
The Automated Analysis of Rule-based Systems, 
Based on their Procedural Semantics. 

Rick Evertsz 
Scientia Ltd, 

150 Brompton Road, 
London, SW3 1HX, 

United Kingdom. 

Abstract 

This paper describes a method of analysing rule-based 
systems, which models the procedural semantics of 
such languages. Through a process of 'abstract 
interpretation', the program, AbsPS, derives a 
description of the mapping between a rule base's 
inputs and outputs. In contrast to earlier approaches, 
AbsPS can analyse the effects of: conflict resolution, 
closed-world negation and the retraction of facts. This 
considerably reduces the size of the search space 
because, in the abstract domain, AbsPS takes 
advantage of the very same control information which 
guides the inference engine in the concrete domain. 
AbsPS can detect redundancies which would be 
missed if the procedural semantics were ignored. 
Furthermore, the abstract description of a rule base's 
input-output mapping can be used to prove that the 
rule base meets its specification. 

1. Introduction 

Much effort has been devoted to the problems of analysing 
forward-chaining rule-based systems with regard to 
improving their reliability and efficiency [cf. Suwa et al., 
1982; Nguyen et al., 1985; Beauvieux, 1990]. To the extent 
that a rule-based system is a piece of software, it too can 
embody unintentional errors. Some of these errors merely 
reduce the efficiency of the rule base, whilst others may 
result in erroneous inferences. An example of the latter is 
the problem of contradictory rule subsets where, given an 
initial set of facts, two (possibly intersecting) groups of 
rules lead to contradictory conclusions (e.g. P A - I P ) . 
Examples of efficiency-reducing features include: 

• redundant rules - where one or more rules are 
equivalent in terms of the states which match their 
antecedents, and the conclusions drawn in their 
consequents; 

• subsumed rules - where a rule's antecedent matches a 
subset of those states matched by another, and the 
two rules have equivalent consequents; 

• unreachable rules - where none of the initial stales can 
ever lead to the invocation of a particular rule (this 
can reduce efficiency by wasting computauonal effort 
on processing the rule's antecedent); 

• dead-end rules - these are rules whose consequents do 
not affect the other rules in the system, and so have 
no part to play in generating a solution. 

The program, CHECK [Nguyen et al., 1985], tackles 
these problems by examining the antecedents of pairs of 
rules, but can also apply a more complex analysis based on 
the dependencies between the consequents and antecedents of 
rules. For example, if one of the clauses in the antecedent of 
a rule is not matched by any of the consequent clauses of the 
rule base, nor by any of the facts entered by the user, then it 
can never be instantiated. Though this pairwise analysis of 
rules is 'incomplete' in the sense that it cannot find all 
inconsistencies and redundancies, it is still of practical use -
the very restrictions which preclude completeness greatly 
improve the tractability of the analysis. Another approach, 
embodied in KB-reducer [Ginsberg, 1988], performs a full 
analysis of the knowledge base using ATMS techniques -
this method is 'complete'. In the worst case, this is 
computationally intractable, however, experience with 
typical knowledge bases suggests that this docs not happen 
in practice. 

To date, those approaches which are 'complete' have 
embodied a number of assumptions which preclude their use 
in an important class of forward-chaining production system 
interpreters (or at least limit their effectiveness). They all 
assume monotonicity, i.e. the addition of new facts to the 
knowledge base does not invalidate previously deduced 
conclusions, and assertions can never be retracted. Secondly, 
the inference engine does not perform any conflict resolution 
- in KB-Reducer for example, each instantiated rule is fired 
exactly once, with no rules taking precedence over others [cf. 
also: Rousset, 1988; Meseguer, 1990]. CHECK too does 
not reason about the role played by conflict resolution. 

