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Abstract

The semantics of revising knowledge bases re-
presented by sets of propositional sentences is
analyzed from a model-theoretic point of view.
A characterization of all revision schemes that
satisfy the Gardenfors rationality postulates is
given in terms of an ordering among interpre-
tations. Properties of the contraction operator
that can be defined in terms of revision are also
studied. Two new update operators, elimina-
tion and recovery, are introduced. Elimination
discards all previous preconceptions on a set of
propositional letters; recovery undoes the effect
of the last update. It is shown that elimina-
tion cannot be expressed as a contraction, and
that recovery is in general impossible. The ex-
iIstence of an invariant part of the knowledge
base comprising a set of integrity constraints
Is considered and the definition of revision and
contraction are modified to take integrity con-
straints into account.

1 Introduction

Consider a knowledge base (KB) represented by a set of

sentences in a language L. As our perception of the world
described by the knowledge base changes, the knowledge
base must be revised. Several kinds of revisions may oc-
cur. If we simply acquire additional knowledge about
the world, and the new knowledge does not conflict with
the current beliefs' of the KB, there seems to be no dif-
ficulty — at least in theory — in incorporating the new
knowledge in the form of new sentences. If, however, the
new knowledge is inconsistent with the old beliefs, and
we want the KB to be always consistent, we must resolve
the conflict somehow; this operation will be called revi-
sion. A different kind of change occurs when a sentence
previously believed becomes questionable; we call the
operation that makes this change a contraction. A third
operation erases all knowledge that involves a particular
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fact; we call this elimination. Eliminating p will result
not only in uncertainty over whether p is true or false,
but we will also have to give up a belief that, say, g = p.
The fourth kind of change we consider is retraction: it
involves undoing the effect of a previous operation.

Foundational work on knowledge base revision was
done by Gardenfors and his colleagues [Gardenfors, 1984,
Alchourron et al/., 1985, Gardenfors and Makinson,
1988]. They propose, on philosophical grounds, a set
of rationality postulates that the operations of contrac-
tion and revision must satisfy and explore the implica-
tions of these postulates. The Gardenfors postulates do
not assume any concrete representation of the KB; in
fact, KB's are modeled as deductively closed sets of sen-
tences in some unspecified language. When we consider
computer-based KB's, we need to fix a formalism and
a finite syntactic representation of a KB. In this pa-
per, we will assume the KB is represented by a finite
set of propositional sentences. For this case, the both
Al and database literatures contain several proposals on
the appropriate definitions for some of the update op-
erators [Dalai, 1988a, Dalai, 1988b, Fagin et a/., 1983,
Weber, 1986, Winslett, 1987, Winslett, 1988, Borgida,
1985, Satoh, 1988]. The question now arises of whether
the result of an update will depend on the particular
set of sentences in the KB, or only on the worlds de-
scribed by them. We are interested in methods that
satisfy Dalal's Principle of Irrelevance of Syntax, that
Is, the meaning of the KB that results from an update
must be independent of the syntax of the original KB,
as well as independent of the syntax of the update itself.

Dalai [1988b] was the first one to relate his approach
to the Gardenfors postulates, pointing out that his pro-
posal for the revision operator satisfies them. He did
not analyze contraction, elimination, or retraction. |In
this paper, we go further by giving a model-theoretic
chara' terization of all revision operators that satisfy the
postulates. Our main theorem, in Section 3, shows that
these operators are precisely the ones that accomplish an
update with minimal change to the set of models of the
KB. Dalal's method is seen to be a special case; we also
discuss how the methods of Borgida, Winslett, Satoh,
Weber, and Fagin, Ullman and Vardi fit into this frame-
work.

Gardenfors et al. show that the definition of a revision
operator satisfying the rationality postulates uniquely
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determines a contraction operator that satisfies the cor-
responding postulates for contraction; conversely, revi-
sion can be defined in terms of contraction. In Section
4, we translate this definition to the case where the KB is
a finite set of propositional sentences and show that con-
traction amounts to adding to the models of the KB the
models of the KB revised with ~u. We justify the defi-
nition further by showing that it is a sufficient condition
for guaranteeing that old knowledge is not unnecessarily
discarded.

