
Generalizing Nonlinear Planning to Handle Complex Goals
and Actions with Context-Dependent Effects

Edwin P.D. Pednault
AT&T Bell Laboratories
Crawfords Corner Road

Holmdel, NJ 07733

Abstract
This paper presents a general, mathematically rigorous

approach to nonlinear planning that handles both complex
goals and actions with context-dependent effects. A goal can
be any arbitrary well-formed formula containing
conjunctions, disjunctions, negations, and quantifiers.
Actions are likewise not constrained and can have an
unrestricted number of complex, situation-dependent effects.
The approach presented here can thus be used to solve a
wider range of problems than previous approaches to
nonlinear planning. The approach is based on previous work
by the author on linear planning. The same mathematical
framework is used with the results extended to nonlinear
plans.

1. Introduction
Efforts have been made over the past several years to

place automatic planning on a firm mathematical
foundation. These efforts have focused on two types of
planning techniques: linear planning, in which plans are
represented as (linear) sequences of actions [Pednault 1985,
1986, 1987, 1988, 1989], and nonlinear planning, in which
partially-ordered networks (i.e., directed acyclic graphs) are
used to represent plans [Chapman 1985, 1987; Christensen
1990a, 1990b; McAllester and Rosenblitt 1991; Yang and
Tenenberg 1990],

Work on the theory of linear planning has resulted in a
general planning method capable of handling both arbitrarily
complex goals involving conjunctions, disjunctions,
negations, quantifiers, etc., as well as arbitrarily complex
actions whose effects can change according to the situations
in which they are performed [Pednault 1986, 1988]. A
planner that incorporates some of these results has recently
been implemented by McDermott [McDermott 1991].
McDermott's work provides independent confirmation of the
theory and it begins to address some of the implementation
issues that the theory entails.

In contrast, work on the theory of nonlinear planning has
focused on a simplified version of the STRIPS framework
[Fikes and Nilsson 1971] in which goals are constrained to
be conjunctions of literals, and actions are constrained to
those representable by means of simple add and delete lists.
Several planning systems have been implemented that
incorporate these results [Chapman 1985, 1987;
Christensen 1990b; McAllester and Rosenblitt 1991; Yang
and Tenenberg 1990]. However, because of the limited
representation employed for goals and actions, the range of

problems that these systems can solve is quite restricted.
This is particularly true in comparison to the range of
problems that can be solved by the linear planning
techniques cited above. Clearly, a gap exists in the
generality of the formal results obtained to date for linear
and nonlinear planning methodologies.

The purpose of this paper is to bridge this gap by
presenting a general approach to nonlinear planning capable
of handling arbitrarily complex goals and actions. This
approach is an extension of the linear planning methods
previously developed by the author. The extensions preserve
the range of problems that can be solved while taking
advantage of the ability of partial orders to represent several
possible sequences of actions simultaneously. This ability
can potentially make the nonlinear approach more attractive
than the linear method upon which it is based.

2. Mathematical Considerations
In all mathematical approaches to planning that have been

developed to date, planning algorithms are constructed from
theorems that define the kinds of actions a plan must
contain in order to achieve one's goals. Chapman and others
calls these theorems truth criteria, I prefer the term causality
theorems because these theorems establish causal
connections between the goals to be achieved, and the
actions and subgoals that must appear in the plan.

General causality theorems exist that can be used as the
basis for constructing linear planners [Pednault 1985,1986,
1988]. They wil l likewise be used in this paper for the
purpose of nonlinear planning. The main causality theorem
can be stated informally as follows:

Theorem 1 (Main Causality Theorem): A condition O
will be true at a point p during the execution of a plan if
and only if one of the following holds:

(1) An action a is executed prior to point p such that a
causes O to become true and O remains true
thereafter until at least point p.

(2) O is true in the initial state and remains true until
at least point p.

