
On t h e Feasib i l i ty o f D i s t r i b u t e d Const ra in t Sat is fact ion

Zeev Co l l in
CS, Technion —

Israel Institute of Technology,
Haifa, 32000, Israel

R ina Dechter*
Information and CS, UCI ,

Irvine, CA, 92717

Shmuel K a t z
CS, Technion —

Israel Institute of Technology,
Haifa, 32000, Israel

Abs t rac t

This paper characterizes connectionist-type ar­
chitectures that allow a distributed solution
for classes of constraint-satisfaction problems.
The main issue addressed is whether there ex­
ists a u n i f o r m model of computation (where
all nodes are indistinguishable) that guaran-
tees convergence to a solution from every ini-
tial state of the system, whenever such a so-
lution exists. We show that even for relatively
simple constraint networks, such as rings, there
is no general solution using a completely uni­
form, asynchronous, model. However, some
restricted topologies like trees can accommo­
date the uniform, asynchronous, model and a
protocol demonstrating this fact is presented.
An a lmos t *un i f o rm , asynchronous, network-
consistency protocol is also presented. We show
that the algorithms are guaranteed to be self-
stabilizing, which makes them suitable for dy­
namic or error-prone environments.

1 I n t r o d u c t i o n

Consider the distributed version of the graph coloring
problem, where each node must select a color (from a
given set of colors) that is different from any color se­
lected by its neighbors. This coloring task, whose se­
quential version is known to be NP-complete, belongs to
a class of Cons t ra in t Sat is fac t ion Prob lems (CSPs)
that present interesting challenges to distributed com­
putation, particularly in the framework of connectionist
architectures. We call the distributed versions of such
problems N e t w o r k Consis tency P rob lems (N C P s) .
We consider what types of distributed models admit a
self-stabilizing algorithm (namely, one that converges to
a solution from any init ial state of the network), and
present such algorithms when possible.

Constraints are useful in programming languages, sim­
ulation packages and general knowledge representation
systems, and the prospects of solving such problems
by connectionist networks promise the combined advan­

tages of parallelism, simplicity of design and error cor­
rection capabilities.

Indeed, many interesting problems attacked by re­
searchers in neural networks are combinatorial and many
involve constraint satisfaction [Ballard et al., 1986,
Dahl, 1987], In fact, any discrete state connectionist net­
work can be viewed as a type of constraint network, with
each stable pattern of states representing a consistent
solution. However, current connectionist approaches to
CSPs lack theoretical guarantees of convergence (to a so­
lution satisfying all constraints), and the terms on which
such convergence can be guaranteed ("if at all) have not
been explored t i l l now.

In this paper we show that widely used connectionist-
type architectures in which all nodes run identical pro-
cedures cannot admit algorithms that guarantee conver­
gence to a consistent solution, even if such a solution
exists (Section 2). We then identify a distributed model
that is close in spirit to the connectionist paradigm, for
which such guarantees can be established (Section 3).
Within this model, we characterize and provide algo­
rithms for a restricted subclass of networks that can be
solved uniformly (Section 4).

'This woik was partially supported by the National Sci­
ence Foundation, Grant #IRI-8821444 and by the Air Force
Office of Scientific Research, Grant #AFOSR-90-0136.

2 M o d e l and Def in i t ions

2.1 CSP de f i n i t i on

A network of binary constraints involves a set of n vari-
ables X 1 . . , X n , each represented by its domain values,
D 1 , . . . , D n , and a set of constraints. A b i n a r y con­
s t ra in t Rij between two variables Xi and Xj is a subset
of the Cartesian product Di x Dj that specifies which
values of the variables are compatible with each other.
A solution is an assignment of values to all the variables
which satisfies all the constraints, and the constraint sat­
isfaction problems associated with these networks are to
find one or all solutions. A binary CSP can be asso­
ciated with a cons t ra in t -g raph in which nodes repre­
sent variables and arcs connect pairs of variables which
are constrained explicitly. (General constraint satisfac­
tion problems may involve constraints of any arity, but
since network communication is only pairwise we focus
on this subclass of problems.) Figure la presents a CSP
constraint graph.