The work described thusfar models the 'declarative 
semantics' of their respective inference engines. The trouble 
is that for many rule-based systems, the declarative 
semantics of the language are not equivalent to the 
procedural semantics. In order to reason effectively about 
knowledge bases expressed in such languages, one must 
accurately model their procedural semantics. For example, 
though one can spot some unreachable rules by virtue of the 
fact that no consequent clauses match the unreachable rule's 
antecedent, there may be rules whose antecedent clauses are 
matched, but which can never fire by virtue of the conflict 
resolution strategy employed. A complete analysis of such 

22 Architectures and Languages 



rule bases is only possible if one considers the inference 
engine's control strategy. In figure 1, if the conflict 
resolution strategy is based on rule specificity, then an 
analysis which is only based on the declarative semantics of 
the language would miss the fact that the rule Rl may not 
get a chance to fire when the assertion NO-WlNGS(x) is 
present. If, as a result of conflict resolution, other rules in 
the rule base take over once R2 has fired, then Rl will be an 
unreachable rule for that class of inputs. 

R1: if BIRD(x) then FLIES(x). 
R2: if BIRD(x) & NO-WINGS(x) then RUNS(x). 

Figure 1 - Specificity. 
This paper describes a general-purpose method of 

reasoning about non-monotonic, forward-chaining rule bases 
which rely on deterministic conflict resolution for flow of 
control. This class of language is important, encompassing 
as it does a large proportion of the forward-chaining rule 
interpreters in use today (e.g. OPS5, ART, KEE). Our 
approach is based on the notion of 'abstract interpretation', 
where computation is performed in an abstract domain rather 
than the normal concrete one. Our implementation, AbsPS, 
operates on abstract data (i.e. data containing uninstantiated 
variables) and thereby accurately models the behaviour of the 
rule base on the set of concrete data subsumed by the 
abstract domain. An exhaustive search of the rule base, 
using abstract data, yields a complete and sound description 
of the space of possible behaviours of that rule base, 
provided that there arc no cycles. 

We have used AbsPS to find examples of redundant rules, 
dead-end rules and unreachable rules which would have been 
missed had AbsPS not reasoned about the role of conflict 
resolution and the effects of retracted assertions. More 
importantly, AbsPS has been used to prove that a rule base 
meets its specification. This is accomplished by comparing 
the results of AbsPS' analysis with a formal specification of 
the mapping between the rule base's inputs and outputs. In 
the final section of this paper, we outline further uses to 
which AbsPS can be put. 

2. The Abstract Interpretation of 
Production Systems 

A rule base plus its inference engine can be viewed as a 
partial function. The 'domain' of this function is the set of 
possible inputs which the rule base is defined to accept. The 
'range' is the set of final databases which the rule base can 
generate from the input domain. In order to characterise this 
partial function we have developed a method which, given an 
abstract description of the input domain, generates a 
description of the set of final databases which can be 
generated, and refer to this as the rule base's 'I/O mapping' 
(input-output mapping). In generating the I/O mapping, a 
full analysis is made of all possible routes through the rule 
base, and this enables us to identify, for example, rules 
which do not contribute to the output of the rule base. 

AbsPS was originally developed as part of PG, a program 
which takes pairs of rule bases and generates inputs which 
discriminate between them. The algorithm is described in 
detail in Evertsz [1990] and is complete for rule bases which 

do not contain cycles. AbsPS is given a rule base and an 
abstract specification of the set of inputs which the rule base 
is designed to handle. This specification differs from normal 
initial fact bases in that ground elements which can vary are 
replaced with uninstantiated variables. Each variable is 
associated with a domain description which represents the set 
of permissible values for that variable. Figure 2 shows an 
example of an input specification together with two concrete 
instances, one of which satisfies the specification, the other 
of which does not because the integer, 27, is out of range. 

Input Specification: 
GOAL(ASSESS_WEIGHT(x)), HEIGHT(x.h). 
c:PRIMATE(x) A c:INTEGER(h) A h>50 A h<100. 

Positive Instance: 
GOAL(ASSESS_WEIGHT(CHIMP)), 
HEIGHT(CHIMP.76). 

