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ABSTRACT 

The difficulties encountered in applying 
knowledge-based system technology to complex 
industrial environments have made the need for 
representing and using deep knowledge about 
physical systems increasingly clear to system 
designers. A rather large number of approaches 
to modeling and reasoning with deep knowledge 
have been experimented, but the impact of these 
new techniques, often referred to as model based 
reasoning, on real applications is still poor. 
This paper presents a novel model-based diag­
nostic method, whose distinctive features make 
it practical for diagnostic problem solving in 
automated systems for monitoring continuous 
processes. The method we introduce makes use 
of models at different levels of abstraction, qual­
itative and quantitative. In particular, we discuss 
an algorithm based on a quantitative, real-valued 
algebraic model, and a qualitative causal model 
that can be easily derived from the former in an 
automated way. The causal model is used for 
candidate generation, and the real-valued model 
for validation/rejection of candidates. 

1 Introduction 
The difficulties encountered in applying knowledge-based 
system (KBS) technology to complex systems have made 
the need for representing and using deep knowledge about 
system behavior increasingly clear to KBS designers. 
This knowledge is typically well structured, formal, rely­
ing on established theories. For example, knowledge about 
solid state physics, semiconductor technology, and elec­
tronic design in circuit testing [Brown el al., 1982, Davis, 
1984], knowledge about macro-economic laws in financial 
forecasting [Iwasaki and Simon, 1986], and physiological 
knowledge and biochemical knowledge in medical diag­
nosis [Kuipers, 1985]. As opposed to empirical associa-
tional knowledge, such knowledge is said to provide a 
deep model of the domain. 

While the impact of the new techniques for dealing 
with deep models on real applications is still poor, a 
rather large number of approaches to modeling and rea­
soning with deep knowledge have been experimented. 
They can be classified into two broad categories: 

1) Several authors basically aim at identifying and 
representing the causal structure underlying a 
specific expertise. Rieger and Grinberg [1977] first 
practised such an approach, which has been recently 
experienced again by Fink [1985], Guida [1985], 
Torasso and Console [1987] among others. 

2) A different line of thought avoids explicit represen­
tation of causal dependency, conforming to the clas­
sical approach of physical sciences. This approach is 
often referred to as qualitative modelling (refer to 
Bobrow [1984] for a comprehensive review of the 
major relevant works), but the term is rather inap­
propriate, as many works, and especially the ones 
coping with realistic applications [Genesereth, 1984, 
de Kleer and Williams, 1987] actually make use of 
quantitative models. 

Most of these applications, and especially the ones 
faced according to the latter approach, we will focus on 
hereinafter, concern diagnosis. For instance DART 
[Genesereth, 1984] and GDE [de Kleer and Williams, 
1987] represent two of the most mature attempts of 
transferring new modeling concepts in the realm of practi­
cal applications. Both focus on the same task, i.e. diag­
nosis of electronic circuitry, and adopt a quantitative 
model of the system to be diagnosed. Compliant with the 
current way of representing and reasoning about electronic 
circuitry, they represent the system to diagnose as a set of 
interconnected components of known transfer function1. 
The inference mechanism adopted is basically different, 
however, as Genesereth uses a linear input resolution 
algorithm on a set of first order clauses, while de Kleer 
and Williams couple constraint propagation with an 
Assumption-based Truth Maintenance System (ATMS) for 
managing different diagnostic hypotheses. 
Nevertheless, both works adopt the same basic diagnostic 
strategy which consists of: 
a) identifying that a fault exists by comparing the 

simulated device behavior with the actual one; 

b) generating a list of candidate faulty components by 
reasoning on the system structure; 

1 Both the direct and the inverse transfer function are actually used 
for solving the diagnostic problem. 
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c) identifying a set of new test points allowing to 
further discriminate among the candidate sets; 

d) completing the discrimination process through 
examination of further lest cases (which are 
automatically generated by DART). 

This paper presents a novel model-based diagnostic 
method, whose distinctive features make it suitable for 
diagnosis of continuous processes, an application field 
which is deemed to be highly promising and challenging 
for the application of knowledge based systems, and has 
received much attention in recent years. 