318 Automated Reasoning

2.2 T h e m o d e l

Our general communication model is known as the
shared m e m o r y mu l t i - r eade r s ing le -wr i te r model.
A distributed network consists of n nodes, connected by
shared communication registers, called state registers.
The network can be viewed as a commun ica t i on g raph
where nodes represent processors and arcs correspond to
communication registers. The register statei is written
only by node i, but may be read by several nodes (all of
i's neighbors). The state register may have several fields,
but it is regarded as one unit. A node can be modeled
as a finite state-machine where its state is controlled by
a t r a n s i t i o n f u n c t i o n that is dependent on its current
state and the states of its neighbors. In other words, an
activated node performs an a tom ic step consisting of
reading the states of all its neighbors, deciding whether
to change its state and then moving to a new state (by
writ ing in its state register)1. The collection of all tran­
sition functions is called a p ro toco l . The processors are
anonymous, i.e. , have no identities (we use the terms
node t and processor Pi interchangeably and as a writ­
ing convenience only). A configuration c of the system
is the state vector of all processors.

The execution of the system can be managed either by
a cen t ra l demon (scheduler) defined in [Dijkstra, 1974,
Dolev et a/., 1990] or by a d i s t r i b u t e d demon defined
in [Burns et al, 1987, Dolev et al., 1990]. The distributed
demon activates a subset of the system's nodes at each
step, while the central demon activates only one proces­
sor at a time (and thus can be viewed as a simplified
version of the distributed demon). A l l activated nodes
execute a single atomic step simultaneously.

The central demon means that an interleaving is suf­
ficient for the analysis of the protocol. Nevertheless, on
the implementation level, truly independent nodes can
execute in parallel since they cannot affect each other.
Only neighboring nodes in the constraint graph cannot
execute at the same atomic step when a central demon
is assumed.

We denote C1 c2 if c2 is a configuration which is
reached from configuration c1 by some subset of proces­
sors simultaneously executing a single atomic step. An
execu t ion of the system is an infinite sequence of con­
figurations E = c1 C2 • • • such that for every i, ci, Ci+i.
An execution is considered fa i r if every node participates
in it infinitely often.

l In fact, a finer degree of atomicity, requiring only a test-
anbSset operation, is possible, but is not used here in order
to simplify the arguments.

2*3 Sel f -s tab i l izat ion

A self-stabilizing protocol [Dijkstra, 1974] is one
with a particular convergence property. The system
configuration-space is partitioned into two classes — le­
gal, denoted by L, and illegal. The protocol is self-
stabilizing if in any infinite fair execution, starting from
any initial configuration (and with any input values) and
given "enough t ime", the system eventually reaches a le­
gal configuration, and all subsequently computed config­
urations are legal. Thus a self-stabilizing protocol con­
verges from any point in its configuration-space to a sta­
ble, legal region.

The legality of a configuration depends on the aim of
the protocol. In our case, we wish to design a protocol
for solving the network consistency problem. Thus, the
set of legal configurations are those having a consistent
assignment of values to all the nodes in the network, if
such an assignment exists, and any set, otherwise. This
definition allows the system to oscillate among various
solutions, if more than one consistent assignment is pos­
sible. However, the protocols that are presented in this
paper converge to one of the possible solutions.

2.4 T h e l i m i t s o f u n i f o r m se l f -s tab i l iza t ion

A protocol is u n i f o r m if ail the nodes are logically
equivalent and identically programmed (i.e. have identi­
cal transition functions). Following an observation made
by Dijkstra [Dijkstra, 1974] regarding the computational
l imits of a uniform model for performing the mutual ex­
clusion task, we show that the network consistency prob-
lem cannot be solved using a uniform protocol. This is
accomplished by presenting a specific constraint network
and proving that its convergence cannot be guaranteed
using any uniform protocol.