Negative Instance: 
GOAL(ASSESS_WEIGHT(MANDRILL)), 
HEIGHT(MANDRILL,27). 

Figure 2 - An input specification. 
The input specification contains two facts (predicates: 

GOAL and HEIGHT); in addition there is a set of constraints 
on the variables which define the variables' domains (in 
these examples constraints are prefixed with "c:" or are either 
">" or "<"). 

Because Working Memory (WM) contains abstract 
descriptions of facts, the rules are matched using unification 
rather than the one-way pattern matching of normal forward-
chaining PSs. The actions of AbsPS mirror those of a PS 
working on concrete data, however, all paths are explored. 
As each rule is unified and executed down a given path, new 
constraints on the variables are generated as a side-effect of 
unification. This environment is carried down the path from 
cycle to cycle and is local to that path. When a path is 
exhausted, the local environment constitutes a description of 
the set of final databases which can be generated down that 
path. For example, after applying the rule base to the input 
specification of figure 2, the description in figure 3 might 
have been produced. 

Output Description: 
WEIGHT(x,h/2), 
where c:PRIMATE(x) A c:INTEGER(h) A h>75 A h<85. 

Figure 3 - One possible final database. 
The description of h's domain has been refined as a result 

of the rules applied down this path. Figure 4 shows a single 
rule which would have this effect. 

if GOAL(ASSESS_WEIGHT(x)) & HElGHT(x,h) 
& c:PRIMATE(x) & c:INTEGER(h) & h>75 & h<85 

then WEIGHT(x,h/2) & retract(GOAL(ASSESS_WEIGHT(x)) 
& retract(HEIGHT(x,h)). 

Figure 4 - The rule R3. 
The process of unifying the antecedent of this rule with 

WM generates the extra constraints on h. Note that because 
AbsPS maintains an abstract description of WM, it is also 
able to model the effects of retraction. 

During abstract interpretation, invalid paths are pruned 
from the search space. For example, a rule whose antecedent 

Evertsz 23 



contains the constraint h=75 would not be instantiated down 
a path in which the rule, R3, has already fired. This is 
because the firing of R3 constrains the value of h, in that 
local environment, to be between 75 and 85 exclusive. Such 
pruning of instantiations, whose domain variables do not 
intersect with the environment collected down the current 
path, drastically reduces the size of the search space, and is 
vital if one is to reduce the combinatorial explosion which 
can result when executing a rule base on abstract rather than 
concrete data. 

The scheme described thusfar does not handle conflict 
resolution and so will generate many invalid I/O mappings. 
The paths which lead to these invalid mappings can be 
pruned early on by considering the effects of conflict 
resolution. Ignoring conflict resolution not only generates 
invalid I/O mappings, it also greatly increases the size of the 
search space because the rule base normally relies on conflict 
resolution for flow of control. We now describe a general 
method of characterising the role played by conflict 
resolution. 

2.1. Abstract Confl ict Resolution 
An inference engine which employs conflict resolution 

wil l have an ordered set of conflict resolution principles 
which are applied one at a time until the conflicting set of 
instantiations is reduced to a singleton. These same 
principles can be used to filter the set of abstract 
instantiations generated on each cycle. However, during 
abstract interpretation it does not suffice to choose one 
instantiation for expansion and follow that path only; this is 
because each instantiation is likely to cover different subsets 
of the abstract domain. AbsPS must characterise these 
subsets and expand those instantiations with non-empty 
domains. 