Formal statements and proofs of this theorem have been
previously reported [Pednault 1985, 1986, 1988]. The
important thing to note for our current purposes is that
Theorem 1 is stated with respect the to sequence in which
the actions of a plan are executed. A linear plan defines a
single execution sequence; a nonlinear plan defines several
possible sequences. Thus, in applying this theorem to

240 Automated Reasoning

nonlinear planning, we wil l in effect be applying it to each
of the execution sequences defined by a nonlinear plan.

To apply Theorem 1, one must have the ability to assert
that a particular action causes a particular goal to become
true, and to assert that a particular action preserves the truth
of a particular goal once it has been achieved. In many
planners, such as the one considered by Chapman [Chapman
1985, 1987], these kinds of assertions are quite
straightforward to make because the representations
employed limit themselves to actions with context-
independent effects. Such actions wil l either cause a
particular goal to become true in all circumstances, cause
the goal to become false in all circumstances, or leave the
truth value of the goal unaltered in all circumstances. To
assert that a particular action achieves a particular goal, one
need only verify that the action does in fact achieve the goal
and eliminate from consideration any action that fails to do
so. To assert that a particular goal is to be preserved
between two points in a plan, one need only verify that all
intervening action either achieve the goal or leave its truth
value unaltered, and eliminate from consideration any plan
(or execution sequence of a nonlinear plan) that violates this
protection constraint Thus, except for keeping track of the
intervals during which certain goals are to be preserved, the
other assertions that particular actions must achieve
particular goals or preserve particular goals need not be
represented explicitly in a plan. They need only be embodied
implicitly in the procedures by which a plan is constructed.
Note that this is only true for actions with context-
independent effects.

In the general case, the effect of an action can depend on
the situation in which it is performed. Asserting that such
an action achieves or preserves a goal then amounts to
asserting that the action is performed in a situation in which
is has this effect These kinds of assertions cannot be made
implicitly; they must be represented explicitly. In the linear
planning approach previously developed by the author, these
assertions are made by introducing additional preconditions
to the actions in a plan. These additional preconditions,
which are collectively called secondary preconditions, define
the conditions under which the actions have their desired
effects. Two types of secondary preconditions are used:
causation preconditions, which define the contexts in which
actions achieve desired goals, and preservation
preconditions, which define the contexts in which actions
preserve the truth of goals. Causation and preservation
preconditions can be defined in terms of regression operators
[Waldinger 1977] in a very general way [Pednault 1986,
1988]. Remarkably, a causality theorem exists that is
essentially equivalent to Theorem 1 except that it is
expressed in terms of achieving the appropriate secondary
preconditions. In the statement of this theorem which
follows, Ejj! is used to denote the causation precondition for
action a to achieve q>, while denotes the preservation
precondition for action a to preserve O.

Theorem 2 (Causality Theorem for Secondary
Preconditions): A condition o will be true at a point p
during the execution of a plan if and only if one of the
following holds:

(1) An action a is executed prior to point p such that

(a) i s true immediately before executing a.
(b) is true immediately before the execution of

each action b between a and point p.
(2) p is true in the initial state and is true

immediately before the execution of each action a
prior to point p.

An example of causation and preservation preconditions
are the so-called "codesignation constraints" (i.e., equality
constraints) employed in Chapman's TWEAK program.
When inserting a new action or using an existing action to
achieve a goal, TWEAK introduces codesignation
constraints as needed to ensure that the goal unifies with
one of the formulas in the add list of the action. These
equality constraints satisfy the definition of causation
preconditions [Pednault 1986,1988] and are effectively used
as such in TWEAK. TWEAK also has the option of
introducing noncodesignation constraints (inequalities) to
prevent a goal from unifying with one of the formulas in
the delete list of a potential "clobbering" action. These
inequality constraints satisfy the definition of preservation
preconditions and are clearly used as such in TWEAK.
Causation and preservation preconditions, however, are not
limited to equality formulas. In general, they can be
arbitrarily complex formulas whose complexity is a
function of the degree to which an action's effects are
context dependent.