The method we introduce makes use of models at 
different levels of abstraction2, qualitative and quantita­
tive. In particular, we discuss an algorithm using a quanti­
tative, real-valued algebraic model, and a qualitative 
causal model that can be easily derived from the former in 
an automated way. The causal model is used for candidate 
generation, and the real-valued model for 
validation/rejection of candidates. This way, candidate 
generation based on a qualitative causal model provides 
explanations for the diagnoses validated on a quantitative 
ground. Candidate generation is performed with rather 
simple new techniques, compared to previous approaches, 
and candidate validation makes use of consolidated 
numerical methods. 

We discuss in the following sections: 
the diagnostic situation which has motivated and 
determined our approach; 
the method based on reasoning at different levels of 
abstraction; 
the algorithm using a causal and a real-valued 
model; 
a comparison between our method and previous 
approaches. 

2 The Diagnostic Problem 
The behaviour of a dynamic system can be modeled by a 
set of differential equations relating its actual state to the 
input vector and to the previous state: 

(1) 
where F is expressed using both algebraic and differential 
operators. 

Most industrial processes are designed to operate, 
however, in a stationary condition identified as a max­
imum of a defined function of merit. In these situations, 
we may assume that the observable stationary state of the 
system solely depends on the values attributed to the set 
of input values: 

Within vector i, we can also distinguish between 
proper input variables (u), which are observable, and unk­
nown disturbances that can modify some parameters p of 

the system, whose values are defined when the system is 
designed and should be constant in order to maintain the 
system at the desired state. From (2) the state s can be 
expressed as: 

(3) 
In these systems a diagnostic problem arises when the sys­
tem state changes independently from a variation of the 
input vector u, due to disturbances affecting one or more 
system parameters. Under well known conditions upon 
(1) the system is stable and one must assume that, follow­
ing parameters variations, the system recovers a station­
ary state s such that: 

(3*) 
The diagnostic problem consists of determining which 
variations: 

(4) 
may have occurred to generate the displacement: 

(5) 
of the observable system state. 

Let's notice that we refer to system anomalies that 
are said malfunctions, rather than faults, in that the struc­
ture of the system model (as defined by (1)) remains 
unchanged. Recovery from early malfunction conditions is 
the proper function of most control systems, both 
automated and manually controlled (the latter are often 
said monitoring or supervisory systems). In these latter 
systems, which apply to most industrial processes (e.g., 
power generation), diagnosis is often mandatory for deter­
mining the most appropriate control and/or repair opera­
tion. 

In malfunction conditions it is often reasonable to 
assume that variation is small enough that linearly 
depends on 

(6) 
where the coefficients of the sensitivity matrix C are given 
by 

2 When a qualitative model is derived from t quantitative one 
[Kuipers, 1984, de Kleer and Brown, 1984J, the former is an abstraction 
of the latter in that qualitative variables range in a finite set of values vs. 
an infinite set 

Ordinarily C is a rectangular mxn matrix with n > m, and 
diagnosis consists in identifying, among the infinite solu­
tions to system (6), the ones which comply with some 
minimality criterion. Peng and Reggia [1986] individuate 
in non-redundancy the most appropriate criterion for diag­
nosis. In summary, we can state our diagnostic problem as 
the one of identifying the non-redundant solutions to sys­
tem (6). Formal definitions of diagnosis and non-
redundancy are given later in section 3.1. 

Prior to analyzing how the problem can be solved, 
let's note here that it may be rather complex even for sys­
tems of moderate dimensions. A straightforward approach 
to its solution will be to look for non-redundant solutions 
of system (6) among the self contained subsystems of 
order m that can be obtained from (6) by imposing that a 
subset of n-m components of is null: 

this gives, i n o r d e r m 
to be solved. (3) are 
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continuously monitored, so that one may assume to com­
pute with the sampling rate of the monitoring equip­
ment, and start a diagnosis whenever a norm of goes 
beyond a given threshold. 

