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Abstract

Our goal is to produce high-quality symbolic
descriptions from aerial scenes. We have cho-
sen to work in the domain of large commercial
airport complexes. Such scenes have a variety
of features such as the transportation network,
building structures, and mobile objects. This
paper concentrates on detection and descrip-
tion of the transportation network (runways
and taxiways). We illustrate the complexities
of this problem and how it can be solved by
using geometrical context and generic airport
domain knowledge.

1 Introduction

Automatic analysis of complex aerial images is an im-
portant and challenging problem. Our aim is to compute
rich, symbolic descriptions from an image which may be
used for a variety of tasks such as making a cartographic
map, change detection and guidance.

Aerial images are highly complex as they contain a
large number (possibly hundreds) of both man-made and
natural objects ofa large variety, only some of which may
be of interest. The image is also very complex, from a
signal point of view, and sophisticated processing tech-
niques are necessary. But, the scene can not be analyzed
in terms of signal alone; we must also use our cultural
and world knowledge to reduce the ambiguities inherent
in images. The interesting issue, then, is what kind of
knowledge is to be used and how.

We have chosen major commercial airport complexes
as a test domain. Airports contain a variety of objects,
such as the transportation network (runways, taxiways,
and roads), building structures (hangars, terminals, stor-
age warehouses, fuel storage farms), and mobile objects
(automobiles, aircraft, humans). The airport complexes
are under continual changes, usually due to expansion.
The images themselves are rather complex due to the
large number of objects present in them. However, a
variety of such images are available with only moderate
effort.
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In our analysis, we do not assume specific knowledge of
the scene, such as would be given by a detailed, current
map of the specific airport complex. Instead, we only
have generic information that the scene being viewed is
an airport complex. We do have, and use, the knowledge
about airports and the structures contained in them.

Our approach in the design of the system is that it
must be modular and that the modules interact mostly
at high, symbolic levels. In airports, for example the
modules may be for detecting and describing the trans-
portation network, the buildings and the mobile objects.
Detection of one type of object, such as a taxiway, may
aid in increasing the confidence of a structure believed
to be a passenger terminal (and vice-versa). However,
we believe that such interaction takes place at a high
level, after symbolic, object level hypotheses have been
formed. This process can be considered to be hierar-
chical, each module has sub-modules that operate in a
similar way. Thus, the transportation network module
may consist of runway, taxiway and road modules; each
of which operates somewhat independently but uses con-
text provided by the detection of other structures. Some
structures may be more prominent and easier to detect,
for example, runways are easier to detect than taxiways.
In that case, the former provides the context for detec-
tion of the latter.

In this paper, we will concentrate on the problem of
detecting and describing the transportation network in
an airport complex, specifically the runways and taxi-
ways, to illustrate our methodology. (We have also
developed methods of detecting and describing three-
dimensional structures such as buildings [Huertas and
Nevatia, 1988, Mohan and Nevatia, 1988] however, we
will not discuss those here due to lack of space). The
runways and taxiways may appear to be rather obvious
and prominent features to us, modeled easily as long,
thin rectangular strips of uniform brightness. However,
such is not the case. Runways and taxiways contain a
number of surface markings: some to aid a pilot and oth-
ers caused by dirt, oil spots, exhaust fumes etc. Surface
composition is not always uniform when runways and
taxiways are extended or repaired. Presence of other ob-

jects, such as vehicles and airplanes, on or in the vicinity

of the taxiways and runways further violates the simple
model. Due to these and other reasons, the low-level
segmentation of such scenes turns out to be highly frag-



Figure 1:

mented with a very large number of low-level features
detected, only a small number of which are relevant to
our goal. Our task now is to use the generic knowledge
of runways and taxiways to extract them from this mass
of confusing data.

Qur approach is basically one of "hypothesize and
verify". Various grouping operations relying on geom-
etry, object shape and context form hypotheses that are
then verified according to some desired attributes. Our
system detects runways first, as they are more promi-
nent and can provide the needed context for detection of
taxiways (and many other objects in the scene). Run-
way hypotheses are formed by utilizing grouping oper-
ations of continuity, collinearity, parallelism and sym-
metry. Verification consists of finding the appropriate
markings (such as center lines, "threshold" marks etc.)
that are expected on the runways in a major airport.
Once some of the marks are found, the context provided
by them can be used to look for additional marks that
may be too faint to find otherwise.