In the author's previous work, Theorem 2 plays the same
role in constructing a linear planner that Chapman's "modal
truth criterion" [Chapman 1985, 1987] plays in
constructing a nonlinear planner. Theorem 2, however,
applies to all actions that can be represented in terms of
state transitions, whereas the modal truth criterion is limited
to actions representable in a limited STRIPS framework. In
addition, goals can be arbitrarily complex formulas
involving conjunctions, disjunctions, negations, and
quantifiers—O in Theorems 1 and 2 is not restricted to
atomic formulas and their negations as is the case for the
modal truth criterion.

To synthesize linear plans, Theorem 2 can be converted
into a nondeterministic procedure in much the same way
that Horn clauses are converted into procedures in
PROLOG. The procedure is nondeterministic in the sense
that the clauses of Theorem 2 define alternate ways of
achieving a goal, but it is impossible to determine
beforehand which will lead to a solution. Search is therefore
required to explore the possibilities.

In the first clause of Theorem 2, action a might already
appear in the plan constructed thus far, or it might have to
be added. Hence, this clause defines two alternatives: one in
which a new action is inserted into the plan to achieve a
goal, the other in which an existing action is used for this
purpose. The second clause defines only one alternative,
which is to prevent the goal from becoming false if it is
true in the initial state. In each case, the appropriate
secondary preconditions are introduced as subgoals to
actions as per Theorem 2. These three alternative ways of
achieving a goal in a linear plan are discussed in detail
elsewhere [Pednault 1986, 1988]. We wil l now consider
how these alternatives generalize when constructing
nonlinear plans.

Pednault 241

3. Using Theorem 2 in Nonlinear
Planning

The first thing to note about Theorem 2 is that it cannot
be applied to nonlinear planning in the same manner it is
applied to linear planning. The reason is that when dealing
with actions Lhat have context-dependent effects, it is
possible for a goal to be achieved by a certain action in one
execution sequence of a nonlinear plan, a different action in
another sequence, and to be preserved by all actions in a
third sequence. Therefore, it is impossible in the general
case for a single set of secondary preconditions to cover all
possible execution sequences of a nonlinear plans. A single
set of subgoals, however, is the sort of thing one would
want when building a planner.

To illustrate why a single set of secondary preconditions
is not sufficient in the general case, consider the three
actions, a1 a2, and a3, shown in Figure 1. Action a1 causes
Q to become true if it is not already true, and it causes P to
become false if it is not already false. Actions a2 and a3 both
have the same effect, which is to toggle the truth value of Q
whenever P holds. In other words, a2 and a3 cause Q to
become false if both P and Q are presently true, and they
cause Q to become true if P is true and Q is false. The plan
in Figure 1 defines three possible orders of execution:
a1a2a3 a2a1a3, and a2a3a1 Each each execution sequence

results in Q being true in the goal state. However, in the
first sequence, Q is true by virtue of the fact that it never
becomes false (i.e., all three actions preserve the truth of
0; in the second sequence a{ causes Q to become true after
a2 makes it false; and in the third execution sequence a2 is
the action that finally achieves Q. Because Q is achieved in
different ways in each execution sequence, a different set of
secondary preconditions must be satisfied in each case as
dictated by Theorem 2- The secondary preconditions for each
execution sequence are shown in Figure 2,

Figure 2 also illustrates why Chapman's modal truth
criterion does not hold for actions with context-dependent
effects. His criterion requires that, for every action in the
plan capable of negating a goal before the point at which
the goal must be true, there is an intervening action in the
plan that re-achieves the goal. However, in the first two
orderings of the plan shown in Figure 2 (i.e., a1a2a3 and
a2a1a3), action a3 is capable of negating Q yet there are no
actions that follow a3 that re-achieve Q. Nevertheless, Q is
true in the final state. The reason is that while a3 is capable
of negating Q, it can only do so when P is true at the time
the action is performed. Such context-dependent behavior is
not accounted for in Chapman's criterion.