The key to characterising these domain subsets lies in 
generating exclusion clauses which describe the conditions 
under which those instantiations which appear to lose out 
during conflict resolution would actually be able to fire. 
Given a winning instantiation of the rule Rj, the other 
instantiations can only fire if Ri is not instantiated - i.e. if 
one of the constraints generated during the process of 
unifying Ri with WM is violated. If the constraints on Rj 

Figure 5 - Generating an exclusion clause. 
This exclusion clause is added to the environments of the 

remaining instantiations. For some instantiations this will 
lead to a contradiction - such instantiations are discarded 
from the analysis because, down this path, there are no 
concrete instances which would enable them to be 
instantiated when Rj is not. The process of generating the 
exclusion clause is repeated on the remaining instantiations 
until no instantiations remain. Each instantiation, together 

24 Architectures and Languages 

with its associated exclusion clause, forms a new path 
emanating from the current state. 

The simple example in figure 6 illustrates how conflict 
resolution should be handled in an abstract domain. If the 
inference engine incorporates a preference for rules which are 
more specific, then in the concrete domain R5 wil l be 
preferred in situations where both it and R4 are instantiated. 
However, there will be instances of x which enable R4 to 
fire, because R5 is not satisfied by that value of x. The 
exclusion clause, generated by negating the extra constraint 
in R5 describes this set of instances: 
xe {PENGUIN,OSTRICH}. 

R4: if BIRD(x) then FLIES(x). 
R5: if BIRD(x) & xe {PENGUIN,OSTRICH} 

then WALKS(x). 

Figure 6 - R5 is more specific than R4. 
The environment carried down the path emanating from 

R4 would include this extra constraint; as a result any rules 
which refer to the fact BIRD(x) would not be instantiated if 
they include constraints which exclude all of the members of 
x's domain. For example, the rule R6 (figure 7) when 
unified with BIRD(x), would fail to be instantiated because 
this would conflict with x's current environment, 
xe (PENGUIN,OSTRICH}. 

R6: if BIRD(PENGUIN) then SWTMS(PENGUIN). 

Figure 7 - Cannot be instantiated after R4. 
We now conclude this section on the modelling of the 

procedural semantics of rule bases, by describing the special 
handling of negation. 

2.2. Negation and the Closed-world Assumption 
The class of inference engine which allows the retraction of 
assertions and employs conflict resolution, normally 
embodies another non-monotonic feature: the 'closed-world 
assumption' - if a fact is not known to be true, then it is 
assumed to be false. Current approaches to the analysis of 
rule bases do not incorporate this assumption - an assertion 
is only false if it is explicitly negated. In languages such as 
OPS5, a rule containing a negated antecedent clause can only 
be instantiated if there are no matching WM elements. These 
semantics are modelled in the abstract domain by building 
what is in effect an exclusion clause for negated elements; 
this specifies the minimal conditions which have to be 
satisfied for the negated clause to fail to unify with any 
elements in WM. This would be u=a for R7 unified with the 
WM shown in figure 8. 

R7: if PARENT(x.y) & PARENT(y,z) & -MALE(x) 
then GRANDMOTHER(x,z). 

WM: PARENT(u,v), PARENT(v,w), MALE(a). 
Exclusion Clause: u=a. 

Figure 8-Building an exclusion clause. 

2.3. Maintaining Environmental Consistency 
During abstract interpretation, many paths are excluded 
because their environments are inconsistent. An inconsistent 
environment can be found during unification, when 



generating an exclusion clause and when dealing with 
negated patterns. Some of these environments are rejected by 
the unification algorithm even before they are generated, but 
the others need further analysis. The goal of this analysis is 
to spot environments which contain a contradiction - such 
environments can never be satisfied by any combination of 
concrete domain values and so should be discarded so as to 
avoid wasted computational effort. 