Consider the task of numbering a ring of proces­
sors in a cyclic ascending order — we call this CSP
the " r i n g o r d e r i n g p r o b l e m " . The constraint-graph
of the problem is a ring of nodes with the domains
{0, 1, . . , , n — 1}. Every arc has the set of constraints
{(z, (t' + l) mod n)| 0 i n — 1} i.e., the left node is one
smaller than the right one. A solution to this problem is
a cyclic permutation of the numbers 0, . . . ,n - 1, which
means that there are n possible solutions, and in all of
them different nodes are assigned different values.

T h e o r e m 1: No uniform, self stabilizing protocol can
solve the ring ordering problem, under a central demon
policy.

Proo f : In order to obtain a contradiction, assume
that there exists a uniform self-stabilizing protocol for
solving the problem In particular, it would solve the
ring-ordering problem for a ring having a composite
number of nodes, n = r ' j (r , g > l) . Since convergence
to a solution is guaranteed from any initial configura-
tion, it also applies to one where all nodes are in identical
states. We construct a fair execution for such a protocol
for which the network never converges to a consistent
solution, contradicting the self stabilization property of

Collin, Dechter, and Katz 319

the protocol. Assume the following execution:

Note that nodes PO, Pq, P2q, - • • P(r-1)q' after their
first activation, move to identical states because their in-
puts, init ial states and transition functions are identical,
and when each one of them is activated their neighbors
are in identical states too. The same holds for any se-
quential activation of processors
j < q}. Thus, cycling through the above schedule assures
that PO and Pq for instance, move to identical states
over and over again an infinite number of times. Since a
consistent solution requires their states to be different,
the network wi l l never reach a consistent solution, thus
yielding a contradiction.

Theorem 1 implies that it is generally impossible to
guarantee convergence to a consistent solution using a
uniform protocol. It also implies that such convergence
cannot be guaranteed for a class of sequential algorithms
using so called "repair" methods, such as in [M in ton ti
at., 1990]. It does not, however, exclude the possibility
of existence of uniform protocols for restricted activation
policies.

We can also show that, when using a distributed de­
mon, convergence (to a solution) cannot be guaranteed
even for t ree -ne tworks . Consider, for instance, the col­
oring problem in a tree-network constructed from exactly
two connected nodes each having the domain { B L A C K ,
WHITE}. Since the two nodes are topologically identi­
cal, If they start from identical init ial states and both of
them are activated simultaneously, they can never be as­
signed different values. Consequently, the network does
not converge to a legal solution, although one exists.
This counterexample can be extended to a large class of
trees, where there is no possible way to distinguish be­
tween two internal nodes. We wil l show, however, (sec­
tion 4) that for a central demon a uniform self stabilizing
tree-network consistency protocol does exist.

Having proved that the network consistency problem
cannot be solved using a uniform protocol, even with
a central demon, we switch to a slightly more relaxed
model of an "a lmost u n i f o r m " protocol, whereby all
nodes but one are identical. We denote the special node
as Po-

3 Consistency-Generat ion Protocol

Our network consistency protocol is based on a sequen-
tial version of a back t rack ing algorithm, called back-
j u m p i n g . When implemented on a variable ordering
generated by a dep th - f i r s t t raversa l of the constraint
graph, the technique enables a distributed implementa­
tion. A preliminary version of this protocol appears in
[Collin and Dechter, 1990].

320 Automated Reasoning

3.1 Sequent ia l aspects of cons t ra in t sat is fact ion

The most common algorithm for solving a CSP is back-
tracking. In its standard version, the algorithm traverses
the variables in a predetermined order, provisionally as-
signing consistent values to a subsequence (X1,..., Xi)
of variables and attempting to append to it a new in­
stantiation of Xi+1 such that the whole set is consistent.
If no consistent assignment can be found for the next
variable Xi+1, a deadend situation occurs; the algorithm
"backtracks" to the most recent variable, changes its as­
signment and continues from there.