Detection of taxiways is somewhat similar to that
of runways, however, the taxiways are much less con-
strained in shape and appearance and the context of al-
ready detected runways helps in detection and verifica-
tion of taxiways. The converse is also true, ie. finding
taxiways connected to a runway can help increase the
confidence of the detected runway.

technique for runways detection
briefly in section 2; further details of earlier work are
given in [Huertas et a/., 1987]. Detection of taxiways
and junctions are described in more detail in sections 3
and 4.

There have been relatively few efforts in recent years
to analyze complex, cultural aerial scenes. McKeown
and his associates [McKeown et a/., 1985, McKeown and
Harvey, 1987] at CMU represent an exception. Our work
Is related to theirs, but is largely complementary. The
major difference is perhaps in the way domain knowledge
Is used. We believe that our approach is much more
modular and the use of domain knowledge in our system
Is at much higher levels, with the lower levels relying on
much more complex geometrical knowledge.

We describe our

Logan International Airport image (LOGAN)

Figure 2: Line Segments from LOGAN image

2 Detection of Runways

Runways are perhaps the most prominent structure in an
airport scene. In our system, no external context (from
other objects) is available for detecting runways, though
this module use geometrical context internally.

Figure 1 shows a portion (LOGAN:800 x 2200 res-
olution) of Logan International Airport in Boston. We
first use our LINEAR software [Nevatia and Babu, 1980,
Canny, 1986] to compute line segments (figure 2) and
"anti-parallels" (parallel lines of opposite contrast, we
will call them apars) (figure 3). We estimate the dom-
inant apar orientations and widths (focus of attention)
by length-weighted histograms. We then extract and
join potential runway fragments into runway hypothe-
ses by a number of grouping steps using continuity and
collinearity. These hypotheses are verified by looking
for the markings that they are supposed to have [FAA,
1980]. We look for centerlines, sidestripes, threshold
markings, touchdown markings, large distance markings,
small distance markings, and blast pad markings (fig-
ure 4). Our system uses a feedback mechanism to allow
further search for evidence of centerlines and blastpad
markings, using the previously detected markings as con-
text. Runways are described in terms of position, length,
width and orientation, and associated markings.

3 Detection of Taxiways

Taxiways are much more complex objects than runways,
as they can have a wider range in their geometrical pa-
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Figure 3: Anti-parallels from segments in LOGAN image

Figure 4: Verified Runways with Markings detected

rameters (see figure 1); they can be short or long, have
a variety of widths, be straight or curved, and connect a
variety of airport components. However, besides generic
knowledge we make use of the context provided by the
detected runways to help detect the taxiways. Our mod-
ule first finds the "long" straight portions of taxiways
and then, it attempts to extend these portions also based
on context.

Taxiways are verified by looking for two types of sur-
face markings: the continuous sidestripes that bound
them, and the continuous centerline down the middle of
the roadway. Although our method to detect taxiways
Is similar to that for runway detection, below we give
details of the method as this module is new and has not
been published elsewhere.

3.1 Hypotheses Formation

As mentioned above, this process is aided by the de-
scriptions of previously detected runways, and also by
knowledge on the constraints imposed by airport design
procedures [Ashford and Wright, 1984]. We know for
iInstance, the minimum acceptable distance between a
taxiway and a runway if they are parallel, or the mini-
mum angle that a taxiway may form with a runway. We
also know that taxiways do not cross but join runways.
Taxiway crossings however, are allowed.

The first step in detecting taxiways is to find long frag-
ments which may correspond to fragments of taxiways.
The apars representing these fragments (figure 5) are
selected from the apars shown in figure 3 in a manner
analogous to the selection of potential runway fragments
(see [Huertas et a/., 1987]): they have a range of widths,
and either are parallel to a runway or, form an angle
greater than 25° with a runway. If the distance between
an apar and the runway is greater than the allowed dis-
tance between parallel runways and taxiways, the angle
constraint is not applied.

Next, the selected apars are joined on continuity along
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Figure 6: Apars joined on collinearity in LOGAN

anti-parallel segments, and then they are joined on
collinearity (figure 0).

The second step attempts to extend long portions of
taxiway fragments. It is known that the purpose of taxi-
ways is to facilitate aircraft moving from one section of
the airport to another, thus taxiways do not arbitrarily
end as do runways. We attempt to extend these taxiway
fragments by invoking the following context dependent

Processes.

1. Extension based on Aircraft Support: A large air-
craft on a taxiway will cause the taxiway hypothesis
to fragment, thus to extend the taxiway fragments,
we first try to detect aircraft by looking for symme-
tries due to the aircraft wings and fuselage at each
fragment end. Ifan aircraft is detected, the taxiway
Is extended the length of the aircraft.