We are now faced with a dilemma. On the one hand, when
constructing a nonlinear planner, it is desirable to introduce
a single set of secondary preconditions that apply to every
execution sequence defined by a plan. On the other hand,
Theorem 2 tells us that in general a different set of
secondary preconditions wi l l be needed for different
execution sequences. We could try to maintain these
different sets explicitly for each execution sequence;
however, we would then be doing a rather convoluted form
of linear planning. By representing each execution sequence
explicitly, we would defeat the purpose of nonlinear
representations altogether, which is to represent multiple
execution sequences implicitly. How then can we use
Theorem 2 to construct nonlinear plans in the general case?

242 Automated Reasoning

The answer is to recognize that the main role of nonlinear
representations is to reduce the size of the search space by
allowing several execution sequences to be represented and
manipulated simultaneously. In generalizing nonlinear
planning, we need only maintain the partial order as long as
this is advantageous. At any point, we are at liberty to
decompose a nonlinear plan into several alternate plans by
introducing additional ordering constraints. Specifically, if
actions a and b are mutually unordered in a nonlinear plan
(i.e., if the plan does not specify which action is to be
executed first), then we are at liberty to force an ordering.
However, when doing so, we must consider all possibilities
(in this case, a before b and b before a). If all possibilities
are not considered, a solution to the planning problem could
inadvertently be eliminated from the search space through
this oversight. The decision to force an ordering among two
or more actions therefore gives rise to a set of alternate
plans that covers the set of possible execution sequences
defined by the original plan. To maintain completeness,
each of these alternate plans must be introduced into the
search space as a possible decomposition of the original
plan.

This principle of decomposing a plan by forcing an
ordering among actions can be used to resolve the dilemma
of needing multiple sets of secondary preconditions for a
nonlinear plan. If a decomposition is chosen so that for each
resulting plan the same secondary preconditions apply to
every execution sequence of that plans, then the problem of
having multiple sets of secondary preconditions would
disappear. Each nonlinear plan in the decomposition would
have a different set of secondary preconditions; however, the
secondary preconditions of each plan would apply to all the
execution sequences of that plan. By taking this approach,
Theorem 2 can be applied in much the same manner as for
linear planning, except that nonlinear plans might have to
be decomposed in the process.

In the fol lowing discussion, the necessary plan
decompositions are described procedurally. A mathematical
analysis of these decompositions and their proofs of
correctness are presented in a forthcoming paper [Pednault
forthcoming]. They are not present presented here due to
space limitations.

Consider what must be done to carry out the fewest
number of decompositions necessary to satisfy the
constraints described above. Three cases need to be
considered, one for each of the three ways of achieving a
goal implicit in Theorem 2 (i.e, protecting the goal from
the initial state, inserting a new action that achieves it, and
using an existing action for this purpose). As wi l l soon
become apparent, decompositions wi l l only need to be
performed as a result of protecting a goal from one point in
a plan to another. Therefore, it is useful to begin the
analysis by considering the case of achieving a goal by
protecting it from the initial state.

According to Theorem 2, if a goal is protected from the
initial state, the appropriate preservation preconditions must
hold for every action that is between the initial state and the
point at which the goal is to be achieved when the plan is
executed. Thus, if we were to achieve a goal by protecting it
from the initial state, we would certainly have to introduce

preservation preconditions as subgoals for every action
necessarily constrained to lie between these two points in
the plan constructed thus far. However, what about the
actions that lie between the initial state and the point at
which the goal is to be achieved in some execution
sequences but not in others? Clearly, some of these actions
might have no effect on the goal, in which case their
preservation preconditions would be the formula TRUE.
Since TRUE is always satisfied, the plan need not be altered
on the basis of these actions. Other actions, however, might
always have the effect of negating the goal, in which case
their preservation preconditions would be the formula
FALSE. It is inconsistent for such actions to lie between
the initial state and the point at which the goal is to be
achieved given that we are trying to prevent the goal from
becoming false in this interval. Therefore, ordering
constraints must be introduced into the plan to assert that
actions whose preservation preconditions are FALSE
necessarily follow the point at which the goal is to be
achieved. The introduction of these ordering constraints is
essentially a special case of the linking out procedure first
introduced in Tate's NONLIN program [Tate 1977].

