantitative it tends to become implying 
thus the highest possible level of specif icat ion. 

Within this scheme, it may be questioned whether 
two objects described qual i tat ively are equal. It 
seems natural to consider them as qual i tat ively 
equal if they are equal at some level of specifi­
cation of our universe of description. This rela­
t ion w i l l be termed qual i tat ive equality and can 
be formalized as follows. 

Consider a non empty set S (Universe of descrip­
t ion) , and an order relat ion < defined on S. Quali­
tative equality (Q-equality) refers to the binary 
relat ion induced by < on S and defined by: 

a≈b if there exists xЄS such that x<a and x<b. 

It can be noticed that this def in i t ion agrees with 
the above discussion. 

The Q-equality is reflexive and symmetric. Howe­
ver, it is not usually t ransi t ive. A simple exam­
ple showing the absence of t rans i t i v i t y is as 
follows. Consider S-(a,b,c,d) and the order rela­
t ion given by the following f igure: 

Consider a set S and a Q-equality, then given aЄS 
we ca l l Sa and I the following subsets of S: 

S ={xЄS; x≈a) and 1 ={xЄS; x<a). 
a a 

It can be stated that (S,≈) is irreducible if g i ­
ven a,bЄS such that Sa=Sb, then a=b. 

An element aЄS is called a basic element of ≈ if ≈ 
restr icted to Sa is degenerated, i . e . , if for a l l 
x,y€Sa, x≈y. From these def in i t ions, the following 
properties can be deduced : 

( i ) 
( i i ) 

( i i i ) 

( iv) 

If x<y, then SxCSy . 
x y 

a is a basic element of ≈ i f , and only i f , ≈ 
is degenerated on Ia . 

then b is 
In part icular, if a is 

basic, for a l l b<a, b is basic. 
If x≈a, and a is basic, then there exists a 
basic element b such that b<x. 

If a is a basic, element and SbC sa 
b a 

also basic and Sb=Sa . 
b a 

If S is f i n i t e , the basic elements are the minimal 
elements of <. However, not a l l Q-equalities have 
basic elements. For example, given the set of na­
tura l numbers N, xЄN is said to be on the k level , 
kЄNU{0), if 2k<x<2k*1. We define an order relat ion 
on N, denoted by <N , such that for any x,y£N on 
the levels s and r respectively, we have : 

1 Also called the Quantity Space [De Kleer and 
Brown, 1984, Kuipers, 1984]. 

The Q-equality induced by <N has no basic elements 
since for any n^N, we have 2n, 2n+l£ln and 2n#2n+l 

Thus (S,~) is said to be basically complete if for 
a l l x£S, there exists a basic element â S such 
that x~a. In part icular, if S is f i n i t e , then S is 
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basically complete. 

Consider that is basically complete and de­
note a is bas ic ) ._ is said to be a qua­
litative base (Q-base) of S if B f u l f i l s the f o l ­
lowing conditions: 

( i ) For any there e x i s t s s u c h that 
( i i ) is irreducible. 

It is clear that any basically complete set S has 
a base. If B and B' are two bases of S, then they 
share the same cardinal i ty. The number of elements 
of a base is therefore a quali tat ive invariant of 
S. Consequently, this number can be defined as the 
dimension of S [Piera and Trave-Massuyes, 1989]. 

If is irreducible and basically complete, 
then S has a unique base B, and for any there 
exists a unique subset Bx of B such that S . 

* x a 

The Q-models which are useful in Qualitative Phy­
sics belong to this category. 

Final ly, given and an application f 
from S to T, f is said to be a qualitative mor-
phism (Q-morphism) i f i t m a i n t a i n s Q - e q u a l i t y , 
i . e . , f o r a l l s u c h t h a t w e have 

4 . Q u a l i t a t i v e a l g e b r a s 

F i r s t , c o n s i d e r a p r o b l e m a r i s i n g f r o m t h e Q - e q u a ­
l i t y c o n c e p t . When d e f i n i n g o p e r a t i o n s b e t w e e n 
o b j e c t s o f a g i v e n s e t , t h e y a r e o f c o u r s e a l w a y s 
c o m p a t i b l e w i t h t h e c l a s s i c a l e q u a l i t y . T h i s i s 
n o t t r u e o f t h e Q - e q u a l i t y and a t t e n t i o n mus t b e 
p a i d t o t h e o p e r a t i o n s w h i c h mus t s a t i s f y t h e com­
p a t i b i l i t y p r o p e r t y . T h e r e f o r e , g i v e n a s e t S , 
S # ø , a Q - e q u a l i t y d e f i n e d o n S and a n i n t e r n a l 
o p e r a t i o n d e n o t e d * , * mus t be compatible with , 
i . e . , f o r a l l a , b , c , s u c h t h a t and w e 
h a v e 