2. Extension based on Runway Context: We attempt
to extend or discard taxiway hypotheses fragments
based on their spatial relationships to verified run-
ways in the scene. The following steps are taken:

(a) Fragment intersects runway: The taxiway hy-
pothesis fragments are extended until they in-
tersect a runway. If the intersection angle is
greater than the minimum intersection angle
and the distance between the taxiway hypoth-
esis fragment and the runway intersection point
Is small, we look for additional evidence to
extend the fragment into the runway. This
evidence includes checking for shorter apars
collinear to the taxiway in this region and, fail-
ing this, the detection of aircraft in this region.
If we find sufficient evidence, the taxiway hy-
pothesis is extended into the runway.

(b) Fragment is parallel to runway: If the taxiway
fragments are parallel to one of the verified run-
ways, we look for small wide apars joining the
end of the taxiway fragment to the runway in-
dicating the presence of a taxiway apron.
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Figure 8: Verified taxiways and markings

(c) Extension based on Taxi way Intersection: (see
next section)

(d) Extension based on Resegmentation: It is pos-
sible that a material change in the taxiway
caused problems for the initial grouping pro-
cesses. We attempt to extend the taxiway frag-
ments by resegmenting image windows extend-
ing beyond the fragments' ends, and looking for
evidence of taxiway continuation. This process
iIs continued until no further evidence is found.
At this point, we repeat steps (a) and (b).

The apars representing hypotheses of straight portions
of taxiways are shown in figure 7. In this result, only pro-
cess 1 above was applied. Extension of taxiways based
on intersections (process 2c) is described below.

3.2 Hypotheses Verification

We verify taxiway hypotheses by looking for evidence
of markings along the roadway. We expect to find
sidestripes and a continuous centerline, indicating the
allowed pathways. We look for evidence of markings in
the set of thin bright apars. As with the runways, a
resegmentation step can be applied to locate further ev-

idence of markings. The verified taxiway hypotheses are
shown in figure 8.

4 Description of Junctions and
Connections

The use of context is essential in this task. The net-
work of runways and taxiways in a major commercial
airport can be very complex. This module attemps to
describe the junctions among them by explicitly locating
the boundaries, or portions of the boundaries, ofthe sec-
tions of roadways that connect the previously detected
runways and straight portions of taxiways.

The accurate description of the junctions between
pathways also help determine their function. Some are
used as holding aprons (usually wide and normal to run-
way); some are exit ramps (the closer to the end of the
runway, the smaller the angle between them. The an-
gle itself determines the allowed exit speed.); some are
merely connecting pathways; the continuous centerline
determines the "legal"” turns and paths, and so on.

Junctions among taxiways and between taxiways and
runways can vary widely in their complexity and config-
urations. The image in figure 9, a portion of the image
previously shown in figure 1, shows the intersection of
four taxiways, and connections between taxiways and
runways when these are not parallel to each other. An
example of another configuration is given later.

To process these complexjunctions we rely on the con-
text: The previously detected runways and taxiways pro-
vide a very rich set of geometric constraints. The search
for junction boundaries — straight or curved — thus,
is facilitated by the geometric interrelationships among
the nearby elements (position, length, width, and orien-
tation of nearby runways and taxiways), as well as by the
geometric constraints imposed by airport design proce-
dures. Details are given below, as these module is new
and has not been described elsewhere.

In our method we first form junction hypotheses by
looking at the underlying intensity edges for evidence of
portions of boundaries. The valid connections are then

determined by looking for evidence of markings (center-
line) associated with taxiways.

4.1 Hypotheses Formation

Each pair of elements (runways or taxiways) determines
two search windows where we look for the junction
boundaries. The shape of the window is constrained by
the available context, that is, the previously detected
runways and taxiways. Our method distinguishes two
types of junctions: 1-junctions (typically among taxi-
ways), and t-junctions (typically between taxiways and
runways). More complex junctions are viewed as over-
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Is the middle point between Pl and P2. P4 is the
intersection of the apars representing the two ele-
ments. For a t-junction (figure 13) P2 is computed
on the t-top element, at a distance d from P4. The
distance dis proportional to the width of the t-stem
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4.3 Results ) -

£

We now present results for two examples. The first deals
with the intersection of taxiways shown previously in
figure 9. Figure 14 shows the original, thresholded un-
derlying edges, the taxiway and runway context (shaded
areas), and all possible connections among the taxiways.
These correspond to the splines intersecting the largest
number of underlying edges within each window searched
for potential inside and outside boundaries.