One useful improvement of backtracking, called back-
j u m p i n g [Dechter, 1990] consults the topology of the
constraint graph to guide its "backward" phase. Specif­
ically, instead of going back to the most recent variable
instantiated it j u m p s back several levels to the first
variable connected to the deadend variable. It turns
out that when using a depth-first search (DFS) on the
constraint graph (to generate a DFS tree) and then con­
ducting backjumping in an inorder traversal of the DFS
tree, [Even, 1979] the jump-back destination of variable
X is the parent of X in the DFS tree.

The nice property of a DFS tree that allows a parallel
implementation is that any arc of the graph which is not
in the tree connects a node to one of its tree ancestors
(i.e. along the path leading to it from the root). Conse­
quently, the DFS tree represents a useful decomposition
of the graph: if a variable X and all its ancestors are re­
moved from the graph, the subtrees rooted at X wil l be
disconnected (Figure lb) . This translates to a problem-
decomposition strategy: if all ancestors of variable X
are instantiated, then the solutions of all its subtrees are
completely independent and can be performed in parallel
(see also [Freuder and Quinn, 1987]).

3.2 Genera l N e t w o r k Consis tency p ro toco l

The network-consistency (NC) protocol is logically com­
posed of two self-stabilizing subprotocols that can be
executed interleaved (we divide the second subprotocol
into two parts in order to simplify the explanation):

1, DFS-tree generation

2. (a) graph-traversal protocol
(b) value-assignment

These subprotocols are unrelated to each other and,
thus, can be independently replaced by any other version
of implementation.

The basic idea of the protocol is to decompose the net­
work into several independent subnetworks, according to
the DFS-tree structure, and to instantiate these subnet­
works in parallel. A proper order of value instantiation
is guaranteed by the graph traversal protocol.

3.2.1 Ne ighbo rhoods a n d states
A self-stabilizing algorithm for generating a DFS-tree

is presented in [Collin and Dolev, 199l] and wi l l not be
discussed here. This subprotocol is almost uniform and
is the source of non-uniformity for the whole NC proto­
col. When the algorithm stabilizes each internal node,
t, has one adjacent node, parent(i), designated as its
paren t in the tree, and a set of ch i l d nodes denoted

children(i). Figure 2 indicates the environment of an
internal node (2a), the root (2b), and a leaf (2c). The
link leading from parent(i) to i is called i's i n l i n k while
the links connecting t to its children are called i's ou t -
l inks . The set of its neighboring nodes along the path
from the r o o t to i are called i's predecessors. The role
of the root is played by the special processor PO. Each
node i (representing variable Xi) has a list of possible
values, denoted as Domain,, and a pairwise relation Rij

with each neighbor j. The domain and the constraints
may be viewed as a part of the system or as inputs that
are always valid (though they can be changed during the
execution, forcing the network to readjust itself to the
changes).

Figure 2: Node's neighborhood set

The state-register of each node contains the following
fields:

1. A value field to which it assigns either one of its
domain values or the symbol "*" (to denote a dead-
end).

2. A mode field indicating the node's "belief" regard-
ing the status of the network. A node's mode is
ON if its value or its ancestors' values were changed
since the last time it was in a forward phase, or
otherwise it is OFF ♦ The modes of all nodes also
give an indication of whether they have reached a
consistent state (all in an OFF mode).

3. Two boolean fields called parent.tag and
children tag, which are used by the graph-
traversal protocol (Section 3.2.2).

3.2.2 Graph - t rave rsa l p ro toco l

The graph-traversal protocol is handled by a self-
stabilizing p r i v i l ege passing mechan ism. According
to this protocol a node obtains a privilege to act, granted
to it either by its parent or by its children. A node is
allowed to change its state only if it is privileged.