It iIs generally recognized that not all sentences in a KB
will have the same epistemic status. For example, an in-
tegrity constraint, or a definition of a concept in terms of
others, should probably be treated differently than a fact
about the domain. Gardenfors and Makinson [1988] and
Fagin, Ullrnan, and Vardi [1983] approach the problem
In a similar way: rank the sentences in the KB accord-
iIng to their importance or "epistemic entrenchment" and
take this into account when minimizing change from the
old KB to the new one. In Section 5, we follow a dif-
ferent route. We distinguish between the KB and a set
of integrity constraints IC and show how to modify the
revision and contraction operators to ensure that the
constraints are satisfied.

Finally, in Section 6 we treat a new operation, elimi-
nation, and show that it cannot in general be simulated
by contraction, and in Section 7, we show that retraction
IS In general not achievable.

2 Preliminaries

Throughout this paper, we consider the language L of
propositional logic, and we denote the set consisting of
all the propositional letters in L by =. We represent a
knowledge base by a propositional formula ).

We use the standard terminology of propositional logic
except for the definitions given below.

An interpretation of L is a function from Z to {T, F}.
We often denote a interpretation by a tuple representing
each propositional letter's value, e.g., if= = {a,6,c,rf}
then < T,F, T, F > is the Iinterpretation which maps a, b,
c, dtoT, F, T, F respectively. A model ofa propositional
formula ¥ is an interpretation that makes ¥ true in the
usual sense. Mod(¥) denotes the set of all the models of

0.

Let M be a set of interpretations of L. Then,
form(M) denotes a formula whose set of models is equal
to M.

Let ¢ be a propositional formula and let a be a propo-
sitional letter. Then, ¥ is defined as a formula ob-
tained from ¢ by replacing every occurrence of a with
true, and 1, 1s defined as a formula obtained from
Y by replacing every occurrence of a with false. We
define res,(v) as v v¢o-. H Q is a set of propo-
sitional letters, {a;,as,...,a,}, resq(y) is defined as
resg, (resq, (... (resq, (¥))...)).

Let I be an interpretation of L, and let 2 be a subset

of Z. Then, I|g is an interpretation over 2 obtained

from I by restricting i1ts domain to 2. The complement
of 2 in = (1.e., = — €2) 1s denoted by Q°.
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3 Revision

Given a knowledge base ¥ and a sentence u, ¥ o u de-
notes the revision of by u; that is, the new knowledge
base obtained by adding new knowledge u to the old
knowledge base .

3.1 The Gardenfors Postulates for Revision

Gardenfors and his colleagues propose the following pos-
tulates which they argue must be satisfied by any reason-
able revision function. These postulates are formulated
In a very general setting, but we restrict the discussion
here to the propositional logic case. Instead of a finite
KB, they consider a knowledge set, that is, a deductively
closed set of formulas. Given knowledge set K and sen-
tence p, K*u is the revision of A' by u. Ktpu is the
smallest deductively closed set containing K and u. K
is the set consisting of all the propositional formulas.

(G*1) K*u is a knowledge set.

(G*2) pe K*p

(G*3) K*uC Kty

(G*4) If ~u¢ K, then Ktu C K"

(G*5) K*u= K, only if uis unsatisfiable.
(G*6) f = ¢ then K*u= K*¢.

(G*T) K*(uA$) C (K*u)*

(G*8) If ~¢ ¢ K*p then (K*u)*¢ C K*(u A @)

If we fix a way of representing any knowledge set A' by
a propositional formula such that K = {¢|v¥ t+ &}, e
can establish a direct correspondence between K *pu and
Y o . The following lemma characterizes revision oper-
ators that satisfy the first six postulates, (G*1)~(G*6).

Lemma 3.1 Let * be a revision operator on knowledge
sets and o its corresponding operator on KB's. Then *
satisfies (G*1)~(G*6) if and only o satisfies conditions

(R1)~(R4) below.

(R1) o u tmplies p.

(R2) IfY A p 1s satisfiable then Yyopu= 1y A pu.