Figure 15 shows the connections that meet the hy-
potheses criteria discussed above. Figure 16 shows the
resegmented edges, the inside boundaries, and the ev-
idence of centerlines, and thus, the verified hypotheses
and alowed paths.

The image in figure 17 shows the connecting paths
between a taxiway and a runway when they are parallel
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lapping 1-junctions. Note that there are no junctions
between crossing runways; they overlap.

Figure 10 shows an 1-junction. For each pair of po-
tential "joinable" fragments we distinguish an "inside"
and an "outside" boundary. The inside boundary, if it
exits, would be found on the side where we measure the
smaller angle between the two elements. On the other
hand, t-junctions are considered to have two "inside"
boundaries. The search window for one of these bound-
aries is shown in figure 11.

A second classification involves the boundaries them-
selves. Some are curved while others are straight. The
curved boundaries — in airport design — actually con-
sist of circular or parabolic sections. However, to deal
with imperfect segmentation of boundaries, we model
the straight boundaries as two straight lines, and the
curved boundaries by means of cubic splines. For each
boundary we apply both models and then the choose the
better fit (see below).

We look first for the inside boundary, and then for the
outside boundary, (there is always an inside boundary.
At complex intersections however, there may not be an
outside boundary). If there is no evidence of an inside
boundary, we do not look for an outside boundary. The
method is as follows:

1. Collect context information: We use the intensity
edges used above to find runways and taxiways,
and the apars corresponding to verified runways and
taxiways. These are shown shaded in the figures be-
low.

2. Compute search window for inside boundary: De-

termine the points P1, P2, P3, and P4. For an
1-junction (figure 10, Pl and P2 are located at the
ends ofthe two elements. P3 is the middle point be-
tween Pl and P2. P4 is the intersection of the apars
representing the two elements. For a t-junction (fig-
ure 11) P2 is computed on the t-stem inside bound-
ary at a distance d from P4. The distance dis pro-
portional to the average width of the two apars.

3. Look for inside boundary: We compute a series of
splines using three points: two anchors and a guide
point. The anchor points are Pl and P2. The guide
point varies from P3 to P4. For each spline, we com-
pute the intersection of the spline with the under-
lying intensity edges. The spline that returns the
highest number of edges is taken as a hypotheses
(possible inside boundary) if the following criteria
are met:

(a) The length of the wunderlying boundary (or
boundary fragments) is at least one half of the
length ofthe spline. On other words, allow 50%
boundary fragmentation and/or partial spline-
to-boundary fit.

(b) The "junction" between the spline and the ele-
ment boundaries (at Pl and P2) is smooth (15°
tolerance). That is, the tangent to the spline
at the anchor points is similar to the direction
of the edge.

4. Compute search window for outside boundary: De-
termine the points P5, P6, P7, and P8. P55 and
P6 are located at the ends of the two elements. P7
Is computed to be along the line joining the guide
point of the inside spline and P8, at a distance d
from the guide point, dis one halfthe average of the
withds of the two apar elements. P8 is the intersec-
tion of the outside boundaries of the two elements.

5. Look for outside boundary: Similar process as for
iInside boundaries. The anchor points are P5 and
P5, and the guide point varies from P7 to P8.
As above, we compute the intersection of each the
spline with the underlying intensity edges. The
spline that returns the highest number of edges is
taken as a hypotheses (possible outside boundary)
iIf similar criteria are met.

4.2 Hypotheses Verification

As Dbefore, verification consists of finding the markings
we expect. Our method looks for the centerlines associ-
ated with taxiways.

1. Resegment and collect context information: We re-
segment the image to include all intensity edges
in the neighborhood of the junction. For context
we use the apars corresponding to verified runways
and taxiways, and a description of the hypothesized
junction inside boundary (the guide point for the
spline or a pair of straight lines). See figure 12.

2. Compute search window for centerline boundary:
Determine the points PIl, P2, P3, and P4. For an
1-junction (figure 10) Pl and P2, the anchor points,
are located at the ends of the two elements. P3
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F'i'gure 18: Search windows

to each other. The underlying edges and the runway
and apar context are shown in figure 18. We also show
in this figure the extent of the search windows. The
boundary hypotheses are shown in figure 19, and the
detected evidence of markings in figure 20.

5 Conclusion

We have described our method for detecting and describ-
Ing runways and taxiways in a major, commercial airport
scene. We believe that this is an important application
in itself. However, we hope that it has also served to
Illustrate how geometrical context can be used to aid in
a difficult image understanding task, without requiring
complete and specific a priori knowledge of the scene
being viewed.
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