Our privilege passing mechanism is an extension
of a mutual exclusion protocol for two nodes called
balance-unbalance [Dijkstra, 1974, Dolev et al, 1990].
Once a DFS-tree is established, this scheme is imple­
mented by having every state register contain two fields:
parent Jag t referring to its inlink and children Jag, re-
ferring to all its outlinks. A link is balanced, if the
children Jag and the parent Jag on its end points have
the same value, and the link is unbalanced otherwise.
A node, i, becomes privileged if its inlink is unbalanced

and a l l its outlinks are balanced2. The privilege can be
passed backwards to the parent by balancing the incom­
ing link or forward to the children by unbalancing the
outgoing links (i.e. by changing the parent Jag or the
children Jag value accordingly). A node applies the NC-
protocol only when it is privileged, otherwise it leaves its
state unchanged.

Denote a b ranch to be a tree-path from the root to a
leaf. The privilege-passing mechanism eventually con­
verges to a set of legal ly con t ro l l ed configurations,
in which no more than one node is privileged on ev­
ery branch. Figure 3 shows such a configuration (the
parent Jag and the children Jag of every node are spec-
ified above and below the node respectively). This prop-
erty assures that eventually a node and its ancestors can-
not reassign their values simultaneously. The privileges
travel along the branches backwards and forwards. We
omit the proof due to space limitations.

3.2.3 Value-ass ignment
The value-assignment has a f o r w a r d and a backward

phases, corresponding to the two phases of the sequen­
tial backtracking algorithm. During the forward phase,
nodes in different subtrees assign themselves values con-
sistent with their predecessors or verify the consistency
of their assigned values. When a node senses a dead-
end it assigns its value field a "*" and initiates a back-
ward phase. When the network is consistent (all the
processors are in an OFF mode) the forward and back­
ward phases continue, where the forward phase is used
to verify the consistency of the network and the back­
ward phase just returns the privilege to the root to start
a new forward wave. Once consistency verification is
violated, the node sensing the violation initiates a new
value-assignment. Since the root has no ancestors, it
does not check consistency. It only assigns a new value
at the end of each backward phase, when needed, and
then initiates a new forward phase. A more elaborate
description follows.

An internal node can be in one of three situations:

• Node i is act ivated by i ts parent wh ich is in
an ON mode (this is the forward phase of value
assignments). In that case some change of value
in one of its predecessors might have occurred. I t ,
therefore, finds the first value in its domain that is
consistent with all its predecessors, puts itself in an
ON mode and passes the privilege to its children. If
no consistent value exists, it assigns itself the" *"

2Note that this is well defined since we prove thai even­
tually all siblings have the same parent-tag.

Collin, Dechter, and Katz 321

value (a deadend) and passes the privilege to its
parent (ini t iat ing a backward phase).

• N o d e i is ac t i va ted by i t s pa ren t w h i c h is in
an OFF m o d e . In that case it verifies the consis­
tency of its current value with its predecessors. If
it is consistent it stays in an OFF mode and passes
the privilege to its children. If not, it assigns itself
a new value, moves to an ON mode, and passes the
privilege to its children3.

• N o d e i is ac t i va ted by i t s ch i l d ren (backward
phase). If one of the children has a V value, the
processor selects the next consistent value from its
domain and passes the privilege to the children. If
no consistent value is available, it assigns itself a "*"
and passes the privilege to its parent4. If all children
have a consistent value, i passes the privilege to its
parent.

The value-assignment protocol is uniform since each
node has both the root's protocol and the non-root's
protocol and wil l decide between them based on the role
assigned to it by the DFS-tree protocol.

The self-stabilization property of the NC protocol is
inherited from its subprotocols; DFS-tree generation,
privilege-passing and value-assignment. Once the self-
stabilization of privilege-passing is established, it assures
the adequacy of the control for distributedly implement­
ing DPS-based backjumping, which guarantees the con­
vergence of the network to a legal solution, if one exists,
and if not it keeps checking ail the possibilities over and
over again.

