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Abstract 

A homogeneous paradigm for evidence integration is 
presented, and a vision system to recognize 3D ob­
jects is demonstrated using this paradigm. A new 
concept called generalizedfeatures supports a highly 
modular architecture, and allows a uniform treatment 
of features at all levels of recognition - from simple 
partial features to complex feature assemblies and 3D 
objects. Layered, concurrent parameter transforms 
vote for feature hypotheses on the basis of image data 
and previously reconstructed features. Additional 
transforms identify supporting or conflicting 
relationships between hypotheses. The entire 
reconstruction and indexing process occurs within 
recognition networks, which collect votes, fuse 
evidence from various sources and insure global con­
sistency. The overall approach allows the system to 
completely avoid the common weak point of explicit, 
low-level scene segmentation. Features 
reconstructed by the vision system include surface 
regions and 3D surface intersection curves. Ex­
perimental results, including noise sensitivity, for 
real data from a laser range finder are presented. 

1. Introduction 

Of the many approaches which have been proposed for object 
recognition (see surveys [Binford, 1982, Besl & Jain, 1985]), 
few can be considered a general framework capable of sup­
porting a wide variety of recognition strategies. Those which 
can, typically address only a portion of the problem [Bolle et 
al., 1986] or propose differing approaches for each stage of the 
recognition process [Weems et al.,1989], In general there is 
a lack of consistency both from low to high level processing 
(e.g., from feature extraction to object recognition) and be­
tween various feature extraction mechanisms. The repre­
sentation of hypotheses, the control structure and the 
representation of feature extraction knowledge can all vary. 
This poses several problems, mostly related to communicating 
and combining information: 

• Communication between modules of the system is 
hindered, making it difficult for the various recognition 
pathways to cooperate. 

• Multiple, unique internal representations make the com­
parison of hypotheses generated by different modules more 
difficult. 

• Addition of new feature types is a nontrivial process, so the 
system is often locked into a static set of primitives (which 
in turn requires great care in choosing the primitives). 

• The integration of different data sources (e.g. reflectance 
and range data) is made more complex. 

This paper describes an approach which attempts to ad­
dress these concerns. A uniform structure is defined, using a 
new concept of generalizedfeatures. This identifies exactly 
what types of information are needed to extract a new feature 
while putting as few limitations as possible on the feature 
extraction processes which may be used. Hypotheses 
throughout the system are represented and treated uniformly 
using an evidence integration scheme motivated by work in 
connectionist systems (recognition networks [Feldman & Bal­
lard, 1981, Sabbah, 1985]). Together, these concepts create a 
framework in which it is relatively easy to combine disparate 
feature types, allowing them to interact yet retaining a high 
degree of modularity. 

Figure 1 represents an overview of the approach. Recog­
nition is structured as a hierarchy of layered and concurrent 
parameter transforms [Ballard, 1981]. Features are extracted 
in concurrent recognition pathways. Each pathway is made 
up of one or more stacked parameter transforms. The trans­
forms generate feature hypotheses using data from the scene 
and features extracted in lower layers. Pathways can interact 
at any level to exchange in­
formation. Knowledge about 
interactions between features 
is used to generate evidential 
links between hypotheses 
throughout the system. A 
global interpretation is ar­
rived at using an iterative 
process which fuses the 
evidence for and against each 
hypothesis. 

The primary advantages 
of this approach are the 
modularity, which allows the 
system to be extended as 
needed, and consistency 
which provides the ability to 

Fig. 1: Architecture Overview 
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integrate multiple types of evidence and provides a consistent 
conceptual framework. 

1.1. Paper outline 
Section 2 of this paper describes the generalized feature con­
cept Section 3 discusses in detail the organization of the 
recognition process, that is, the use of parameter transforms 
and recognition networks. The remainder of the paper discus­
ses a system which implements our ideas. The extraction of 
primitive features, such as, 3D curves and surfaces is discussed 
in Sect 4. In Sect. 5, we discuss our object matching strategy, 
and show its equivalence to the other recognition steps. Ex­
periments are given in Sect. 6 that demonstrate the behavior 
of the system when analyzing scenes with multiple occluding 
objects, using depth data obtained from a laser range finder. 
We also discuss a qualitative analysis of the behavior of the 
system in the presence of noise. 

2. The generalized feature approach 
The term feature has been widely used in pattern recognition 
and artificial intelligence research over the past several 
decades. As a result, it no longer has a single canonical 
meaning. In the context of our vision system, feature denotes 
any entity that can be parameterized. 

To aid discussion of the feature hierarchy in the system, 
we classify features as local, partial, primitive or assembly 
features, in order of increasing level of abstraction from the 
original data. For an example consider lines in three-space. 
The line is a primitive feature contained in many higher level 
feature assemblies such as parallelepipeds. But it is also 
formed from partial features such as orientation and position, 
which, in turn, are extracted from local features such as the 
output of an edge detector. 

