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Abstract 
This paper presents a general, mathematically rigorous 

approach to nonlinear planning that handles both complex 
goals and actions with context-dependent effects. A goal can 
be any arbitrary well-formed formula containing 
conjunctions, disjunctions, negations, and quantifiers. 
Actions are likewise not constrained and can have an 
unrestricted number of complex, situation-dependent effects. 
The approach presented here can thus be used to solve a 
wider range of problems than previous approaches to 
nonlinear planning. The approach is based on previous work 
by the author on linear planning. The same mathematical 
framework is used with the results extended to nonlinear 
plans. 

1. Introduction 
Efforts have been made over the past several years to 

place automatic planning on a firm mathematical 
foundation. These efforts have focused on two types of 
planning techniques: linear planning, in which plans are 
represented as (linear) sequences of actions [Pednault 1985, 
1986, 1987, 1988, 1989], and nonlinear planning, in which 
partially-ordered networks (i.e., directed acyclic graphs) are 
used to represent plans [Chapman 1985, 1987; Christensen 
1990a, 1990b; McAllester and Rosenblitt 1991; Yang and 
Tenenberg 1990], 

Work on the theory of linear planning has resulted in a 
general planning method capable of handling both arbitrarily 
complex goals involving conjunctions, disjunctions, 
negations, quantifiers, etc., as well as arbitrarily complex 
actions whose effects can change according to the situations 
in which they are performed [Pednault 1986, 1988]. A 
planner that incorporates some of these results has recently 
been implemented by McDermott [McDermott 1991]. 
McDermott's work provides independent confirmation of the 
theory and it begins to address some of the implementation 
issues that the theory entails. 

In contrast, work on the theory of nonlinear planning has 
focused on a simplified version of the STRIPS framework 
[Fikes and Nilsson 1971] in which goals are constrained to 
be conjunctions of literals, and actions are constrained to 
those representable by means of simple add and delete lists. 
Several planning systems have been implemented that 
incorporate these results [Chapman 1985, 1987; 
Christensen 1990b; McAllester and Rosenblitt 1991; Yang 
and Tenenberg 1990]. However, because of the limited 
representation employed for goals and actions, the range of 

problems that these systems can solve is quite restricted. 
This is particularly true in comparison to the range of 
problems that can be solved by the linear planning 
techniques cited above. Clearly, a gap exists in the 
generality of the formal results obtained to date for linear 
and nonlinear planning methodologies. 

The purpose of this paper is to bridge this gap by 
presenting a general approach to nonlinear planning capable 
of handling arbitrarily complex goals and actions. This 
approach is an extension of the linear planning methods 
previously developed by the author. The extensions preserve 
the range of problems that can be solved while taking 
advantage of the ability of partial orders to represent several 
possible sequences of actions simultaneously. This ability 
can potentially make the nonlinear approach more attractive 
than the linear method upon which it is based. 

2. Mathematical Considerations 
In all mathematical approaches to planning that have been 

developed to date, planning algorithms are constructed from 
theorems that define the kinds of actions a plan must 
contain in order to achieve one's goals. Chapman and others 
calls these theorems truth criteria, I prefer the term causality 
theorems because these theorems establish causal 
connections between the goals to be achieved, and the 
actions and subgoals that must appear in the plan. 

General causality theorems exist that can be used as the 
basis for constructing linear planners [Pednault 1985,1986, 
1988]. They wil l likewise be used in this paper for the 
purpose of nonlinear planning. The main causality theorem 
can be stated informally as follows: 

Theorem 1 (Main Causality Theorem): A condition O 
will be true at a point p during the execution of a plan if 
and only if one of the following holds: 

(1) An action a is executed prior to point p such that a 
causes O to become true and O remains true 
thereafter until at least point p. 

(2) O is true in the initial state and remains true until 
at least point p. 

Formal statements and proofs of this theorem have been 
previously reported [Pednault 1985, 1986, 1988]. The 
important thing to note for our current purposes is that 
Theorem 1 is stated with respect the to sequence in which 
the actions of a plan are executed. A linear plan defines a 
single execution sequence; a nonlinear plan defines several 
possible sequences. Thus, in applying this theorem to 
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nonlinear planning, we wil l in effect be applying it to each 
of the execution sequences defined by a nonlinear plan. 