3.3 C o m p l e x i t y analysis

A crude estimate of the time complexity of the NC pro­
tocol can be given by computing the maximal number
of state changes from the time the privilege-passing has
stabilized unti l final convergence. The search space that
is generated by the sequential DFS-backjumping obeys
the following recurrence: Tm = l+b-k'Tm-x wi th To = 1,
which yields Tm — (b . k) m + 1 where Tm stands for the
search space generated by sequential DFS-backjumping
with depth m or less, b is the maximal branching degree
and k bounds the domain sizes. Our bound improves the
one presented in [Freuder and Quinn, 1987]. Note that
since 6m < n we get that Tm = 0 (n k m + 1) , Clearly, in
the worst parallel execution we get a sequential behav­
ior with the same time complexity — exponential in the
depth of the DFS-tree. However, often, due to parallel
instantiations of different subtrees, the parallel protocol
may have, on the average, a significant speedup over the
sequential one. We believe that the speedup (of our pro­
tocol over the same sequential algorithm) is of 0(n/m).
As an extreme example, consider problem instances that

3A leaf, having no children, is always activated by its par­
ent and always passes the privilege back to its parent (initi­
ating a backward phase).

4Due to the privilege passing mechanism, when a parent
sees one of its children in a deadend it has to wait until al l
of them have given him the privilege. This is done to guar­
antee that all subtrees have a consistent view regarding their
predecessors' values.

322 Automated Reasoning

have a backtrack-free solution along the DFS ordering.
These wi l l be solved in 0(n) sequentially, while in 0(m)
in parallel. To conclude, our protocol convergence can be
achieved in polynomial time for networks with a bounded
depth of the DFS-tree,

The average performance of the NC protocol can
be further improved by adding to it a uniform self-
stabilizing arc-consistency subprotocol [Mackworth
and Freuder, 1985]. A network is said to be arc-
consistent if for every value in each node's domain there
is a consistent value in all its neighbors1 domains. Arc-
consistency can be achieved by a repeated execution of a
"relaxation procedure", where each node reads its neigh­
bors' domains and eliminates any of its own values for
which there is no consistent value in one of its neighbors'
domains. This protocol is clearly self-stabilizing.

4 Network Consistency for Trees

In the rest of the paper we discuss protocols for a re­
stricted class of network topologies — trees. Our aim
is to see whether such a restricted class of problems can
be solved using the more relaxed, uniform, distributed
model, and whether it can result in a more efficient pro-
tocol.

It is well known that the sequential network consis­
tency problem on trees is tractable, and can be achieved
in linear time [Mackworth and Freuder, 1985], A special
algorithm for this task is composed of an arc-consistency
phase (that can be efficiently implemented on trees), fol-
lowed by value assignment in an order created by some
roo ted t ree. It has been shown that an arc-consistent
tree enables back track-free value assignment with no
deadends [Freuder, 1982]. Applying the general NC pro-
tocol together with the arc-consistency protocol to a tree
wil l already result in an improved performance: when
arc-consistency is established, one forward phase of the
value-assignment protocol wil l assign values to all the
nodes in linear time since no deadends wil l be encoun­
tered (see also [Dechter and Dechter, 1988]). Therefore,
the almost-uniform NC protocol if applied to trees is
guaranteed to converge in a polynomial number of steps.

Since, the DFS subprotocol of our general algorithm
was the source for its non-uniformity, we reexamine the
possibility that for trees, a rooted directed tree can be
imposed via a uniform protocol. We already showed that
when using a distributed demon, a uniform, network-
consistency protocol for trees is not feasible. Therefore,
the only avenue not yet explored is whether under a cen­
tral demon such a protocol does exist. We next show
that this conjecture is indeed correct.