In conclusion, let's stress the distinctive features of 
our problem compared to the circuitry diagnosis problem 
which models diagnostic systems like DART and GDE: 

In circuitry diagnosis, the problem is rather one of 
fault insulation (picking up the electric 
component(s) which do not behave correctly) than 
one of system state identification. 
In circuitry diagnosis, a fault alters radically the sys­
tem behaviour, so that one is aimed at identifying 
which component model(s) are contradictory with 
the observed circuit behaviour. In process control, 
one is aimed at identifying malfunctions, rather than 
faults. Early diagnosis of malfunctions and timely 
intervention is properly the way to avoid drastic 
alterations of the system behaviour. 
In circuitry diagnosis, an interesting subproblem is 
to identify which measurement and/or test take next 
on the system to refine/validate a diagnostic 
hypothesis. This suggests a strategy based on step­
wise refinement of diagnosis, starting from few 
symptoms. 
In process control all the measurements are nor­
mally taken and available when diagnosis starts. 

3 The Diagnostic Method 

3.1 The Basic Diagnostic Strategy 
With reference to system (6) of section 2 we may now 
introduce the following definitions: 

Definition: a set P of parameters is said to be a 
diagnosis of (6) iff a solution of system (6) 
exists such that all and only the components of 
corresponding to the elements of P are non-null. 
Definition: a diagnosis P is non-redundant iff there 
is no diagnosis P' such that P' e P. 

We have noted that determining the non-redundant diag­
noses of (6) requires finding the base solutions of a real-
valued, linear, under-constrained system. This means to 
search in a space which is rather large, even for systems 
of moderate complexity. However, we may make an 
important remark: diagnosis (at least in the context of the 
problem we consider) is intrinsically qualitative. In fact, 
rather than in the real value of each component of a non-
redundant solution P of (6), we are interested primarily in 
knowing which components of P are not null. Knowing 
which parameter is varied usually means to know what is 
the cause of the malfunction. This feature is clearly shown 
in [Gallanti et a/., 1986] where we introduce an example 
(diagnosis of a steam condenser in a power plant) 
representative of a large class of diagnostic systems. 
Therefore, we may argue that a qualitative model 
abstracted from (6) would probably be sufficient to our 
purposes, and would be far simpler to reason about than 
(6). 
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We note here, however, that, being a qualitative 
model more abstract (thus less detailed) than a quantita­
tive one, there is a loss of resolution in the qualitative 
model, with respect to the real-valued one. Thus solutions 
obtained from a qualitative model will be possibly less 
detailed, but far less expensive to compute. 

Hence we may devise a heuristic search strategy 
based on the qualitative model. Candidate solutions are to 
be searched on the qualitative model, and validated or 
rejected using the quantitative model. 

When a qualitative solution P is quantitatively 
rejected, it can be refined considering for further valida­
tion on the quantitative model redundant solutions of the 
qualitative model encompassing P. This way the qualita­
tive model is used for candidate generation, and the quan­
titative one for candidate validation. 

3.2 Choice of the Qualitative Model 
Among the several approaches to qualitative modeling, we 
could restrain ourselves to a rather simple model derived 
from (6), according to [de Kleer and Brown, 1984] simply 
by substituting in (6) real-valued variables 
with the associated qualitative variables the 
real-valued sum and difference operators with the 
corresponding qualitative operators in a three values 
domain ( ( + , -, 0): these values indicate respectively incre­
ment, decrement and stability with respect to a reference 
value), and the coefficients of the variables by their sign. 
Let's notice that, given the qualitative nature of diagnosis, 
this model alone may be sufficient to our purposes for 
rather simple diagnostic problems like the one presented 
in [Gallanti et a/., 1986]. 