This goal suggests that a refutation-based theorem prover 
would be well suited to the job. AbsPS incorporates a 
resolution theorem prover because this is one type of 
refutation system. It also employs the set of support 
strategy (this divides the current set of clauses into those 
that derive from the negated theorem, termed the 'set of 
support', and those that do not). The set of support strategy 
requires that every resolution involve at least one clause 
from the set of support, and thereby improves performance 
by restricting the set of potentially resolvable clause pairs. 
Now, if we know that some subset of the negated theorem is 
true, then that subset can be added to the set of axioms. 
This reduction, in the number of clauses in the negated 
theorem, further improves the beneficial effects of the set of 
support strategy. The incremental nature of PCs theorem-
proving tasks, allows it to take advantage of just such a 
negated-theorem-dividing strategy. As each Abstract 
Instantiation fires, the set of constraints either gets larger, or 
stays the same size. So, if the set of constraints is 
currently, Ci, then on the next cycle, j, it will be Cj, where 
Cj = Ci u Cnew (Cnew being the new constraints, local to 
the fired instantiation). On the face of it, Cj should form 
the negated theorem, to be passed to the theorem prover. 
However, we already know that Ci is consistent, as it was 
checked on the previous cycle. Thus, the clauses in Ci can 
be viewed as axioms. The negated theorem need only 
consist of the clauses in C n e w ; those in Ci can legitimately 
be added to the set of axioms. 

This augmentation, of the algorithm is only worthwhile if 
one is using a theorem prover which incorporates the set of 
support refinement (or at least a similar division between 
axioms and potentially false clause sets). 

2.4. Summary 
In practice, the symbolic constraints on the domains of 
variables, generated as a side effect of modelling the 
procedural semantics of the language, yield a large reduction 
in the number of paths which must be explored. This is 
because the rule base will inevitably have been designed 
with this procedural model in mind; i.e. it uses the 
procedural semantics to control the deductive process, and 
AbsPS makes use of this very same control information to 
guide its analysis of the rule base. 

3. Applications of Abstract Interpretation 

Abstract interpretation is not needed to identify 'redundant 
rules' - the pairwise comparison of Nguyen et al. [1985] 
suffices even for languages with differing procedural and 
declarative semantics. Subsumed rules can be detected 
without performing abstract interpretation, however, they 
cannot be removed without further analysis. Many 

unreachable and dead-end rules can only be detected on the 
basis of the procedural semantics of the language. 

3.1. Rule Base Redundancy 
Perhaps surprisingly, 'subsumed rules' cannot be removed 
without doing full abstract interpretation. This is because of 
the role of conflict resolution. The more specific (i.e. 
subsumed) rule, though apparently redundant, may only be 
there to ensure that its behaviour is executed in cases where 
another more specific rule might have seized control from 
the subsuming rule. Therefore, it cannot be dispensed with 
without altering the behaviour of the rule base. AbsPS 
correctly identifies such instances, only flagging subsumed 
rules which are truly redundant (i.e. their increased 
specificity has no effect on the choice of path during conflict 
resolution). 

AbsPS is also able to locate 'unreachable rules'. These are 
rules which did not fire during the abstract interpretation of 
the rule base. Some of these unreachable rules would have 
been missed by systems which ignore conflict resolution, 
and can be very hard to detect by eye because of the subtle 
interactions between these rules, conflict resolution and the 
other rules in the conflict set. 

If some subset of the rule base is only involved in paths 
which do not contribute to a solution, then all of the rules 
in that subset can be safely removed. Again, there arc many 
instances where such dead-end subsets can only be detected 
by considering conflict resolution, because an analysis based 
only on the declarative dependencies between rules will 
erroneously conclude that the subset contributes to a 
solution. 

AbsPS does not automatically remove redundant rules but 
highlights the problems for the user to inspect. This is 
because the result may be a side effect of a 'bug' in the rule 
base. Conflict resolution can introduce subtle bugs which 
are hard for the user to detect. To illustrate, a rule Ri may 
never get a chance to fire because, for all possible initial fact 
bases, some other rule Rj always takes precedence. This 
might well be a bug; for example, the user may have 
omitted to include an extra clause in Ri's antecedent which 
ensures that Ri over-rules Rj under certain circumstances. 

3.2. The Verification of Rule Bases 
As rule-based systems are increasingly being considered for 
safety-critical applications, it has become important that one 
be able to verify that the system is 'correct' with respect to 
its specification. Because of the procedural semantics of 
many inference engines, this is not an easy task. 