4.1 A u n i f o r m t ree-consis tency p r o t o c o l
In principle a uniform tree-consistency (TC) protocol
can be extracted from the general NC protocol by
only replacing the DFS-tree protocol with a u n i f o r m
roo ted - t ree protocol, since any rooted-tree is also a
DFS-tree. Since the arc-consistency protocol, the value-
assignment protocol and the privilege-passing protocol
are already uniform, the resulting TC protocol wil l be
uniform, as desired. Nevertheless, we wil l show that for
trees, the value-assignment protocol can be simplified as

well, while there is no need to have a special privilege-
passing mechanism at a l l .

The TC protocol consists of the following three sub-
protocols:

1. arc-consistency

2. tree-directing

3. tree-value-assignment

When the arcs are consistent and the tree has been
directed, value assignment is eventually guaranteed by
having each node follow the rule (of the t ree-va lue-
ass ignmen t protocol): " C H O O S E A V A L U E CONSISTENT

WITH YOUR PARENT'S ASSIGNMENT". Such a value mus t
exist, since otherwise the value assigned by the parent
would have been removed by the arc-consistency proce­
dure. Since, as we wi l l show, the tree-directing protocol
is self-stabili2ing, and since the arc-consistency protocol
is self-stabilizing as well, the value-assignment protocol
eventually converges to a consistent solution.

In order to d i r e c t the tree, we must break the sym­
metry reflected by the identical codes and the lack of
identifiers, by exploit ing the topology of the tree. For
this task we use a distr ibuted protocol for rinding the
centers of a tree [Korach ti al., 1984]. A center of a
tree is a node whose maximal distance from the leaves is
min imal . Consider a sequential algori thm that works in
phases, so that in every phase the leaves of the previous
phase are removed f rom the tree. In the last phase the
tree has either one or two connected nodes left. These
nodes are the centers of the tree.

Our protocol distr ibutedly simulates the above algo­
r i thm- If only one center exists, it plays the role of a root
and all the arcs are directed towards i t . When two cen­
ters exist, the direction of the link that connects them
remains ambiguous and both of them can be viewed as
a root since all other links are directed towards them as
before. In this case, each one of the two centers consid­
ers the other one to be its parent, and the tree-directing
protocol, results in a p s e u d o - r o o t e d - t r e e where the
centers (one or two nodes) play the root role.

We claim that this ambiguity w i l l not hurt the tree-
value-assignment protocol at al l . Note that the "f i rst"
center that applies the assignment protocol, assigns it-
self a value consistent w i th the other. When the other
one is scheduled, it is supposed to assign itself a value
that is consistent w i th the first one. However, its cur-
rent assignment is already consistent (since the first one
has taken care of that already) and thus it remains un-
changed. A l l other nodes assign values that are consis-
tent w i th their parents as before. The central demon
policy assures that only one (neighboring) center w i l l be
scheduled each t ime.

This approach yields a relatively simple uniform tree-
directing protocol that simulates the above description.
Assume the number of nodes in the network5 is n. Every
node i has the fol lowing fields:

5We can overcome the necessity of knowing the size of the
network by using dynamic memory allocation. However, for
the sake of the simplicity of the code we assume the knowl-
edge of n.

N i[0. [n /2]] - a vector that counts the number of i'S
neighbors in each phase of the sequential algori thm.
N i [j] records the number of neighbors of t in phase j.
If Ni[j] = 1 it means that i becomes a leaf in the j-
th phase (although it may be init ialized incorrectly).
Ni[O] is repeatedly initialized to the number of VB
neighbors in the network (so that JVj[0] = 1 means
that i is a leaf in the original tree).

parent i - a variable assigned the value j if node j be­
comes the parent of i (the enumeration is local to
i) . When the network stabilizes, namely when all
the iV-vectors converge, every node has one neigh­
bor only that is eligible to be its parent, except a
single center which has none, and no two nodes arc
parents of each other except, perhaps, the two cen­
ters.