To apply Theorem 1, one must have the ability to assert 
that a particular action causes a particular goal to become 
true, and to assert that a particular action preserves the truth 
of a particular goal once it has been achieved. In many 
planners, such as the one considered by Chapman [Chapman 
1985, 1987], these kinds of assertions are quite 
straightforward to make because the representations 
employed limit themselves to actions with context-
independent effects. Such actions wil l either cause a 
particular goal to become true in all circumstances, cause 
the goal to become false in all circumstances, or leave the 
truth value of the goal unaltered in all circumstances. To 
assert that a particular action achieves a particular goal, one 
need only verify that the action does in fact achieve the goal 
and eliminate from consideration any action that fails to do 
so. To assert that a particular goal is to be preserved 
between two points in a plan, one need only verify that all 
intervening action either achieve the goal or leave its truth 
value unaltered, and eliminate from consideration any plan 
(or execution sequence of a nonlinear plan) that violates this 
protection constraint Thus, except for keeping track of the 
intervals during which certain goals are to be preserved, the 
other assertions that particular actions must achieve 
particular goals or preserve particular goals need not be 
represented explicitly in a plan. They need only be embodied 
implicitly in the procedures by which a plan is constructed. 
Note that this is only true for actions with context-
independent effects. 

In the general case, the effect of an action can depend on 
the situation in which it is performed. Asserting that such 
an action achieves or preserves a goal then amounts to 
asserting that the action is performed in a situation in which 
is has this effect These kinds of assertions cannot be made 
implicitly; they must be represented explicitly. In the linear 
planning approach previously developed by the author, these 
assertions are made by introducing additional preconditions 
to the actions in a plan. These additional preconditions, 
which are collectively called secondary preconditions, define 
the conditions under which the actions have their desired 
effects. Two types of secondary preconditions are used: 
causation preconditions, which define the contexts in which 
actions achieve desired goals, and preservation 
preconditions, which define the contexts in which actions 
preserve the truth of goals. Causation and preservation 
preconditions can be defined in terms of regression operators 
[Waldinger 1977] in a very general way [Pednault 1986, 
1988]. Remarkably, a causality theorem exists that is 
essentially equivalent to Theorem 1 except that it is 
expressed in terms of achieving the appropriate secondary 
preconditions. In the statement of this theorem which 
follows, Ejj! is used to denote the causation precondition for 
action a to achieve q>, while denotes the preservation 
precondition for action a to preserve O. 

Theorem 2 (Causality Theorem for Secondary 
Preconditions): A condition o will be true at a point p 
during the execution of a plan if and only if one of the 
following holds: 

(1) An action a is executed prior to point p such that 

( a ) i s true immediately before executing a. 
(b) is true immediately before the execution of 

each action b between a and point p. 
(2) p is true in the initial state and is true 

immediately before the execution of each action a 
prior to point p. 

An example of causation and preservation preconditions 
are the so-called "codesignation constraints" (i.e., equality 
constraints) employed in Chapman's TWEAK program. 
When inserting a new action or using an existing action to 
achieve a goal, TWEAK introduces codesignation 
constraints as needed to ensure that the goal unifies with 
one of the formulas in the add list of the action. These 
equality constraints satisfy the definition of causation 
preconditions [Pednault 1986,1988] and are effectively used 
as such in TWEAK. TWEAK also has the option of 
introducing noncodesignation constraints (inequalities) to 
prevent a goal from unifying with one of the formulas in 
the delete list of a potential "clobbering" action. These 
inequality constraints satisfy the definition of preservation 
preconditions and are clearly used as such in TWEAK. 
Causation and preservation preconditions, however, are not 
limited to equality formulas. In general, they can be 
arbitrarily complex formulas whose complexity is a 
function of the degree to which an action's effects are 
context dependent. 

In the author's previous work, Theorem 2 plays the same 
role in constructing a linear planner that Chapman's "modal 
truth criterion" [Chapman 1985, 1987] plays in 
constructing a nonlinear planner. Theorem 2, however, 
applies to all actions that can be represented in terms of 
state transitions, whereas the modal truth criterion is limited 
to actions representable in a limited STRIPS framework. In 
addition, goals can be arbitrarily complex formulas 
involving conjunctions, disjunctions, negations, and 
quantifiers—O in Theorems 1 and 2 is not restricted to 
atomic formulas and their negations as is the case for the 
modal truth criterion. 