For a given input specification, AbsPS generates a 
description of the set of final databases computed by the rule 
base. This can be compared with the formal specification of 
the rule base. In AbsPS, this is not done automatically, 
rather, we compare the I/O mapping with the formal 
specification by hand to see if they concur. This is relatively 
easy because the I/O mapping has abstracted out all of the 
difficult-to-reason-about aspects of the rule base (i.e. pattern 
matching, conflict resolution and flow of control) and 
represents a declarative statement of what the rule base 
computes. Figure 9 shows a subset of the I/O mapping for 
the rule base from which R3 (figure 4) was derived. 

Evertsz 25 



Input Specification: 
GOAl(ASSESS_WEIGHT(x)), HEIGHT(x,h). 
c:INTEGER(h) A h>50 A h<100. 

Output Description: 
WEIGHT(x,h/2), 

where c.INTEGER(h) A h>75 A h<85. 
WEIGHT(x,h/3), 

where c:INTEGER(h) A h<76. 
WEIGHT(x,h*2), 

where -c:PRIMATE(x) A c:INTEGER(h) 
A h>50 A h<100. 

Figure 9 - Subset of an I/O mapping. 
Given the simple declarative nature of AbsPS' I/O 

mappings, we are confident that the process of comparing it 
with a formal specification can be automated. 

3.3. Rule Base Chunking 
Abstract interpretation can be used to analyse a rule base 
into useful groups. For example, if the rules within some 
subset of the rule base are only used in sequence without any 
other rules interrupting, then that sequence of rules can be 
collapsed into a single rule. Abstract interpretation yields the 
required information and could form the basis of a rule-
chunking mechanism which improves efficiency. 

Large, flat rule bases can be difficult to maintain and 
debug [cf. R1/XCON, McDermott, 1981]. One remedy is to 
group rules automatically into functional sub-groups. These 
modules can be viewed as self-contained wholes which 
communicate with other modules via restricted channels. 
Jacob and Froscher [1988] have developed a rule-clustering 
algorithm to tackle this problem. The algorithm endeavours 
to cluster rules so as to minimise inter-group coupling and 
maximise intra-group cohesiveness by examining the 
dependencies between the rules. Though applied to OPS5, 
this algorithm ignores the procedural semantics of the 
language and so may generate some 'loose' groupings. We 
are now applying AbsPS to this problem [Evertsz and 
Motta, 1991], however, it is too early to tell whether the 
increased precision is worthwhile. 

4. Cyclical Rule Bases 

Current approaches to analysing rule-based systems assume 
that there are no cycles. AbsPS is able to identify cycles, 
but is not able to reason about what they compute. During 
abstract interpretation, there are three major problems to be 
solved in analysing loops: 

• Identifying the group of rules which forms the loop; 
• Computing what changes on each loop iteration and 

deriving the termination condition for the loop; 
• Representing the abstract behaviour of the loop so 

that other rules in the ruleset can manipulate the 
abstract sequence of WM changes effected by the 
loop. 

Each of these problems is non-trivial, although 
identifying a loop is easier than the other two tasks. In most 
programming languages, identifying explicit loops is an 
easy problem. High-level languages provide structured 

26 Architectures and Languages 

looping constructs which are used to express iteration (e.g. 
Pascal's WHILE loop); thus, loops are made explicit by the 
language. Production systems do not incorporate syntactic 
conventions for flagging loops, rather, iteration occurs as a 
side-effect of the temporal aspects of the data in WM which 
force a particular control flow. 

Abstract interpretation enables one to identify loops by 
modelling the temporal flow of concrete data items in terms 
of abstract ones. AbsPS does this by recording the fired 
instantiations as it goes along. If, down a given path, 
AbsPS is about to fire an instantiation of a rule which it 
fired earlier in the path, then the sequence of rules between 
those two points constitutes a loop. Note that this 
instantiation must be the one chosen for firing; merely 
being in the conflict set is not enough to constitute a loop. 