(R3) If pu 1s satisfiable then i o u 1s also satisfiable.
(R4) If Yy = oo and py = py then Y10 puy = Yy 0 uy.

This Lemma gives us a good grasp of the meaning of
the first six postulates: new knowledge (i) is retained
in the updated KB (IIll), his Principle of Irrelevance of
Syntax (R4), a guarantee that the obvious path will be
taken when there is no conflict (R2), and a condition
preventing a revision from introducing unwarranted in-
consistency (R3). What about the remaining two postu-
lates? The following lemma rephrases them in terms of
0.

Lemma 3.2 (G*7) and (G*8) are equivalent to (R5)
and (R6) respectively in the same sense as Lemma S.I.

(R5) (You)A¢ impliespo(uA¢).
(R6) If(You)Ao is satisfiable then o (u A ¢) implies
(You)Aé.



To grasp the intuitive meaning of (R5) and (R6), con-
sider the set of models of the KB, Mod(v). Suppose
that there is some metric for measuring the "distance”
between Mod(%¥) and any interpretation /. We want our
revision operator to effect minimal change, that is, we
want the models of ¥ o u to be those models of  which
are closest to Mod(%) with respect to our distance met-
ric.

Rule (R5) says that our notion of closeness is well-
behaved in the sense that if we pick any interpretation
/ which is closest to Mod(¥) in a certain set, namely
Mod (u), and / also belongs to a smaller set, Mod(uA¢),
then / must also be closest to Mod(%¥) within the smaller
set Mod(pu A ¢).

A violation of rule (R6) would imply that an interpre-
tation / may be closer to the KB than J within a certain
set, while J i1s closer than [ within some other set. To
see this, consider a model / of1,bo(p/\d)), that is, a model
of u# A ¢ that is closest to Mod(¥). Suppose / is not a
model of (o u) A¢. The precondition of (R6) says that
there is some interpretation J that is a model of Yo u
and also of . Thatis, J is a model of ¢ that is closest
to Mod(v¥). But then J is closer to Mod() within the
set Mod(¢) than |, while I is closer to Mod() than J
within the set Mod(u A ¢). In the next section we for-
malize the notion of an interpretation being closer to the
KB than another one and relate it to the postulates.

3.2 Orders between Interpretations

The postulates (G*7) and (G*8) represent the condition
that revision be accomplished with minimal change. In
this Subsection, we give a model theoretic characteriza-
tion of minimal change.

Let 2 be the set of all the interpretations of L. A pre-
order < over J is a reflexive and transitive relation on
2. Consider a function that assigns to each propositional
formula ¢ a pre-order <y over X. We say this assignment
Is persistent if the following three conditions hold:

1. If I € Mod(v) then forall I’ € 7, I <y I’ holds.

2. If 1 € Mod(¥) and I’ € Mod(%) then I' <,, I does
not hold.

3. If v = ¢, then <y=<y.

That is, every model of is less than or equal to every
other model and no non-model can be less than or equal
to a model. We define <y as | <y V if and only if
1 S_w I’ and I’ ﬁ\b I.

Let M be a subset ofJ. An interpretation / is minimal
in M with respect to <y if / € M and thereis nol’' € M

such that J/ <y I. Let

. I is minimal in M
Min(M, <y) = {I with respect to <y } '

If we regard <, as a measure representing the close-
ness between Mod(y) and an interpretation, i.e., I’ <y
I means that I’ is closer to Mod(y) than I, then
Min(M,<y) can be seen as the set of all the closest
interpretations in M to Mod ().

Theorem 3.1 Revision operator o satisfies Conditions
(R1)~(R6) if and only if there exists a persistent assign-
ment that maps each KB 1 to a total pre-order <y such
that Mod (v o ) = Min(Mod(u), <y).

The persistent assignment of the Theorem maps KB's
to fotal pre-orders. If we allow two interpretations to be
incomparable under some pre-order, then existence of
the pre-order is no longer sufficient to guarantee condi-
tion (R6). Instead of (R6), two weaker conditions char-
acterize the existence of a persistent assignment to par-
tial pre-orders. A later version of this paper will provide
the details.