The final group of actions that could potentially lie
between the initial state and the point at which the goal is
to be achieved are those that are capable of preserving the
goal, but only in certain circumstances. These
circumstances are described by the preservation
preconditions for those actions. If the preservation
preconditions are not satisfied, the actions could potentially
negate the goal. Therefore, in accordance with Theorem 2,
each preservation precondition must be achieved as a
subgoal to the corresponding action in every execution
sequence in which that action lies between the initial state
and the point at which the goal is to be achieved. In all
other execution sequences, the action follows the point at
which the goal is to be achieved. Its preservation
precondition is superfluous in this case and need not be
achieved. Therefore, to avoid multiple sets of secondary
preconditions, the plan constructed thus far must be
decomposed into two or more alternate plans that effectively
group the various execution sequences according to whether
or not preservation preconditions must be introduced for the
various actions. Note that each alternative then becomes
part of the search space, since the alternate plans define
different sets of potential solutions.

The decomposition can be accomplished as follows. If
only one action is affected, two alternative plans are
produced. In one plan, the action is linked out by
introducing an ordering constraint to assert that the action
necessarily follows the point at which the goal is to be
achieved. In the other plan, the appropriate preservation
precondition is introduced as a subgoal to the action, and the
action is linked in [Tate I977] by introducing an ordering
constraint to assert that the action necessarily precedes the
point at which the goal is to be achieved. The first plan
defines all execution sequences of the original plan in which
the preservation precondition need not be introduced. The
second plan defines the remaining sequences in which the
preservation precondition must be introduced. The combined
execution sequences of the two plans are thus the same as

Pednault 243

the execution sequences of the original plan. If several
actions potentially require preservation preconditions, this
decomposition process must be repeated for each of these
actions in turn, with each successive decomposition applied
to the results of the preceding one. The net result is several
alternate plans that then become part of the search space.

A simitar process of introducing preservation
preconditions and ordering constraints must be followed
when achieving a goal by introducing a new action, or when
using an existing action for this purpose. In general, when
protecting a goal from one point in a plan to another,
preservation preconditions must be introduced as subgoals
to all actions that necessarily lie between these two points.
Every action that could possibly lie in this interval whose
preservation precondition reduces to the formula FALSE
must be excluded from the interval by introducing ordering
constraints so that the action either necessarily follows the
interval or necessarily precedes the interval. This is Tate's
general linking out procedure [Tate 1977] . Note that all
possible linking-out combinations must be considered for
all actions that are affected. In addition, every action that
could possibly lie in the interval but whose preservation
precondition reduces to neither TRUE nor FALSE must
either be excluded from the interval in the manner just
described, or be constrained to lie within the interval and
have the appropriate preservation precondition introduced as
a subgoal. As before, actions whose preservation
preconditions reduce to the the formula TRUE need not be
considered in this process.

A second way in which a goal can be achieved is by
introducing a new action into the plan that makes the goal
true and then protecting the goal up to the point at which it
is to be achieved. The insertion process is straightforward
enough: Ordering constraints are introduced to assert that the
new action necessarily follows the initial state and
necessarily precedes the point at which the goal is to be
achieved. The appropriate causation precondition is then
introduced as a subgoal to the new action (as per Theorem
2), together with the preconditions that are normally
introduced by planning programs to ensure the action will
be executable. Once the action has been inserted, the goal
must be protected from the new action up to the point at
which it is to be achieved. This is done as described in the
preceding paragraph. Finally, since the action could
potentially interfere with existing goals that have
previously been protected in the plan, the new action must
be evaluated with respect to the existing protections, with
further plan decompositions performed to either exclude the
new action from a protected interval, or constrain it to lie
within the protected interval with the appropriate
preservation precondition added as a subgoal.