We have defined a Generalized Feature concept to impose 
a uniformity on the features in a system, allowing them to 
interact and creating a uniform conceptual approach. A 
generalized feature type is defined by a parameterization and 
a set of relationships to other features. The relationships are 
defined using two types of knowledge; knowledge about the 
characteristics of lower level features (or input data) which 
provide evidence for a feature, and knowledge about relation­
ships between feature hypotheses. 

Thus, in order to introduce a feature, we establish the 
particular parameterization and define procedures to compute 
these parameters using lower level data {parameter trans­
forms), and procedures to identify evidential relationships 
with other features at any level of any path {compatibility 
relations). The generalized feature concept defines what types 
of knowledge are needed from these procedures without put­
ting limitations on how that knowledge is obtained. It 
specifies that the parameter transforms wil l be initiated when­
ever a hypothesis survives iteration (as wil l be discussed 
shortly) and supplies the parameters of features (if any) which 
that hypothesis supports. The compatibility relations will be 
initiated with each newly created hypothesis and returns each 
existing hypothesis which should support or compete with it. 
Any procedure which meets these criteria can be used. 

In the above example, a parameter transform will be trig­
gered when a local discontinuity is identified and wil l return 

the parameters of the line. A line hypothesis will be created 
(unless it already exists) and passed to a compatibility relation. 
This wil l return, for example, all the previously existing line 
hypotheses which represent alternative interpretations of the 
discontinuity, and so should compete with it. 

A feature type may have several parameter transforms or 
compatibility relations leading to it from various parameter 
spaces. Thus any particular hypothesis may receive support 
from multiple sources, potentially in different parameter 
spaces. For example, assembly hypotheses receive support 
from hypotheses in many of the primitive feature spaces. 

3. Evidence Integration 
The parameter transforms and compatibility relations identify 
the alternative feature hypotheses with the evidence for and 
against each. In order to evaluate hypotheses through-out the 
system and reach a global consensus we use a homogeneous, 
feature independent control structure. This takes the form of 
a recognition network [Feldman & Ballard, 1981, Sabbah, 
1985] where nodes represent feature hypotheses and links 
represent the evidential relationships between features. Itera­
tive refinement, similar to that used in connectionist systems, 
allows the network to determine which hypotheses best ex­
plain the data. 

Hypotheses are collected in a parameter space associated 
with each feature type. Each parameter space is a sub-net of 
the recognition network. Parameter transforms and com­
patibility relations map from some input parameter space into 
some other parameter space [Ballard, 1981] and are used to 
accumulate evidence for feature hypotheses in a manner 
similar to the Hough transform [Hough, 1962]. 

The links in the network are (1) bottom-up connections as 
identified by the parameter transforms, and (2) lateral links 
between nodes, identified by the compatibility relations. 
Lateral links are inhibitory, if the hypotheses are conflicting, 
or excitatory, in case the hypotheses are supporting one 
another. Any link can have an associated weight representing 
the strength of the evidential relationship. Hypotheses and 
links are generated dynamically at run time. 

Each node computes an activation level representing the 
confidence in the existence of the corresponding feature or 
object in the input. At each iterative step /, the activation level 
of a node, denoted by ALde{i)̂  is computed as 

where BUnod represents bottom-up reinforcement (see [Sab­
bah et al1§86]). LEnodepresents excitation from other 
hypotheses; LInode, inhibition from other hypotheses. The 
amounts of LI and LE depend on the activation levels of the 
competing/supporting nodes. D is a decay term that helps 
suppress spurious (noise) hypotheses. 

A set of mutually inhibiting units in the network form a 
"winner-take-all" sub-network [Feldman & Ballard, 1981, 
Sabbah, 1985] where only one unit will survive. The function 
of this is twofold. It sharpens the response of the transforms 
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and it provides an implicit segmentation. Sharpened response 
comes about as a result of inhibition within a parametric 
neighborhood. Only the strongest unit in any neighboring 
cluster wil l survive. Implicit segmentation results when in­
hibition links are established on the basis of shared support If 
hypotheses which are supported by common image pixels 
inhibit each other, only those which do not share portions of 
the image wil l survive. These will represent a spatial segmen­
tation of the image. This behavior can be generalized to other 
shared characteristics as well, for example primitive features 
shared between object hypotheses. We view this as a sig­
nificant deviation from the "classical" segmentation schemes. 

If a unit in a space survives, it and its associated input data 
points are used by the parameter transforms to generate bottom 
up votes for hypotheses in higher level parameter spaces. 
Survival is determined as a function of (AL - a L I where a is 
a parameter. Thus hypotheses with high activation and few 
competing alternatives survive. Survivors from the winner-
take-all sub-networks are stable coalitions [Feldman & Bal­
lard, 1981] of feature hypotheses which represent globally 
consistent interpretations of the input data. 