To synthesize linear plans, Theorem 2 can be converted 
into a nondeterministic procedure in much the same way 
that Horn clauses are converted into procedures in 
PROLOG. The procedure is nondeterministic in the sense 
that the clauses of Theorem 2 define alternate ways of 
achieving a goal, but it is impossible to determine 
beforehand which will lead to a solution. Search is therefore 
required to explore the possibilities. 

In the first clause of Theorem 2, action a might already 
appear in the plan constructed thus far, or it might have to 
be added. Hence, this clause defines two alternatives: one in 
which a new action is inserted into the plan to achieve a 
goal, the other in which an existing action is used for this 
purpose. The second clause defines only one alternative, 
which is to prevent the goal from becoming false if it is 
true in the initial state. In each case, the appropriate 
secondary preconditions are introduced as subgoals to 
actions as per Theorem 2. These three alternative ways of 
achieving a goal in a linear plan are discussed in detail 
elsewhere [Pednault 1986, 1988]. We wil l now consider 
how these alternatives generalize when constructing 
nonlinear plans. 
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3. Using Theorem 2 in Nonlinear 
Planning 

The first thing to note about Theorem 2 is that it cannot 
be applied to nonlinear planning in the same manner it is 
applied to linear planning. The reason is that when dealing 
with actions Lhat have context-dependent effects, it is 
possible for a goal to be achieved by a certain action in one 
execution sequence of a nonlinear plan, a different action in 
another sequence, and to be preserved by all actions in a 
third sequence. Therefore, it is impossible in the general 
case for a single set of secondary preconditions to cover all 
possible execution sequences of a nonlinear plans. A single 
set of subgoals, however, is the sort of thing one would 
want when building a planner. 

To illustrate why a single set of secondary preconditions 
is not sufficient in the general case, consider the three 
actions, a1 a2, and a3, shown in Figure 1. Action a1 causes 
Q to become true if it is not already true, and it causes P to 
become false if it is not already false. Actions a2 and a3 both 
have the same effect, which is to toggle the truth value of Q 
whenever P holds. In other words, a2 and a3 cause Q to 
become false if both P and Q are presently true, and they 
cause Q to become true if P is true and Q is false. The plan 
in Figure 1 defines three possible orders of execution: 
a1a2a3 a2a1a3, and a2a3a1 Each each execution sequence 

results in Q being true in the goal state. However, in the 
first sequence, Q is true by virtue of the fact that it never 
becomes false (i.e., all three actions preserve the truth of 
0; in the second sequence a{ causes Q to become true after 
a2 makes it false; and in the third execution sequence a2 is 
the action that finally achieves Q. Because Q is achieved in 
different ways in each execution sequence, a different set of 
secondary preconditions must be satisfied in each case as 
dictated by Theorem 2- The secondary preconditions for each 
execution sequence are shown in Figure 2, 

Figure 2 also illustrates why Chapman's modal truth 
criterion does not hold for actions with context-dependent 
effects. His criterion requires that, for every action in the 
plan capable of negating a goal before the point at which 
the goal must be true, there is an intervening action in the 
plan that re-achieves the goal. However, in the first two 
orderings of the plan shown in Figure 2 (i.e., a1a2a3 and 
a2a1a3), action a3 is capable of negating Q yet there are no 
actions that follow a3 that re-achieve Q. Nevertheless, Q is 
true in the final state. The reason is that while a3 is capable 
of negating Q, it can only do so when P is true at the time 
the action is performed. Such context-dependent behavior is 
not accounted for in Chapman's criterion. 