The final way in which a goal can be achieved is by using
an existing action. If the existing action is not already
constrained to precede the point at which the goal is to be
achieved, then an ordering constraint must be added to the
plan to establish this relationship (linking in). Once the
ordering constraint has been established, the appropriate
causation precondition is added as a subgoal to the existing
action and the goal is protected from the existing action to
the point it is to be achieved in the manner described
previously. Unlike the case in which a new action is

244 Automated Reasoning

introduced, there is no need to compare the existing action
to goals already protected in the plan, since this analysis
would have already been performed at an earlier stage in the
planning process. The preconditions for the execution of the
existing action would likewise have been introduced at a
earlier stage.

The three ways of modifying a nonlinear plan to achieve a
goal that have just been described can be embodied in a plan
transformation rule much as was done in my previous work
on linear planning [Pednault 1986]. The resulting rule
generalizes the corresponding rule for linear plans and is
used to generate a search tree of possible solutions. When
implementing a planning system, the nonlinear rule rule
can be combined with the other rules discussed in the
author's dissertation to take advantage of formal objects and
to decompose complex goals into simpler ones. This is
discussed in detail in a forthcoming paper [Pednault
forthcoming]

4. The Homeowner's Problem
The following example illustrates the approach to

nonlinear planning described above. The example is
presented informally. The problem, however, can be
formalized by representing the actions in my ADL language
[Pednault 1985, 1986, 1989]. The appropriate secondary
preconditions can men be derived from this representation.
This is discussed in detail in [Pednault forthcoming], but
not here because of space limitations.

Suppose you have just closed on a house that you agreed
to buy "as is." You arrive at your new "pride and joy" to
find that the water has been turned off and a number of
sizable holes have been punched into the walls. This
situation is not to your liking, so you decide to rectify the
problem by turning the water on and fixing the walls
(Figure 3a). After experimenting with the water main a bit
(Figure 3b), you discover that the reason there are holes in
the walls is that the plumbing behind the walls leaks
profusely. Fixing the walls can be accomplished only if the
plumbing is fixed or the water main is kept off. This
condition is therefore introduced as a causation precondition
to fixing the walls (Figure 3c). Turning the water on after
fixing the walls will create new holes unless the plumbing
is fixed. This condition is therefore introduced as a
preservation precondition to the parallel action of turning
the water on (Figure 3c). This is done so as not to negate
the protected goal of having the walls fixed.

Realizing that there is no way to avoid fixing the
plumbing, you decide to incorporate this step into your plan
(Figure 3d). Fixing the plumbing after patching the walls
would merely require that new holes be torn open to gain
access. A preservation precondition cannot be introduced to
avoid this interaction, since in this case the precondition
simplifies to the formula FALSE (i.e., one cannot avoid
having holes in the wall when fixing the plumbing). The
only option is to fix the plumbing before patching the
walls (Figure 3d). At this point, either of the two execution
sequences defined by the plan will achieve the original goals
of turning the water on and fixing the walls.