N a t u r a l l y i f * i s c o m p a t i b l e w i t h t h e o r d e r r e l a ­
t i o n w h i c h i n d u c e s t h e Q - e q u a l i t y ≈ , t h e n * i s a l ­
s o c o m p a t i b l e w i t h ≈ . The c o n v e r s e i s n o t t r u e . 
I n d e e d , i f ≈ ~ i s d e g e n e r a t e d , t h e n any o p e r a t i o n 
d e f i n e d o n S i s c o m p a t i b l e w i t h ≈ w h e r e a s i t c a n ­
n o t b e a s s u r e d t h a t i t i s s o w i t h t h e o r d e r 
r e l a t i o n . 

C o n s i d e r a s e t S , on w h i c h we d e f i n e a 
Q - e q u a l i t y ≈ a n d two i n t e r n a l o p e r a t i o n s , d e n o t e d 
+ a n d * , w h i c h a r e c o m p a t i b l e w i t h ≈ and s a t i s f y 
t h e f o l l o w i n g p r o p e r t i e s : 

( i ) + and * are qualitatively associative (Q-as-
sociat ive), i . e . , for a l l we have 
a+(b+c)≈(a+b)+c and a*(b*c)≈(a*b)*c. 

( i i ) +, * are qualitatively commutative (Q-commu-
ta t i ve) , i . e . , for a l l a, a+b≈fo+a and 
a*b≈b*a. 

( i i i ) the product * is qualitatively distributive 
(Q-distributive) with respect to the sum +, 
i . e . , for a l l we have 
(a*b)+(a*c). 

Then, (S,≈,+,*) is said to be a qualitative alge­
bra (Q-algebra). 

If the Q-equality ≈ is degenerated, then (S,≈,+,*) 
is called a degenerated Q-algebra. Besides, if the 
commutativity, associativity, and d is t r ibu t i v i t y 
of the two internal operations of a Q-algebra are 
satisf ied by using - instead of is 
then said to be a strict Q-algebra. 

Notice that the def ini t ion of Q-algebra does not 
require the existence of relevant elements with 
respect to the operations. In part ic lar , neither 
neutral nor zero elements are required. This f u l ­
f i l s our objective of defining the most general 
structure which could simultaneously capture the 
essential properties for calculation. 

A Q-algebra (S,≈,4,*) is said to have neutral (ze­
ro) element with respect to the sum (product) if 
there exists such that for a l l aЄS, 

. In the definit ions of 
zero and neutral elements, the s t r i c t equality is 
imposed. This is because it seems natural to re­
quire them to be "quali tat ively unique", in the 
sense that if two non s t r i c t l y equal elements are 
zero (neutral), they should be Q-equal. This is 
not satisf ied when using the Q-equality in the 
defini t ions. For example, consider A={a,b,c) and 

the order relation . We define two internal 

operations + and * such that is a Q-al­
gebra and e+=a. Then, we have and b#c. 
This does not occur if the s t r i c t equality is used 
since s t r i c t uniqueness is even guaranteed. 

Consider a Q-algebra and T is 
said to be a qualitative subalgebra (Q-subalgebra) 
of S if is a Q-algebra. 

It is interesting to point out that a l l the Q-sub-
algebras of a s t r i c t Q-algebra are also s t r i c t . On 
the other hand, a non s t r i c t Q-algebra may have 
s t r i c t and non s t r ic t Q-subalgebras. 

Given A and B, two Q-algebras and f, a mapping 
from A on to B. f is said to be a Q-morphism of 
algebras if f preserves the qualitative equality 
and satisf ies the two following conditions: 

If f is a one-to-one mapping, then f is called a 
qualitative isomorphism of algebras (Q-isomor-
phi sm). 