Our definition of a loop is quite general. One can, 
however, think of other more restrictive definitions. For 
example, one could restrict our definition so that a repeating 
sequence of rules is only considered to be a loop if it 
processes items which it has produced on previous cycles. 
We argue that our chosen definition of 'loop' needs to be this 
general if we are to capture more obscure types of loop. For 
example, consider a rule, Ri, which on each cycle processes 
one of a sequence of elements in WM. This is equivalent to 
generating and processing them one at a time. It is 
unnecessarily restrictive to regard only the latter as a loop 
just because it processes values generated by itself on earlier 
cycles. Rj is just as cyclical, but processes the whole 
sequence after that sequence has been generated, rather than 
generating and processing the items one at a time. 

Having identified a cyclical sequence of rules, beginning 
with R i, it is not difficult to identify the termination 
condition of the loop - it terminates when one of the 
constraints of the rule is violated. AbsPS can already 
synthesise an expression which describes this condition - it 
does so when building an 'exclusion clause' during conflict 
resolution. The exclusion clause specifies the conditions 
under which a given rule could over-ride another which 
would otherwise have been selected during conflict 
resolution. The loop termination problem is a subset of the 
exclusion clause generation one. Rather than build a clause 
which expresses the conditions under which a rule would be 
prevented by another from firing, AbsPS builds a clause 
which expresses the conditions under which a rule could not 
fire, regardless of the other rules in the rule base - this is the 
termination condition. 

Once the cycle has been identified and its termination 
condition generated, its output must be represented in such a 
way so as to enable the other rules to manipulate it. This 
temporal sequence of outputs could be represented as an 
aggregate data object, in the manner of Waters [1979]. This 
would enable AbsPS to manipulate it as a single entity. 
This functionality is still being developed and has yet to be 
implemented. 

5. Tractability Issues 

AbsPS' performance depends to a large extent on the 
characteristics of the rule base it is analysing. Because it 
explores all paths, it is the number and length of the paths 



which is the crucial feature, rather than the number of rules 
in the rule base. The number and length of paths is 
dependent, at least in part, on the size of the rule base, 
therefore rule base size is a rough guide to performance. 

AbsPS has been used to analyse rule bases containing up 
to 50 rules. It takes on average 8 CPU minutes to analyse 
20 rules and 45 CPU minutes to analyse 50 (Symbolics 
3630). However, these timings are misleading because the 
program is implemented in a very naive fashion; the 
complete set of instantiations is recomputed on each cycle, 
for example. Many of the implementation techniques used in 
rule-based systems could be applied to abstract interpretation 
with little modification, including: the saving of instantiated 
rules and antecedent clauses from cycle to cycle (as in the 
Rete match algorithm, [Forgy, 1982]); the sharing of 
unification effort amongst equivalent antecedent clauses; and 
more efficient variable lookup [cf. Warren, 1977]. 

AbsPS' mean computational complexity is 0(N*R*P), 
where N is the number of terms in the input specification, R 
the number of rules in the rule base and P the number of 
paths which can be followed for each term in the input 
specification. By implementing a more efficient abstract 
interpreter this performance could be improved to 
0(N*log(R)*P). 

Though in the worst case the number of paths is 
combinatorially related to rule base size, AbsPS' 
performance is much better in practice. This is because it 
prunes paths a priori by taking advantage of the control 
information in the rule base. Indeed, rule base size is less of 
a problem if one partitions a rule base into self-contained 
modules with well-defined information flow between them; 
it would then be possible to analyse each module 
individually. Once a module had been analysed, it could be 
treated as a 'black box* and not analysed again until the user 
alters its contents. This methodology would be particularly 
valuable when incrementally developing a rule-based system 
- only those modules which have changed would have to be 
reanalysed. This is another compelling reason to develop an 
automatic rule-grouping algorithm. 