Unfortunately, it is easy to show [Struss, 1988] that 
in the domain defined by this simple qualitative calculus 
the additive inverse does not exist, and this makes it 
difficult to determine unique solutions to the set of quali­
tative equations derived from systems like (7), even when 
m is small. The limitations of the earlier qualitative cal­
culus were faced either resorting to order of magnitude 
reasoning [Raiman, 1986], or by resorting to quantitative 
operators when qualitative ones give ambiguous results 
[Williams, 1988]. The approach we are going to illustrate 
is rather similar to the latter; however, we keep a neat 
separation between qualitative and quantitative models, 
using them for separate purposes (candidate generation 
and validation, respectively), and with separate resolution 
algorithms. On this vein, we have chosen to increase, 
rather than decrease, as Raiman [1986] does, the level of 
abstraction of the qualitative model, considering that the 
advantages, in terms of computational costs, should amply 
compensate for the loss in resolution3. 

The simpler qualitative model that can be abstracted 
from (6) is a purely causal model. Each equation: 

3 However, we acknowledge that a thorough comparison to assess the 
relative merits of qualitative models at different levels of abstraction in 
the context of diagnosis is still to be done. 



of system (6) can be interpreted as a statement of causal 
dependency between the variation of one, or more, param­
eters pj, whose corresponding appear with non-null 
coefficients cij in (6i), and the variation of the observable 
si. In particular, a non-null variation of si, may be 
explained by a variation of at least one among the pj: 

while a null variation of si implies that either none of the 
pj is changed or that at least two parameters are changed 
but their combined effect on the observables is null: 

Iwasaki and Simon [1986] outline a procedure for 
deriving from a set of quantitative equations a (partially 
ordered) causal model in form of a causal net. This net is 
generated from the connection matrix associated to C in 
(6). We present in the next section an algorithm for candi­
date generation (based on set operations) which does not 
need the generation of a causal net, in that it operates 
directly on the sensitivity matrix C. 

4 The Diagnostic Algorithm 
Compliant to the method outlined in section 3.1, the 
diagnostic algorithm consists of two steps: the first, 
candidate generation, derives possible diagnoses from an 
analysis of the qualitative model described in 3.2; the 
second, we will call candidate validation, consists of iden­
tifying among the candidates the non-redundant diagnoses 
consistent with the real-valued model (6). In this schema, 
dependency analysis based on the qualitative model is 
used as a heuristics for reducing the cardinality of the 
search space, in that it allows to reduce the number of 
self-contained subsystems like (7) to be solved. 

4.1 Candidate Generation 
The equations of (6) can be partitioned in two classes: the 
class of symptoms and the class of constraints. The former 
corresponds to those variables Si whose measured values 
are different from the expected ones. The latter holds 
those equations whose associated state variables have 
nominal values. 

Let's introduce accordingly two submatrices of C, 
C and C" such that: 

where the number of equations of (8) (the symptoms) is 
k and the number of equations of (9) (the constraints) 
is m-k. 

According to (L I ) , for each symptom {1 .. 
k}) a propositional formula Ai is built, consisting of the 
disjunction of each parameter pj {1 .. n}) such that 
the coefficient in equation Ei is different from 
zero: 

The disjuncts of Ai correspond to all and only the parame­
ters such that the variation of one (at least) of them 
explains symptom Ej, i.e. the difference of observable Si 
in (8) from the expected value. 

According to (L2), for each constraint E1 
m-k}) the propositional formula Bi is bui l t If Pj 
n}) are the parameters belonging to Ei such that c''ij is 
different from zero in equation Ei, we have: 

where the literal - Pj means that the parameter pj is not 
changed. Each disjunct belonging to Bj explains why 
observable Si in constraint Ei of (9) is not different from 
the expected value (either no parameter having influence 
on Ei is changed or two (at least) of them are changed, 
but their combined effect on the observable is null). 

The formulas are combined in for­
mula A: 

This formula represents all the explanations4 that give an 
account for symptoms only. 
In the same way, the formulas Bi they 
exist, are combined in formula B: 

The formula B represents explanations that justify why the 
observables in (9) are not changed. 

The logical formula (L) explaining all the observa­
tions is now obtained by the conjunction of the two for­
mulas A and B: 

L may be used for computing candidates in that, when 
transformed in disjunctive normal form, its disjuncts 
represent the plausible diagnosis for both the symptoms 
and the constraints. A candidate consists of all the posi­
tive literals of a disjunct of L. 