We are now faced with a dilemma. On the one hand, when 
constructing a nonlinear planner, it is desirable to introduce 
a single set of secondary preconditions that apply to every 
execution sequence defined by a plan. On the other hand, 
Theorem 2 tells us that in general a different set of 
secondary preconditions wi l l be needed for different 
execution sequences. We could try to maintain these 
different sets explicitly for each execution sequence; 
however, we would then be doing a rather convoluted form 
of linear planning. By representing each execution sequence 
explicitly, we would defeat the purpose of nonlinear 
representations altogether, which is to represent multiple 
execution sequences implicitly. How then can we use 
Theorem 2 to construct nonlinear plans in the general case? 
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The answer is to recognize that the main role of nonlinear 
representations is to reduce the size of the search space by 
allowing several execution sequences to be represented and 
manipulated simultaneously. In generalizing nonlinear 
planning, we need only maintain the partial order as long as 
this is advantageous. At any point, we are at liberty to 
decompose a nonlinear plan into several alternate plans by 
introducing additional ordering constraints. Specifically, if 
actions a and b are mutually unordered in a nonlinear plan 
(i.e., if the plan does not specify which action is to be 
executed first), then we are at liberty to force an ordering. 
However, when doing so, we must consider all possibilities 
(in this case, a before b and b before a). If all possibilities 
are not considered, a solution to the planning problem could 
inadvertently be eliminated from the search space through 
this oversight. The decision to force an ordering among two 
or more actions therefore gives rise to a set of alternate 
plans that covers the set of possible execution sequences 
defined by the original plan. To maintain completeness, 
each of these alternate plans must be introduced into the 
search space as a possible decomposition of the original 
plan. 

This principle of decomposing a plan by forcing an 
ordering among actions can be used to resolve the dilemma 
of needing multiple sets of secondary preconditions for a 
nonlinear plan. If a decomposition is chosen so that for each 
resulting plan the same secondary preconditions apply to 
every execution sequence of that plans, then the problem of 
having multiple sets of secondary preconditions would 
disappear. Each nonlinear plan in the decomposition would 
have a different set of secondary preconditions; however, the 
secondary preconditions of each plan would apply to all the 
execution sequences of that plan. By taking this approach, 
Theorem 2 can be applied in much the same manner as for 
linear planning, except that nonlinear plans might have to 
be decomposed in the process. 

In the fol lowing discussion, the necessary plan 
decompositions are described procedurally. A mathematical 
analysis of these decompositions and their proofs of 
correctness are presented in a forthcoming paper [Pednault 
forthcoming]. They are not present presented here due to 
space limitations. 

Consider what must be done to carry out the fewest 
number of decompositions necessary to satisfy the 
constraints described above. Three cases need to be 
considered, one for each of the three ways of achieving a 
goal implicit in Theorem 2 (i.e, protecting the goal from 
the initial state, inserting a new action that achieves it, and 
using an existing action for this purpose). As wi l l soon 
become apparent, decompositions wi l l only need to be 
performed as a result of protecting a goal from one point in 
a plan to another. Therefore, it is useful to begin the 
analysis by considering the case of achieving a goal by 
protecting it from the initial state. 

According to Theorem 2, if a goal is protected from the 
initial state, the appropriate preservation preconditions must 
hold for every action that is between the initial state and the 
point at which the goal is to be achieved when the plan is 
executed. Thus, if we were to achieve a goal by protecting it 
from the initial state, we would certainly have to introduce 

preservation preconditions as subgoals for every action 
necessarily constrained to lie between these two points in 
the plan constructed thus far. However, what about the 
actions that lie between the initial state and the point at 
which the goal is to be achieved in some execution 
sequences but not in others? Clearly, some of these actions 
might have no effect on the goal, in which case their 
preservation preconditions would be the formula TRUE. 
Since TRUE is always satisfied, the plan need not be altered 
on the basis of these actions. Other actions, however, might 
always have the effect of negating the goal, in which case 
their preservation preconditions would be the formula 
FALSE. It is inconsistent for such actions to lie between 
the initial state and the point at which the goal is to be 
achieved given that we are trying to prevent the goal from 
becoming false in this interval. Therefore, ordering 
constraints must be introduced into the plan to assert that 
actions whose preservation preconditions are FALSE 
necessarily follow the point at which the goal is to be 
achieved. The introduction of these ordering constraints is 
essentially a special case of the linking out procedure first 
introduced in Tate's NONLIN program [Tate 1977]. 