We believe these methods provide a powerful approach to 
recognition. Consistency and modularity, which are the 
cornerstones of the approach, provide a host of secondary 
benefits: 

*Extending the system to incorporate additional features 
becomes relatively easy. Thus a rich and varied feature set 
is possible. 

*The ability to integrate multiple recognition pathways al­
lows graceful degradation of performance as feature recog­
nition mechanisms fail. For instance a planar surface and 
its bounding edges supply redundant information that al­
lows for more robust recognition of bounded planar patches 
than either feature alone, however either one can supply 
information about planar regions in the absence of the other. 

• Lateral inhibition eliminates the need for an explicit seg­
mentation step. 

• The architecture provides a natural vehicle for layered 
feature extraction. Use of multiple layers reduces the 
dimensionality of each step, while the iteration at each step 
drastically reduces the total number of hypotheses, com­
pared to a single layer process. 

4. A Vision System 
Using these techniques we have developed a system capable 
of recognizing objects in depth maps of complex scenes. This 
section will describe the features we use and the parameter 
transforms which extract them. 

4.1. System features 
In selecting primitive features for the system, we have 

endeavored to select a set that wil l allow the creation of a large 
and varied object database. CAD primitives suggest a set of 
features useful for industrial part recognition. While we have 
chosen this particular feature set, it is important to note that 
our system has no dependency on any specific choice of 
features. With the generalized feature concept, as we expand 

the system's scope, features can be incrementally added or the 
feature set substantially changed with little effort. 
Our surface feature set consists of planes and quadrics of 
revolution, specifically spheres, cylinders, and cones. A sur­
vey of industrial parts [Hakala et al.,1980] indicates that 
surface features alone should allow us to model the large 
majority (about 85%) of man-made parts. 

To increase coverage, we also include curves in three-
space, namely lines and conic-sections. These correspond to 
intersections and boundaries of surface patches. Because the 
information contained in curves is redundant to some extent 
with that in surfaces, we are capable of more robust recogni­
tion than with surfaces alone. 

4.2. Local feature extraction 
We define 3D points that lie on depth discontinuities as local 
curve features. Well-known edge detectors [Rosenfeld & 
Kak, 1982] are used to generate discontinuity maps; in com­
bination with the range data this gives us a set of range points 
q near zero and first order depth discontinuities. 

Local surface features are extracted from smooth surface 
approximations to the depth map. That is, least-squares 
second order polynomial approximations [Bolle et al.,1987] 
are made within MxN areas about range point q. From these 
approximations, the principal curvatures, K m a x n d Kmin, and 
the associated principal directions in three space, X m a x and 
Xmin, for each range point q are computed [DoCarmo, 1976]. 
Hence, the 3D location on the surface, and the principal 
curvatures and directions, are the local surface features. 

43 . Multiple window parameter extraction 
To extract the parameters of complex geometric entities, one 
would like to devise an M x M operator that computes some 
parametric description of the curves and surfaces. To avoid 
interference from nearby local features, the size M of the 
operator should be small-but makes estimates of higher-order 
properties of the curves and surfaces inaccurate. 

To solve these problems, we use the correlated information 
embedded in different windows that contain portions of a 
feature. For both curve and surface extraction, we use a set of 
nearby range points or windows to examine a more global 
neighborhood and extract the parameters of our primitive 
features. Specifically, we use all possible combinations of n 
windows in groups of k (within some radius of coherence) to 
generate the hypotheses. Though many spurious ones are 
generated, only those actually present collect sufficient 
evidence to survive. Hence, we extend the pure local 
parameter extraction to a 
somewhat more global 
process of parameter estima­
tion, while maintaining the 
same order of computational 
complexity. This is illustrated 
in Fig. 2 for the case of ellipse 
finding using multiple win­
dows. (The multiple window 
approach is described in detail 
in [Ca l i f ano , 1988 , C a l i f a n o et Discontinuity Data 

a/., 1989].) Fig. 2: Using three windows for 
finding an ellipse. 
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5. Object recognition 
Features reconstructed in lower-level parameter spaces are 
combined into assembly hypotheses in the object sub-network 
which represent complete or partial 3D objects. The 
parameter transform into this level identifies which assembly 
hypotheses a feature should support. Support links are created 
from features to assemblies, inhibition links are identified 
between assembly hypotheses and iterative refinement iden­
tifies the best alternatives. Hence, the homogeneous approach 
of the system is maintained for object recognition as well. 

The parameter transform from the feature spaces to the 
object space can be thought of as indexing into a database of 
object models with a feature, to determine which assembly 
hypotheses it suggests. This involves matching the image 
features to features of object models on the basis of intrinsic 
characteristics (e.g., surface type) and relative position. When 
an image feature matches a model feature, we create a object 
hypothesis containing a binding between the two. 