It is easy to prove that the set CAND of candidates 
corresponding to the disjuncts of L contains any candidate 
non-redundant diagnosis of (6). The actual diagnoses are 
determined by the validation procedure on the quantitative 
model, as outlined in the next subsection. 

4.2 Candidate Validation 
A candidate generated according to the procedure 
described in 4.1 will be a diagnosis of (6) if there exists a 
solution of (6) such that the value of any parameter 
included in the candidate is non-zero, and the value of 
any parameter not included in the candidate is zero. 
Before performing validation, set CAND is ordered 
according to candidate cardinality; those candidates whose 
cardinality is greater than m are removed, as it is easy to 
prove that they cannot be non-redundant diagnoses. 
Validation is then performed starting from minimum car­
dinality candidates; when a candidate P is validated, all its 
supersets are removed from CAND, as they would be 
redundant with respect to P. 

Candidate validation is easily performed with con­
ventional methods for solving linear systems, e.g. the 
Gauss-Jordan algorithm. 

4 Given a truth value assignment satisfying the formula, an explana­
tion is the set of all and only those positive literals (ie, parameters) 
whose assignment is the truth value True. 
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4.3 An Example 
Let's consider the following system of three linear equa­
tions with five unknowns: 

(10) 

and suppose that the following variations are measured: 

The number of systems of order three to be solved 
without prior candidate generation is: 

The symptom class holds equations E1 and E2. From the 
symptoms the formulas A1 and A2 are computed: 

A1 and A2 include, respectively, those parameters the 
observables S1 and S2 depend on. 
The constraint class includes equation E3 from which we 
may build B1 such that: 

From A1 and A2 formula A is built: 

Formula A represents all the explanations of the variations 
of both S1 and s2. 
From B1 formula B is built; it represents the possible 
explanations why the observable s3 is not changed: 
B = B1 = 

Now formulas A and B are joined to obtain formula L: 

Formula L in disjunctive normal form is: 

Now set CAND is built from L and sorted with respect to 
candidate cardinality; then, element having cardinality 
greater than three (the number of equations of (10)) are 
deleted. The set of the candidate is the following: 

Now these proposed candidates must be validated on the 
quantitative model. The first candidate P of CAND is 
selected: 

P = {P2} 
System (10) admits solution 

= 0) and therefore P is a non-redundant diagnosis. 
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From set CAND all the supersets of P are then removed 
so that CAND is reduced to: 

Validation continues until CAND is empty. At the end of 
the process, i.e. when CAND is empty, the algorithm has 
computed four non-redundant diagnoses: 

which correspond to the following solutions: 

5 Conclusions 
We may now restate and precise the comparison with pre­
vious works on model based diagnosis. In particular we 
will refer to GDE as presented by de Kleer and Williams 
[1987]. GDE uses a single, quantitative, model of the sys­
tem to diagnose; the basic computation mechanism is con­
straint propagation. Candidate generation is based on 
comparing the results computed by constraints under 
different assumptions with measured values. Constraint 
propagation is the source of the incompleteness of GDE, 
due the inability to solve simultaneous equations [de Kleer 
and Williams, 1987], that makes it unpractical for a large 
class of applications, including almost any continuous pro­
cess. Our approach exploits a causal view of the system 
for generation of candidates similar to causal ordering as 
proposed by Iwasaki and Simon [1986]. This is coupled 
to conventional techniques for candidate validation, thus 
overcoming the above limitation of constraint propagation. 
As candidates are determined on the basis of a causal 
model, it is easy to provide natural justifications to diag­
noses generated by the system. 

Finally, an important difference with the approach 
to diagnosis taken by GDE is the neat separation between 
generation and validation of candidates. We have 
remarked in section 2 that this is suggested from the 
specific features of diagnosis in process control as 
opposed to diagnosis of electrical circuitry, because in the 
former measurements are usually all available before the 
diagnostic process is started Thus stepwise refinement of 
diagnosis is not justified in our context. 
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