6. Conclusions 

We began by highlighting the problems which the 
procedural semantics of forward-chaining production systems 
cause for analysis. Previous approaches to the problem of 
analysing rule bases have only considered the language's 
declarative semantics - this is adequate so long as the 
procedural semantics are not an issue. We then described an 
algorithm for the abstract interpretation of production 
systems which models the effects of conflict resolution, 
closed-world negation and retraction. 

This algorithm derives the I/O mapping for a rule base and 
can be used to identify common errors such as unreachable 
rules and dead-end paths. Because the algorithm abstracts out 
the intermediate procedural aspects of the rule base, its I/O 
mappings are well suited to formal verification. Though 
AbsPS cannot accurately reason about rule cycles, it can 
identify cycles and compute their termination conditions. 

Abstract interpretation is a combinatorial problem, 
however, in practice it is tractable precisely because of its 
ability to make use of the control information which is 

implicit in the rule base. Grouping rules into self-contained 
functional units offers the prospect of interactive use of 
AbsPS if each group is small in size (of the order of 20 
rules). Interestingly, abstract interpretation itself may offer a 
means by which such rule groups could be generated 
automatically. 

Acknowledgements 

Many thanks to Ian Assersohn and Stuart Watt for reading 
and commenting on earlier drafts, and to Enrico Motta for 
provocative discussions of this work. I am deeply indebted 
to Mark Elsom-Cook for his valuable input throughout this 
research. 

References 

[Beauvieux, 1990] A. Beauvieux. A General Consistency 
(Checking and Restoring) Engine for Knowledge Bases. 
ECAI90, Stockholm, pp77-82. 

[Evertsz, 1990] R. Evertsz. The Role of the Crucial 
Experiment in Student Modelling. Doctoral Dissertation 
(and forthcoming CITE Report), IET, The Open 
University, U.K. 

[Evertsz and Motta, 1990] R. Evertsz and E. Motta. - Work 
in Progress. 

[Forgy, 1982] C.L. Forgy. Rete: A Fast Algorithm for the 
Many Pattern/Many Object Pattern Match Problem. 
Artificial Intelligence, 19, 1, pp 17-38. 

[Ginsberg, 1988] A. Ginsberg. Knowledge Base Reduction: 
A New Approach to Checking Knowledge Bases for 
Inconsistency and Redundancy. AAAI88, St Paul. 

[Jacob and Froscher, 1988] RJ.K. Jacob and J.N. Froscher. 
Facilitating Change in Rule-based Systems, in Hendler, 
J.A. (ed.), Expert Systems; The User Interface Ablex 
Publishing Corp., pp249-284. 

[McDermott, 1981] J. McDermott R1: The formative years. 
AI Magazine, pp21-29. 

[Meseguer, 1990] P. Meseguer. A New Method to Checking 
Rule Bases for Inconsistency: A Petri Net Approach. 
ECAI90, Stockholm, pp437-442. 

[Nguyen et al., 1985] T.A. Nguyen, W.A. Perkins, T.J. 
Laffey, and D. Peeora. Checking an expert system 
knowledge base for consistency and completeness. 
Proceedings of 9th UCAI, pp375-378. 

[Rousset, 1988] M.C. Rousset. On the Consistency of 
Knowledge Bases: COVADIS System. ECAI88, Munich. 

[Suwa et al., 1982] M. Suwa, A.C. Scott and E.H. 
Shortliffe. An approach to verifying completeness and 
consistency in a rule-based expert system. AI Magazine, 
Fall, pp16-21. 

[Warren, 1977] D.H.D. Warren. Logic programming and 
compiler writing. DAI Research Report 44, University of 
Edinburgh. 

[Waters, 1979] R.A. Waters. A Method for Analyzing Loop 
Programs. IEEE Transactions on Software Engineering, 
SE-5:3, May. 

Evertsz 27 