The final group of actions that could potentially lie 
between the initial state and the point at which the goal is 
to be achieved are those that are capable of preserving the 
goal, but only in certain circumstances. These 
circumstances are described by the preservation 
preconditions for those actions. If the preservation 
preconditions are not satisfied, the actions could potentially 
negate the goal. Therefore, in accordance with Theorem 2, 
each preservation precondition must be achieved as a 
subgoal to the corresponding action in every execution 
sequence in which that action lies between the initial state 
and the point at which the goal is to be achieved. In all 
other execution sequences, the action follows the point at 
which the goal is to be achieved. Its preservation 
precondition is superfluous in this case and need not be 
achieved. Therefore, to avoid multiple sets of secondary 
preconditions, the plan constructed thus far must be 
decomposed into two or more alternate plans that effectively 
group the various execution sequences according to whether 
or not preservation preconditions must be introduced for the 
various actions. Note that each alternative then becomes 
part of the search space, since the alternate plans define 
different sets of potential solutions. 

The decomposition can be accomplished as follows. If 
only one action is affected, two alternative plans are 
produced. In one plan, the action is linked out by 
introducing an ordering constraint to assert that the action 
necessarily follows the point at which the goal is to be 
achieved. In the other plan, the appropriate preservation 
precondition is introduced as a subgoal to the action, and the 
action is linked in [Tate I977] by introducing an ordering 
constraint to assert that the action necessarily precedes the 
point at which the goal is to be achieved. The first plan 
defines all execution sequences of the original plan in which 
the preservation precondition need not be introduced. The 
second plan defines the remaining sequences in which the 
preservation precondition must be introduced. The combined 
execution sequences of the two plans are thus the same as 
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the execution sequences of the original plan. If several 
actions potentially require preservation preconditions, this 
decomposition process must be repeated for each of these 
actions in turn, with each successive decomposition applied 
to the results of the preceding one. The net result is several 
alternate plans that then become part of the search space. 

A simitar process of introducing preservation 
preconditions and ordering constraints must be followed 
when achieving a goal by introducing a new action, or when 
using an existing action for this purpose. In general, when 
protecting a goal from one point in a plan to another, 
preservation preconditions must be introduced as subgoals 
to all actions that necessarily lie between these two points. 
Every action that could possibly lie in this interval whose 
preservation precondition reduces to the formula FALSE 
must be excluded from the interval by introducing ordering 
constraints so that the action either necessarily follows the 
interval or necessarily precedes the interval. This is Tate's 
general linking out procedure [Tate 1977] . Note that all 
possible linking-out combinations must be considered for 
all actions that are affected. In addition, every action that 
could possibly lie in the interval but whose preservation 
precondition reduces to neither TRUE nor FALSE must 
either be excluded from the interval in the manner just 
described, or be constrained to lie within the interval and 
have the appropriate preservation precondition introduced as 
a subgoal. As before, actions whose preservation 
preconditions reduce to the the formula TRUE need not be 
considered in this process. 

A second way in which a goal can be achieved is by 
introducing a new action into the plan that makes the goal 
true and then protecting the goal up to the point at which it 
is to be achieved. The insertion process is straightforward 
enough: Ordering constraints are introduced to assert that the 
new action necessarily follows the initial state and 
necessarily precedes the point at which the goal is to be 
achieved. The appropriate causation precondition is then 
introduced as a subgoal to the new action (as per Theorem 
2), together with the preconditions that are normally 
introduced by planning programs to ensure the action will 
be executable. Once the action has been inserted, the goal 
must be protected from the new action up to the point at 
which it is to be achieved. This is done as described in the 
preceding paragraph. Finally, since the action could 
potentially interfere with existing goals that have 
previously been protected in the plan, the new action must 
be evaluated with respect to the existing protections, with 
further plan decompositions performed to either exclude the 
new action from a protected interval, or constrain it to lie 
within the protected interval with the appropriate 
preservation precondition added as a subgoal. 

The final way in which a goal can be achieved is by using 
an existing action. If the existing action is not already 
constrained to precede the point at which the goal is to be 
achieved, then an ordering constraint must be added to the 
plan to establish this relationship (linking in). Once the 
ordering constraint has been established, the appropriate 
causation precondition is added as a subgoal to the existing 
action and the goal is protected from the existing action to 
the point it is to be achieved in the manner described 
previously. Unlike the case in which a new action is 
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introduced, there is no need to compare the existing action 
to goals already protected in the plan, since this analysis 
would have already been performed at an earlier stage in the 
planning process. The preconditions for the execution of the 
existing action would likewise have been introduced at a 
earlier stage. 