3.3 Review of Proposals from the Literature

3.3.1 Dalai's Revision

Dalai [1988a, 1988b] uses the number of propositional
letters on which two interpretations differ as a mea-
sure of "distance" between them. This distance measure
iInduces an ordering among interpretations as follows.
First, define the distance between two interpretations
| and J, dist(l, J), as the total number of propositional
letters whose interpretation is different in [ and J. Next,
define the distance between Mod(3’) and 1 as

dist(Mod (%), I) = mingepmoa(yp)dist(J, I).

Then, we can define a persistent assignment of a total
pre-order <y as I <y J if and only if

dist(Mod (), 1) < dist(Mod(y), J).
And Dalal's revision operator op can be defined by:
Mod(y op p) = Min(Mod(p), <y).

Thus, it follows from Theorem 3.1 that Dalal's revision
operator oD satisfies Conditions (R1)~(R6).

Example 3.1 Let L have only four propositional let-
ters, a, b, ¢, d. Consider the following five interpreta-
tions:

I
J1

1

<T.T,T,T>, I,=<FFFF>,

<F,FT,T>, Jo=<TF,FF>,
Ja=< F,F,T,F>.
Let

v = form(Iy, 12),
$2 = form(Jy, J2),

Then, we can obtain
Y op @1 = form(J2,J3), Y op @2 = form(J2),
dﬁ op d)3 — fOTﬂl(Ja).

Borgida's Revision

QSI = form(']l ) J21 JS),
¢3 = form.(Jl , (]3).

3.3.2

Let oB be the revision operator proposed by Borgida
[1985] and extended in [Dalai, 1988a]. He concentrates
on sets of propositional letters on which a model of ¥
and a model of // differ.

We say that two interpretations, / and J, differ on a
set of propositional letters, €2, If & is the set of propo-
sitional letters a such that the truth value of a in / is
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different from its truth value in J. Diff (I, p) is the col-
lection of all the sets of propositional letters on which /
and some model of u differ. Then, Borgida's revision op-
erator og is defined as follows. If g is inconsistent with
1, then an interpretation J is a model of ¥ og If and
only if J is a model of u and there is some model / of ¥
such that the set of propositional letters on which | and
J differ is a minimal element of Diff(I, ). Otherwise,
i.e., if u is consistent with ¥, then ¥ o u is defined as
Y A pu.

If ¥ has only one model /, we can represent the models
of Y OB u as the set of minimal elements of the partial
order <; defined by J; <; Jo if and only if the set on
which / and J; differ is a subset of the set on which / and
J2 differ. This fact makes us expect that og might be
defined in terms of a persistent assignment of a partial
pre-order to each KB. However, the following example
shows that og cannot be defined in this way.

Example 3.2 Consider Example 3.1 again. We add the
following two interpretations:

Jg=<T,T,F,F> Jg=<TTTF>.

Let
¢4 = fOT‘TTl(Jg, J4): ¢5 = for’n(‘]‘la J5)a

¢’6 = form(Jg, J4, Js)

Then, we can obtain
Yop ¢g = form(Jg, J4), Yop ¢ = form(J.;, Js),
15 °B d)ﬁ = fOT'm(JQ, JS)

Suppose that there is some persistent assignment of a
partial pre-order <,, that captures the o operator. Then,
Jo £y Ja follows from pog ¢g = form(J2,J4). Js £y Ja
does from ¢ og ¢5 = form(J4,Js). On the other hand,
either Jo <y J4 or Js <y J4 follows from 9 op ¢¢ =
form(J,, Js). This is a contradiction.

In terms of Conditions (R1)~(R6), the following
Lemma holds

Lemma 3.3 Assume that ¢ is conststent. Then,
Borgida’s revision operator og satisfies (R1)~(R5), but
does not satisfy (R6).

3.3.3

Winslett [1988] proposes a revision operator which is
suitable for reasoning about action. Her revision opera-
tor is defined for the first order calculus case and called
the possible models approach. We restrict this operator
to the propositional case and denote it by opms.