Figure 3: Steps in the Solution of the
Homeowner's Problem

This example illustrates the two ways of preventing
protected goals from being negated by parallel actions. In
Figure 3c, the preservation precondition of fixing the
plumbing was introduced as a subgoat to turning the water
on so as not to negate the protected goal of having the walls
fixed. This method could not be used with regard to the
action of fixing the plumbing in Figure 3d, so this action
was excluded from the protected interval by introducing an
ordering constraint

5. Discussion and Conclusions
In comparing the nonlinear planning approach presented

in this paper to the linear planning approaches previously
presented by the author, several things can be observed. The
first is that, when viewed at the level of the execution
sequences, there is essentially no difference in the way in
which the plans are being constructed. Both approaches rely
on Theorem 2 in the same way. Both generate the same
space of potential solutions at the execution level. The only
real difference is that partial orders enable several execution
sequences to be represented simultaneously in the nonlinear
planning approach. This can potentially have the effect of
cutting down the branching factor and, hence, the size of the
search space. This last statement may at first seem
paradoxical given the kind of plan decompositions that are
performed when goals are protected. However, keep in mind
that these alternatives also appear in the search space of the
linear planner. Thus, in the worst case, the nonlinear
planning approach will have no worst a search space than
the linear approach.

In the best case, the nonlinear approach should be far
superior. In cases where the actions unconditionally preserve

the goals on parallel branches of a plan, the preservation
preconditions for those action simplify to the formula
TRUE, Thus, the plan need not be decomposed, and
preservation preconditions need not be introduced on parallel
branches. The result is a tremendous reduction in the size of
the search space. This case typically arises when the actions
on parallel branches affect disjoint parts of the world.
Nonlinear planning achieves its highest level of efficiency
for problems in which this special case occurs.

References
Chapman, D. (1985). Planning for Conjunctive Goats.

Technical Report 802, M.I.T. AI Lab.
Chapman, D. (1987). "Planning for Conjunctive Goals."

Artificial Intelligence. 32: 333-377.
Christensen, J. (1990a). Automatic Abstraction in

Planning. Ph.D. Thesis, Computer Science Department,
Stanford University, Stanford, California.

Christensen, J. (1990b). "A Heirarchical Planner that
Generates its Own Hierarchies." Proc. AAAI-90, Boston,
Massachusetts, pp 1004-1009.

Fikes, R. E. and N. J. Nilsson. (1971). "STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving." Artificial Intelligence, 2: 189-208.

McAllester, D. and D, Rosenblitt. (1991), "Systematic
Nonlinear Planning." Proc. AAAI-93 (submitted),

McDermott, D. (1991). "Regression Planning."
International Journal of Intelligent Systems.: (in press).

Pednault, E. P. D, (1985). Preliminary Report on A Theory
of Plan Synthesis. Technical Report 358, AI center, SRI
International, Menlo Park, California.

Pednault, E. P. D. (1986). Toward a Mathematical Theory
of Plan Synthesis, PHD Thesis, Dept. of Electrical
Engineering, Stanford University, Stanford Ca.

Pednault, E. P. D. (1987), "Formulating Multiagent,
Dynamic-World Problems in the Classical Planning
Framework." InReasoning About Actions and Plans:
Proceedings of the 1986 Workshop, M. P. Georgeff and
A, L. Lansky (ed). Los Altos, Ca., Morgan Kaufmann.

Pednault, E. P. D. (1988). "Synthesizing Plans that
Contain Actions with Context-Dependent Effects.'
Computational Intelligence. 4(4): 356-372.

Pednault, E. P. D, (1989). "ADL: Exploring the Middle
Ground Between STRIPS and the Situation Calculus."
Proc. KR'89, Toronto, Canada, pp 324.

Pednault, E. P. D. (forthcoming). "Generalizing Nonlinear
Planning/*

Tate, A, (1977). "Generating Project Networks/1 Proc,
IJCAI-77, Massachusetts Institute of Technology,
Cambridge, Mass, pp 888-893.

Waldinger, R. (1977). "Achieving Several Goals
Simultaneously." InMachine Intelligence 5, E. Elcock
and D. Michie (ed). Edinburgh, Scotland, Ellis Horwood.

Yang, Q. and J. D. Tenenberg. (1990). "ABTWEAK:
Abstracting a Nonlinear, Least Commitment Planner."
Proc. AAAI-90, Boston, Massachusetts, pp 204-209.

Pednault 245