The three ways of modifying a nonlinear plan to achieve a 
goal that have just been described can be embodied in a plan 
transformation rule much as was done in my previous work 
on linear planning [Pednault 1986]. The resulting rule 
generalizes the corresponding rule for linear plans and is 
used to generate a search tree of possible solutions. When 
implementing a planning system, the nonlinear rule rule 
can be combined with the other rules discussed in the 
author's dissertation to take advantage of formal objects and 
to decompose complex goals into simpler ones. This is 
discussed in detail in a forthcoming paper [Pednault 
forthcoming] 

4. The Homeowner's Problem 
The following example illustrates the approach to 

nonlinear planning described above. The example is 
presented informally. The problem, however, can be 
formalized by representing the actions in my ADL language 
[Pednault 1985, 1986, 1989]. The appropriate secondary 
preconditions can men be derived from this representation. 
This is discussed in detail in [Pednault forthcoming], but 
not here because of space limitations. 

Suppose you have just closed on a house that you agreed 
to buy "as is." You arrive at your new "pride and joy" to 
find that the water has been turned off and a number of 
sizable holes have been punched into the walls. This 
situation is not to your liking, so you decide to rectify the 
problem by turning the water on and fixing the walls 
(Figure 3a). After experimenting with the water main a bit 
(Figure 3b), you discover that the reason there are holes in 
the walls is that the plumbing behind the walls leaks 
profusely. Fixing the walls can be accomplished only if the 
plumbing is fixed or the water main is kept off. This 
condition is therefore introduced as a causation precondition 
to fixing the walls (Figure 3c). Turning the water on after 
fixing the walls will create new holes unless the plumbing 
is fixed. This condition is therefore introduced as a 
preservation precondition to the parallel action of turning 
the water on (Figure 3c). This is done so as not to negate 
the protected goal of having the walls fixed. 

Realizing that there is no way to avoid fixing the 
plumbing, you decide to incorporate this step into your plan 
(Figure 3d). Fixing the plumbing after patching the walls 
would merely require that new holes be torn open to gain 
access. A preservation precondition cannot be introduced to 
avoid this interaction, since in this case the precondition 
simplifies to the formula FALSE (i.e., one cannot avoid 
having holes in the wall when fixing the plumbing). The 
only option is to fix the plumbing before patching the 
walls (Figure 3d). At this point, either of the two execution 
sequences defined by the plan will achieve the original goals 
of turning the water on and fixing the walls. 



Figure 3: Steps in the Solution of the 
Homeowner's Problem 

This example illustrates the two ways of preventing 
protected goals from being negated by parallel actions. In 
Figure 3c, the preservation precondition of fixing the 
plumbing was introduced as a subgoat to turning the water 
on so as not to negate the protected goal of having the walls 
fixed. This method could not be used with regard to the 
action of fixing the plumbing in Figure 3d, so this action 
was excluded from the protected interval by introducing an 
ordering constraint 

5. Discussion and Conclusions 
In comparing the nonlinear planning approach presented 

in this paper to the linear planning approaches previously 
presented by the author, several things can be observed. The 
first is that, when viewed at the level of the execution 
sequences, there is essentially no difference in the way in 
which the plans are being constructed. Both approaches rely 
on Theorem 2 in the same way. Both generate the same 
space of potential solutions at the execution level. The only 
real difference is that partial orders enable several execution 
sequences to be represented simultaneously in the nonlinear 
planning approach. This can potentially have the effect of 
cutting down the branching factor and, hence, the size of the 
search space. This last statement may at first seem 
paradoxical given the kind of plan decompositions that are 
performed when goals are protected. However, keep in mind 
that these alternatives also appear in the search space of the 
linear planner. Thus, in the worst case, the nonlinear 
planning approach will have no worst a search space than 
the linear approach. 

In the best case, the nonlinear approach should be far 
superior. In cases where the actions unconditionally preserve 

the goals on parallel branches of a plan, the preservation 
preconditions for those action simplify to the formula 
TRUE, Thus, the plan need not be decomposed, and 
preservation preconditions need not be introduced on parallel 
branches. The result is a tremendous reduction in the size of 
the search space. This case typically arises when the actions 
on parallel branches affect disjoint parts of the world. 
Nonlinear planning achieves its highest level of efficiency 
for problems in which this special case occurs. 
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