5. Qualitative algebras of orders of magnitude 

In Qualitative Physics, the word "qual i tat ive" re­
mains associated with a qualitative sign-based 
calculus. Working with signs was shown to provide 
an aggregation level similar to the one involved 
in human reasoning about the physical world. In­
deed, this reasoning is mainly based on the varia­
tions of signif icant quantities, which can be for­
mally represented by the signs of the derivatives. 
On the other hand, this approach was shown to be 
an alternative for managing unprecise knowledge. 
Thus the knowledge of parameter signs in a model 
sometimes suffices to draw signif icant conclusions 

Trave-Massuyfes and Piera 1263 



on the modelled system. 

The qualitative procedure consists of partit ioning 
the real line in three classes by considering the 
equivalence relation given by the same sign on the 
set of reals R. Labels + , 0, and - are chosen to 
represent the classes of positive, zero, and nega­
tive real numbers, respectively. These three la­
bels thus constitute the highest level of specifi­
cation of our Q-model. Now, a lower level of spe­
cif icat ion is necessary to handle real numbers 
with indeterminate sign. It is represented by la­
bel ?. The universe of description of this model 
is thus S={+,0,-,?}. An order relation < is defi­
ned, which should convey the idea that the higher 
the level of specification, the lower the possibi­
l i t y of Q-equality. < is represented below: 

Notice that Q-equality ≈ induced by < is reflexi­
ve, symmetric but not transitive. But, in accor­
dance with section 2, transit ivity exists if the 
middle element is < to the two others, i .e., if 
the middle element is different from ?. 

Two internal operations and are defined by: 

These operations are compatible with the Q-equali­
ty ≈ induced by <. The tables also show that and 

are associative and commutative in the s t r i c t 
sense. Dis t r ibut iv i ty of with respect t o i s 
also s t r i c t l y ver i f ied. These conditions provide 

with a structure of s t r i c t Q-algebra. 
is referred to as the Q-algebra of 

signs. 

Notice that the Q-algebra of signs has neutral and 
zero elements for and Put together, this pro­
perty and the fact that it is a strict Q-algebra 
make it very suitable for qualitative calculus 
purposes [Trave-Massuyes et al., 1989]. 

An interesting extension of this model was recent­
ly proposed in [Dubois and Prade, 1988]. The main 
idea was to include orders of magnitude, advanta­
geously setting total indetermination (specifica­
tion level ?) further away by creating new levels 
of specification. The real l ine is now partit ioned 
into seven classes with associated labels: negati­
ve large (NL), negative medium (NM), negative 
small (NS), zero (0), positive small (PS), pos i t i ­
ve medium (PM), positive large (PL). 

The set S1 = {NL,NM,NS,0,PS,PM,PL}, ordered by NL< 
NM<NS<0<PS<PM<PL, constitutes the highest level of 

specification. Between this level and the lowest 
one given by ?, the actual part i t ioning induces 
four new ordered levels of specification. Inter­
preting the labels as intervals, the four levels 
correspond to the union of two, three, four, and 
five adjacent intervals. Labels within these le­
vels are denoted [a,b], where a, and a<b. 
[a,b] represents the interval obtained from the 
union of the intervals associated with a and b and 
the one in between. Our universe of description is 
S= S1U{[NL.NM],[NM,NS], ...,[NL,PM],[NM,PL],?} and 
the order relation < can be represented as 
follows: 

It is easy to see that S is basically complete (S1 

is a base and is unique) and irreducible. 

When defining the symbolic tables for the internal 
operations and we must of remain consistent 
with the real l ine operations. Here, a few pro­
blems arise since the qualitative result may di f ­
fer from the boundaries of the intervals. For 
example, if 10 is the upper boundary of PS, then 
PS+PS-[PS,PM] if the upper boundary of PM is grea­
ter than or equal to 20. If it is less than 20, 
then PS+PS=+. Similar situations occur for the 
product, in particular with respect to the posi­
t ion of numbers 1 and - 1 . This shows a fundamental 
difference between this model and the one based on 
signs. Indeed, here tables for and are not 
unique. Their number is f i n i te however and two 
specific tables for and w i l l be suitable for a 
whole class of practical problems. 