If the new knowledge u is inconsistent with the old
knowledge base %, then Winslett's operator o,m, coin-
cides with Borgida's operator og. However, even if uis
consistent with ¥, Winslett defi nes Opma in the same way
as the inconsistent case. This means that o,,, violates
Condition (R2), i.e., when ¥ A p is consistent, 1 opm,
may not be equivalent to ¢ A wu.

Winslett's Revision

Example 3.3 Let L have only two propositional letters,
aand b. Lety =(aA-b)V(—-aAb)and g =a. Then,
we obtain ¢ opma 4 = a and Y og pu = (a A -b).
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To interpret this example in the context of [Winslett,
1988], suppose a represents the fact that a book is on the
floor and 6 means that a magazine is on the floor. Then,
¢ states that either the book or the magazine is on the
floor, but not both. Now, we order a robot to put the
book on the floor. The result of this action should be
represented by the revision of ¢ with a. After the robot
puts the book on the floor, we know a, but we do not
know whether 6 is true or not. Hence, the new state of
the world should be described not as a A =~b (Borgida's
revision), but as a (Winslett's revision).

In terms of Conditions (R1)~(R6),
holds.

the following

that v is consistent. Then,
operator op,n, Satisfies (R1) and
violates (R2) and (R6).

Lemma 3.4 Assume
Winslett's revision
(R3)~(R5), but

3.3.4

Satoh [1988] proposed a revision operator for first or-
der knowledge bases by using the notion of circumscrip-
tion. If we apply his revision operator to the propo-
sitional logic case, we obtain the revision operator oS
which corresponds to a global version of Borgida's revi-
sion operator.

Satoh considers the minimal elements of Diff (v, i),
where

Satoh's Revision

Diﬁ(’d’, ﬂ) - UIGMod(w)Diﬁ(I! ﬂ)'

He defines an interpretation J to be a model of ¥ osg u
if and only if J is a model of u and there is some model
| of ¥ such that the set on which / and J differ is a
minimal set of Diff (¢, p).

This definition makes the closeness between models of
1 and models of u depend on both ¥ and u. Hence,
we cannot expect os to be defined in terms of a persis-
tent assignment of a pre-order to each KB. The following
example shows that this expectation is correct.

Example 3.4 Consider Example 3.1 again. We obtain
Y os ¢1 = form(Ja, J3), Y os ¢2 = ¢2, and Y o5 ¢3 = ¢3

Suppose there is some persistent assignment of a pre-
order <y that captures the os operator. Then, v os
¢1 = form(J2, J3) implies either Jo <y Jy or J3 <y J;.
However, Jg £y J1 follows from ¢ o ¢o = @2, and J3 £y
J1 follows from ¥ og ¢p3 = ¢35, a contradiction.

In terms of Conditions (R1)~(R6), the following
holds.
Lemma 3.5 Assume that 1 is consistent. Then,
Satoh’s revision operator os satisfies (R1)~(R5), but

does not satisfy (R6).
3.3.5

Weber [1986] also concentrates on sets of propositional
letters on which a model ofy and a model of u differ. His
revision operator o, can be easily defined by elimina-
tion, which we discus in Section 6. Thus, we only point
out that ow cannot be defined in terms of a persistent
assighment of a pre-order to each KB, since op yields
the same results as os in the case of Example 3.4.

In terms of Conditions (R1)~(R6),
holds.

Weber's Revision

the following



consis-
satisfies

Lemma 3.6 Assume that both ¥ and u

tent. Then, Weber's revision operator o,
(R1)~(R5), but does not satisfy (R6).

3.3.6

The approach of Fagin, Ullman and Vardi [1983], when
applied to deductively closed sets of sentences, yields a
revision operator or such that, ift and u are inconsis-
tent, Y oF p is equivalent to 4. Hence, or can be defined
by the persistent assignment that maps each ¥ to the
pre-order <y such that I <y I’ if and only if either / is
a model of % or neither / nor /' is a model of .

Because it is not very satisfactory to throw away all
the old knowledge each time an inconsistent update is
attempted, these authors favour sets of sentences that
are not deductively closed; however, in this case their
method produces a result which depends on the syntax of
the KB, violating the Principle of Irrelevance of Syntax.