Our system architecture provides several advantages 
which allow us to streamline the indexing task. The goal of 
indexing is now simply to bind an image feature to every 
possible model feature. The correct hypotheses will collect 
evidence from more features than their competitors and will 
survive evidence integration. In reality we must do some 
pruning in order not to overload the network. Most 
hypotheses, however, have very little evidence in their favor. 
Because eliminating highly unlikely alternatives is far easier 
than distinguishing between the best alternatives, the simple 
techniques described later can do sufficient pruning without 
putting to great a burden on the transform. 

Additionally, we have no need to determine which features 
belong to a single object before recognition. Just as the 
refinement step provides an implicit segmentation of the 
image during feature extraction, it also provides a partitioning 
of the features during object recognition. We specify that 
hypotheses which share support from common primitives 
compete, thus assembly hypotheses which survive evidence 
integration will not share primitives, and a partition on the 
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Fig. 8: Number of active hypotheses over time. 

hypotheses (partial features of axes of quadrics of revolution) 
were generated in the first-level quadric of revolution 
reconstruction process. Of these two survived and generated 
89 hypotheses for axes of revolution. Only the two correct 
axes survived to reconstruct the solids of revolution, i.e. 
hypotheses for cylinders and cones. Evidence integration 
causes a dramatic implosion in the number of hypotheses, as 
can be seen in Fig. 8, which shows the number of hypotheses 
in each parameter space over time. 

Figure 7 shows the results of feature reconstruction. To 
generate this figure we gave the parameters of the surviving 
primitive features to a CAD system. 

For this experiment, there were 11 object models in the 
database, each containing from two to 20 features (averaging 
12) and from one to 110 relationships (averaging 34). Model 
features were divided into two layers of resolution (see Sect. 
5). The models of the objects in the image were a simple 
sphere (two features, spherical surface and a circular limb), a 
cylinder segment (7 features and 8 relationships), and a box 
(18 features and 63 relationships). Other models in the 
database included, for example, a bottle, an L-brackct and two 
different computer mice. 

The four objects were all successfully identified. The large 
cylinder segment was identified on the basis of five features, 
the cylindrical surface, the bounding end plane, the limbs and 
the circle formed by the intersection of the bounding plane and 
the cylinder. The smaller cylinder, sphere and box hypotheses 
were similarly bound to all their reconstructed features. The 
total indexing time for all features was on the order of four 
minutes. 

face of the small cylinder. A l l other features were 
reconstructed and three of the four objects were recognized. 
With noise of standard deviation a = 0.4 all but two features 
were still reconstructed, however the parameters of some were 
inaccurate. In spite of this, three of the four objects were still 
recognized, though the hypotheses had fewer image-to-object 
feature bindings. With noise of standard deviation a = 0.6 
pixels (Fig. 9) some recognition was still possible. The 
cylinder surfaces were no longer recognized, some object limb 
and the conies disappeared. However the planar and spherical 
surfaces and most of the line discontinuities were still 
reconstructed with accurate parameters. The box and the 
sphere were still recognized as objects. 

The performance at high noise levels could have been 
improved substantially if we had adjusted the control 
parameters to compensate. This points out the need for auto­
matic adjustment of system parameters on the basis of image 
characteristics. 

7. Conclusion 

The vision framework presented here, while certainly not 
providing a definitive solution to "the vision problem," does 
successfully address the critical problems mentioned in the 
introduction. We have defined a consistent representation for 
hypotheses where the evidence for each is made explicit. We 
have provided a mechanism to combine this evidence into a 
globally consistent interpretation. At the same time we have 
tried to put as few limitations as possible on the feature 
extraction mechanisms, allowing them to vary (as they neces­
sarily must) during the course of the recognition process. The 
result is a powerful approach, which as demonstrated, is 
capable of supporting reasonably complex recognition tasks. 
This approach helps alleviate several problems which have 
hindered vision researchers in the past, including segmenta­
tion, evidence integration, expendability, global consistency 
and hypothesis evaluation/comparison. 

Future work wil l focus on several areas. First is to continue 
work within the framework itself. This wi l l include a more 
careful analysis of the dynamics of the network including 
analysis of network stability, especially in the presence of 
feedback. Some current work focuses on dynamic adjustment 
of important variables including parameter space quantization. 
Other areas wi l l use the framework to explore topics concern­
ing the recognition process itself. These include more power­
ful object modeling and indexing techniques, extensions of the 
multi-window approach and exploration of multi-resolution 
recognition. One particularly promising approach made 
easier by the architecture is in the area of sensor fusion. 
Because hypotheses can receive support from features in 
varied parameter spaces, we wil l be able to combine evidence 
from features extracted from different input sources, thus 
providing a vehicle for sensor fusion. Al l of this work wil l be 
made easier by the consistent framework we have described. 
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