Nevertheless, the essential point is that, i rres­
pective of the specific pair of operations, they 
always provide with a structure of Q-alge­
bra. This result w i l l come as a particular case of 
the Theorem 5.1 below. The Q-model so far conside­
red is indeed a particular case within the fo l lo ­
wing general framework. Let us show that any f i n i ­
te interval par t i t ion S1, of the real l ine such 

that {0}ЄS1 gives rise to a Q-model.2 Given A,BЄS1 

A is said to be anterior to B, denoted A<B, if for 
any aЄA, there exists bЄB such that a<b. Of course 
the binary relation "be anterior to" is a tota l 
order relat ion on S1. ms and ms denote the minimal 
and maximal element respectively. The complete 
universe of description induced by S1 , denoted S, 
is bu i l t from S1 in the following way: AЄS if 
A-{0) or A-[B1'B2] , such that B1 , - { {0 } } , 

, and for a l l such that B1 , then 
Now, the following order relat ion is defined 

on S: 

2 
More generally, this can be extended to arbitrary 

in f in i te interval partitions of the real line 
[Trave-Massuyes et al., 1989] but this is beyond 
the scope of this paper. 
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Graphically, this order relat ion can be represen­
ted by a tree such that the elements of S1 consti­
tute the base and the number of levels is equal to 
the cardinal of S1 minus 1. With the above cons­
truct ion of S, is basically complete and i r ­
reducible and S1 is the base of S. 

The qual i tat ive sum is said to be consistent 
with the usual real l ine sum + i f , for a l l 

corresponds to the smallest set - in the 
sence of inclusion - containing A+B. Consistency 
for the qual i tat ive product is defined in a simi­
lar way. The par t i t ion S1 determines thus one and 
only one pair of operations on which 
are consistent with the usual real l ine sum and 
product. The pair is then called R-consis-
tent. 

T h e o r e m 5 . 1 . G i v e n a f i n i t e i n t e r v a l p a r t i t i o n o f 
t h e r e a l l i n e S 1 , s u c h t h a t , c o n s i d e r t h e 
c o m p l e t e u n i v e r s e o f d e s c r i p t i o n S i n d u c e d b y S 1 . 
T h e n , t h e p a i r o f IR-cons i s t e n t i n t e r n a l o p e r a t i o n s 

d e f i n e d o n S p r o v i d e s ( S , ~ ) w i t h a s t r u c t u r e 
o f Q - a l g e b r a . 

Proof. L e t u s show t h a t i s Q - a s s o c i a t i v e . C o n s i ­
d e r X , Y , a n d l e t a n d Con­
s i d e r x , y , _ s u c h t h a t ~ " and . L e t be 
x + ( y + z ) t h e r e e x i s t s s u c h t h a t , t h e n 
we h a v e Because + is a s s o c i a t i v e on (R, 

and s i n c e w e a l s o h a v e B ^ . B i s 
a b a s i c e l e m e n t , t h e r e f o r e 

The r e m a i n i n g p r o p e r t i e s o f and c a n b e p r o v e d 
i n a s i m i l a r w a y , 

N o t i c e t h a t o n l y t h e q u a l i t a t i v e p r o p e r t i e s a r e 
g u a r a n t e e d . F o r e x a m p l e , c o n s i d e r S 1 , t h e f o l l o ­
w i n g f i n i t e i n t e r v a l p a r t i t i o n o f IR: 

The f o l l o w i n g r e s u l t h a s a m a j o r p r a c t i c a l i m p l i ­
c a t i o n . I t i s shown t h a t t h e m o d e l s o b t a i n e d f r o m 
a s e q u e n c e o f f i n e r a n d f i n e r p a r t i t i o n s a r e em­
b e d d e d i n t o one a n o t h e r a s Q - s u b a l g e b r a s . I n o t h e r 
w o r d s , v a r i a b l e s d e s c r i b e d a t d i f f e r e n t l e v e l s o f 
p r e c i s i o n c a n b e c o n s i d e r e d t o g e t h e r b y m o v i n g 
f r o m one m o d e l t o t h e n e x t . 

T h e o r e m 5 . 2 . G i v e n t w o f i n i t e i n t e r v a l p a r t i t i o n s 
T 1 a n d S., o f t h e r e a l l i n e s u c h t h a t { 0 } b e l o n g s 
t o b o t h a n d d e n o t e b y S and T t h e c o r r e s p o n d i n g 
c o m p l e t e u n i v e r s e o f d e s c r i p t i o n , 
d e n o t e t h e I R - c o n s i s t e n t p a i r s o f o p e r a t i o n s d e f i ­
n e d o n S a n d T , r e s p e c t i v e l y . U n d e r t h e s e assump­
t i o n s , i f T 1 i s a p a r t i t i o n f i n e r t h a n S , , t h e n 

i s a Q - s u b a l g e b r a o f 
F u r t h e r , r e l a t i o n ~ T a n d o p e r a t o r s and r e s ­
t r i c t e d t o s e t S a r e i d e n t i c a l t o ~ s , , and , 
r e s p e c t i v e l y . 