Fagin, Ullman and Vardi's Revision

4 Contraction

When a sentence u that was previously believed be-
comes uncertain, we apply a contraction operator to
the KB to ensure that u is not implied by the up-
dated KB. Note that this is different from revising the
KB with —u. Given a K By nd a sentence u, ¥ O u
denotes the new knowledge base obtained by contract-
ing s from 3. Gardenfors and his colleagues have an-
alyzed contraction carefully [Alchourron et a/., 1985,
Gardenfors and Makinson, 1988], but the database and
Al literature has concentrated much more on revision.

4 .1 Connection between Contraction and
Revision

Alchourron, Gardenfors, and Makinson [1985] also pro-
pose rationality postulates for contraction, (G-1)~(G-8).
According to their notation, K~ u is the new knowledge
set obtained from the old knowledge set K by contract-
ing/i.

(G-1) K~ puis a knowledge set.

(G-2) K~uCK

(G-3) If u¢ K, then K~ pu= K.

(G-4) If uis not a tautology, then u & K~ pu.

(G-5) K C (K™ p)"p

(G-6) f u=¢,then K- pu=K~¢

(G-T) (K~ uNK~¢)C K~ (nA¢)

(G-8) f ug K~ (uA @), then K~ (uAN¢p) C R p

We refer to [Makinson, 1985] for the justification of
these postulates. If we represent each knowledge set by
a propositional formula, as we did in Section 3.1, the
following properties easily follow from (G-I1)~(G-6).

(C-1) If Wimplies g and u is not a tautology, then Y& p
does not imply g and 1 implies ¢ © U; otherwise,
Y © u is equivalent to .

(C-2) (¥ © u) A pu implies 9.

(C-1) shows that & realizes contraction if £ is implied
by 1 and that otherwise & does not influence the KB.

(C-2) shows that the contraction of g from W is strong
enough to recover, when conjoined with u, all the facts
in the original KB 1.

Alchourron et al. [1985] showed that contraction and
revision are closely related and can in fact be defined in
terms of each other. They proved that, given a revision
operator * that satisfies (G*1)~(G*8), if we define the
contraction operator — by

K-p=KNK"-p, (R — C)

then contraction operation — satisfies (G-1)~(G-8).
Conversely, given a contraction operator — that satis-
fies (G-1)~(G-8), if we define revision * by

K*'p= (K" =p)"p,

then this revision operator satisfies (G*1)~(G*8).

If we rewrite (R —> C) in our terminology, we get
Yo pu= (Y Viyo-u), because the set consisting of both
¥ and ¥ o —u is inconsistent when % implies u. This
means that the result of contracting y can be obtained
by adding some models of 7y to the models of the old
knowledge base. Adding some models of =y is necessary
to guarantee that ¥ © u does not imply py. However, we
might think it wise to also add some models of =) Ay or
delete some models of ¢». The following Theorem shows
this is not desirable; the requirement that the new KB
be obtained by adding only models of - to the models
of W is necessary and sufficient for guaranteeing that old
knowledge ¢ is recoverable from ¥ € u together with /i.

Theorem 4.1 The following conditions are equivalent.

1. Y implies ¢ if and only if Y © u 1tmplies u D ¢.
2. Mod(y) = Mod(y © u) N Mod(p).

4.2 Complex Contraction

It is not hard to imagine using compound sentences in a
revision, e.g. "it will rain or snow tomorrow." It might
be harder, at first glance, to imagine a need to contract
a complex sentence. However, consider the following ex-
ample.

Example 4.1 Let a represent the fact that roads are
covered with snow, let b represent the fact that roads are
frozen. Suppose that we know roads are slippery if and
only if they are covered with snow or frozen. Suppose
we know there have been no accidents all day, casting
doubt on our belief that roads are slippery. The way to
update the knowledge base is precisely to contract aV b

(i.e., ¥ © (a VD))

Note 4.1 Example 4.1 brings out an interesting point.
Let ¢ represent the fact that roads are slippery. Sup-
pose that we have the knowledge base % defined by
cA(c= aV b). That is, we know that roads are slippery
If and only if they are covered with snow or ice. If we
use the contraction function ¢) defined from Dalal's re-
vision function, ¥ © ¢ is equivalent to a V b. Hence, by
contracting the knowledge that the roads are slippery,
we also lose the notion of what "slippery" means. This
example suggests that we are not quite modelling things
In the right way. The next section shows how to do it
right.
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5 Integrity Constraints

Knowledge bases contain not only sentences of fact about
the world, but also Integrity constraints that are iIn-
tended to ensure that the KB is an appropriate repre-
sentation of the world. In the deductive database litera-
ture, it iIs common to regard constraints as sentences ex-
pressed in the same language as the KB. Reiter [1988] ar-
gues that it is more appropriate to represent constraints
iIn an epistemic modal logic when the KB is a set of
first-order sentences. We adopt a different point of view
here; we express knowledge and constraints in the same
language, but treat them differently under update. In-
tegrity constraints are considered invariant, and updates
are restricted to produce KB's which are consistent with
the constraints. Winslett [1988] and Satoh [1988] take a
similar approach. We present a modification of revision
and contraction that accomplishes this and avoids the
unintuitive results of Note 4.1.

Let IC be a propositional formula which represents
an update-invariant component of the knowledge base.
That is, we want the KB to imply /C at all times. (Note
this is not the only possible way to model integrity con-
straints; see [Reiter, 1988] for a discussion ofother ways.)
For each revision function o and each contraction func-
tion &, we define of€ and &f¢ by

Yol u=vo(unlIC)

and
volcu=yve (IC D).

Intuitively, when revising the KB with @4 we make sure
that the constraints will hold in the result by attaching
IC to u. When contracting i, we avoid an accidental
contraction of /IC by replacing g with 1C D pu.

The following theorem shows that of¢ and &'¢ inherit
desirable properties about o and &, respectively. We
consider the following condition corresponding to (R3).

(R3") if u A IC is satisfiable then ¥ o’¢ u is also satis-
fiable.

Theorem 5.1

1. If o satisfies conditions (R1)~(R6), then 0 does
(R1), (R2), (R3), (R4)~(R6). In particular, if ¢
implies IC  then ¥ o€ u implies both u and |IC.

2. Similarly, ©'< inherits properties of &,
ular, if © satisfies the conditions
(G-1)~(G-6), then
(a)intf ¥ tm; ¢t and IC does not

Y ©I€ u does not imply u.

(b)d tf ¥ doe: imply pt then v &'%su
to .
(c) tf ¢ imglies IC

Before this section, we have abided by what Dalai
calls the Principle of Primacy of Update: after revis-
ing KB % with sentence g, the new KB must imply u.
This assumption is almost universal in the literature. In
practice, it is of course unreasonable to expect the KB
to blindly assimilate any new fact without questioning
it. It is much more likely that a KB manager will se-
riously object to incorporating a sentence that violates

In partic-
corresponding to

imply p then
equivalent

t hy /¢ u s o implies |IC.

1418 Knowledge Representation

an integrity constraint. Now that we consider integrity
constraints explicitly, we see that primacy of update no
longer holds; if g is inconsistent with IC, then 0'¢ is
undefined (or produces the inconsistent KB). Similarly,
if /C implies u, it is impossible to contract g by using

eIC*

Example 5.1 We use the KB 9 from Note 4.1. Let IC
be ¢ = (a v b). Suppose that both o’¢ and ©'¢ are
defined by Dalal’s revision function op. Then, ¥ 0/¢ =¢
(1.e., Yop(ICA—c)) is equivalent to (c = aVb)A-aA—-bA
—¢, and ¥ ©'¢ ¢ (1.e.,, v V¢ op ~(IC D ¢)) is equivalent
toc=aVb.

6 Elimination

Elimination is used to discard all the knowledge con-
cerning 2 where §2 is a set of propositional letters. We
denote the new knowledge base obtained by elimination
as Y @ 2. Then, the new knowledge base should have

the following properties.