Proof. I f T 1 i s f i n e r t h a n S , , t h e n any e l e m e n t o f 
S i s a l s o e l e m e n t o f T . L e t u s show t h a t r e s ­
t r i c t e d t o S i s . G i v e n s u c h t h a t 
w h i c h means t h a t t h e r e e x i s t s s u c h t h a t 
a n < * ( 1 ) . S i n c e T , i s f i n e r t h a n S 1 , t h e r e 

e x i s t s s u c h t h a t B ≈ T B . I t i s c l e a r t h a t B 

and ( s i n c e ( 1 ) ) . B u t A , C , and T 1 i s f i n e r 

t h a n S 1 , t h e r e f o r e a n d . S i n c e , w e 
g e t 

I t c a n b e s i m i l a r l y p r o v e d t h a t and r e s t r i c ­
t e d to S a r e e q u a l to and . T h e n , S i s a 
Q - s u b a l g e b r a o f T m 

I n t h e Q-mode l p r o p o s e d i n [ D u b o i s and P r a d e , 
1989 ] and d e s c r i b e d a t t h e b e g i n i n g o f t h i s s e c ­
t i o n , i t was n o t e d t h a t d i f f e r e n t Q - a l g e b r a s c o u l d 
b e b u i l t d e p e n d i n g o n t h e p o s i t i o n o f t h e b o u n d a ­
r i e s o f t h e i n t e r v a l s . The f o l l o w i n g r e s u l t shows 
t h a t a l l t h e s e Q - a l g e b r a s a r e Q - i s o m o r p h o u s a n d 
c a n t h e r e f o r e b e c o n s i d e r e d a s i d e n t i c a l f r o m t h e 
q u a l i t a t i v e p o i n t o f v i e w . 

Theorem 5 . 3 . C o n s i d e r S 1 and T 1 two f i n i t e i n t e r ­
v a l p a r t i t i o n s o f t h e r e a l l i n e s u c h t h a t { 0 } b e ­
l o n g s t o b o t h , and S and T t h e c o r r e s p o n d i n g com­
p l e t e u n i v e r s e s o f d e s c r i p t i o n i n d u c e d b y S 1 and 
T 1 , r e s p e c t i v e l y . The Q - a l g e b r a s b u i l t on S a n d T 
a r e Q - i s o m o r p h o u s i f , and o n l y i f , t h e r e e x i s t s a 
o n e - t o - o n e m a p p i n g f f r o m S 1 o n t o T 1 s u c h t h a t 
f ( ( 0 } ) - ( 0 ) and t h a t f m a i n t a i n s t h e r e l a t i o n < . 

Proof. Due t o space l i m i t a t i o n s , t h e p r o o f i s 
o m i t t e d ( s e e [ 1 8 ] ) = 

6. Conclusion 

This paper represents the f i r s t attempt at provi­
ding a unifying mathematical framework to qualita­
tive models so far used in Qualitative Physics. An 
axiomatic of the qualitative equality is indeed 
determined and a general algebraic structure cal­
led qualitative algebra is defined. Rather than 
going into deep theoretical developments, it see­
med better to confine this paper to two crucial 
points. F i rs t , the usual model {+,-,0,?) as well 
as the extended one proposed in [Dubois and Prade, 
1989] belong to the same class of models. Second, 
any of these models present the structure of qua­
l i t a t i ve algebra. The imbrications of these models 
as subalgebras and the characterization of quali­
tat ively isomorphous models are then considered. 

The basic point is that as research progresses, 
rumerous points become clearer on the specific 
models we already used. "Evident" relationships 
and overlappings occur which reinforce our bel ief 
that, from now on, advances in application f ie lds 
w i l l closely depend on theoretical results. Inves­
tigations are therefore underway to determine the 
underlying properties of qualitative equality and 
further, of qualitative algebras [Piera and Trave-
Massuyes, 1989, Trave-Massuyes et al., 1989]. Qua­
l i t a t i ve vectorial spaces structures w i l l be con­
sidered in the near future. This w i l l provide us 
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with the necessary tools enabling us to approach 
qualitative calculus. 
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