(E1) Let T be the set of all propositional formulas, ¢,
such that ¢ is implied by % and that no letter in §2
occurs in ¢. Let o be a formula in which some letter
in €2 occurs. Then, T implies & if and only ify¥ @ {2

implies o.

(E2) Let ¢ be a formula in which no letter in €2 occurs.
Then, @ implies ¢ if and only if¥ @ 2 implies ¢.

Intuitively, (E1) means that ¥ @ §2 loses all the non-
trivial information about 2. (E2) means that ¥ @$2 does
not lose any information about £2°¢.

The following theorem shows that Conditions (E1)
and (E2) uniquely determine the elimination function.

Theorem 6.1 YQ@SQ satisfies Conditions (E1) and (E2)
if and only ify @S = resa(y).

Weber's revision operator ow we referred to in Sec-
tion 3.3.5 is now defined as follows. If neither ¥ nor u
is unsatisfiable, then % ow u is defined by (¥ @ Q) A u,
where €2 is the union of the minimal sets of (¢, p).
If either ¥ or p is unsatisfiable, t hy ow u s defined
as .

Winslett [1987] proposes another revision operator oy
defined by Yoy pu = (YOQ)Au where £ 1s the set consist-
ing of all the propositional letters which occur in u. The
revision operator violates the Principle of Irrevalence of
Syntax because ) depends on the syntactic representa-
tion of pt. She tries to represent contraction by revising
the knowledge base with a tautology, e.g., ¥ & a is rep-
resented by ¥ ops (a V —a).

The following theorem shows that elimination cannot
be represented by contraction in general.

Theorem 6.2 Let o be a update operator defined by a
persistent assignment of total pre-order <y, to each KB
Y. Let © be the contraction operator defined by ¥ & =
(T.Z’Vlﬂo“w) corresponding to the equation (R—> C). Let
2 be a set of propositional letters. Then, the following
two conditions are equivalent.

1. There is no u such that y ©O u= 9% Q .

2. There are two Interpretations, | and I, such that



(a) I <y I,

(b) I is not a model of 1, but there is some model
of ¥, J, satisfying J|q- = I|qe,
(¢) Ila- = I'|q

Example 6.1 Let 1 is equivalent to a A (b D ¢) A (¢ D
d)A(dDb). Let Q= {a,b}. Then, v» © Q is equivalent
to ¢ = d.

On the other hand, let & be the contraction func-
tion defined by Dalal’s revision function. Let I =
<F,F,F,F>and I' = <F,T,F,F>. Then, I and I
satisfy Condition (2) of Theorem 6.2. Hence, for any g,
¥ © u1s not equivalent to ¥ @ €.

/ Recovery

Suppose we change our mind about an update we just
performed and want to take it back; this is what we call
the recovery operation. How can it be implemented?

First, consider the recovery of revision. Let o be a
revision function that retains complete new knowledge.
Suppose that ¥ is any formula and u is a formula that has
exactly one model. Then, it is easy to show Yo = u.
In this case, the new knowledge base depends only on
the added new knowledge and is independent of the old
knowledge base. Therefore, we cannot in general recover
the old knowledge base ¥ from the added new knowledge
and the updated knowledge base.

On the other hand, if a contraction function satisfies
(G-1)~(G-G) then the following holds.

1. If ¢ implies u then ¢ = (¥ © u) A p.

2. If v does not 1mply u then ¥y = ¢ © u. Note that
Y Z (YO u)Ap

Hence, we can recover the previous contraction only if
we know whether u was implied by the old knowledge or
not.

8 Conclusion

Our main result is a model-theoretic characterization of
revision schemes that satisfy Gardenfors' rationality pos-
tulates in the propositional case. Future research direc-
tions include extending these results to the first order
predicate calculus and applying the results about revi-
sion to areas such as diagnosis from first principles, ab-
ductive reasoning, and database updates.

We have also presented some basic properties of con-
traction and introduced the operations of elimination
and recovery. We have shown that recovery is in gen-
eral unachievable; a future research direction is how to
carry along syntactic information in the knowledge base
In order to make recovery possible.
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