The protocol works by having each node scan its neigh­
bors' jV-vectors and compute its own accordingly. Since
the j - t h entry of vector N i represents the number of
i's neighbors in the j - th phase, its value is recursively
computed by decreasing the number of neighbors that
became leaves from the entire number of neighbors in
the previous phase. Each node chooses as its parent the
neighbor that was not removed from the tree earlier than
itself. Figure 4 presents a pseudo-code for the protocol.
Recall that the code is repeated forever, although from
some point on, the tree does not change.

A proper convergence of the iV-vectors is guaranteed
by the fact that Ni[j] depends only on Ni[j] - 1] and
{Nk[j-l] k€ neighbors(i)}, which are properly updated
earlier. The base of this iterative convergence is applied
by assigning to Ni[0] the actual number of neighbors of
i in the network.

The complexity of the tree protocol is clearly linear
in the network's size since all its subprotocols are, and
hence it equals the sequential t ime complexity. However,
the parallel t ime can be further linearly bounded by the
d i a m e t e r of the tree where the diameter is the longest
path between any two leaves of the tree.

5 Conclusions

The results presented in this paper establish theoretical
bounds on the capabilities of connectionist architectures
and other distributed approaches to constraint satisfac­
t ion problems.

The paper focuses on the feasibility of solving the
network consistency problem using self-stabilizing dis­
tr ibuted protocol, namely, guaranteeing a convergence
to a consistent solution, if such exists, from any ini t ial
configuration. Such property is essential for dynamic
environments, where unexpected changes could occur in
some of the constraints.

We proved that a uniform protocol, one in which all
nodes are identical, cannot solve the network consistency
problem even if only one node is activated at a t ime.
Consequently, although such protocols have obvious ad-
ventages and are closer in spirit to neural networks ar­
chitectures, they cannot guarantee convergence to a so­
lut ion. On the other hand, distinguishing one node from
the others is sufficient to guarantee such a convergence

Collin, Dechter, and Katz 323

Figure 4: Uniform tree-directing procedure for node i

even when sets of nodes are activated simultaneously. A
protocol for solving the problem under such conditions
is presented.

We then demonstrated that, when the network is re­
stricted to trees, a uniform, self-stabilizing protocol for
solving the problem does exist, but only under asyn­
chronous control (one neighboring node is activated at a
time).

It is stil l an open question whether a uniform proto-
col is feasible under some specific ordering of the asyn­
chronous activation.

Regarding time complexity, we have shown that in
the worse-case the distributed and the sequential pro-
tocols have the same complexity bound; exponential in
the depth of the DFS tree. On the average, however, a
linear speed up is feasible for bounded depth networks.

References

[Ballard et al, 1986] D. H, Ballard, P.C. Gardner, and
M. A, Snnivas. Graph problems and connectionist
architectures. Technical Report 167, University of
Rochester, Rochester, NY, March 1986.

[Burns et al, 1987] J, Burns, M. Gouda, and C. L, Wu.
A self-stabilizing token system. In Proceedings of the
20th Annual Intl. Con/, on System Sciences, pages
218-223, Hawaii, 1987.

[Collin and Dechter, 1990] Z. Collin and R. Dechter. A
distributed solution to the network consistency prob-
lem. In Proceedings of ike 5-th Intl. Symp. on Method-
ologies for Intelligent Systems., pages 242-251, Ten-
nessee, USA, 1990.

[Collin and Dolev, 199l] Z. Collin and S. Dolev. A self
stabilizing protocol for dfs spanning tree generation.
in preparation, 1991.

[Dahl, 1987] E. D. Dahl. Neural networks algorithms
for an np-complete problem: map and graph coloring.
In Proceedings of the IEEE first Internal. Conf. on
Neural Networks, pages 113-120, San Diego, 1987.

[Dechter and Dechter, 1988] R. Dechter and A. Dechter.
Belief maintenance in dynamic constraint networks.
In Proceedings AAAI-88, St. Paul, Minnesota, August
1988.

[Dechter, 1990] R. Dechter. Enhancement schemes for
constraint processing: Backjumping, learning, and
cutset decomposition. Artificial Intelligence Journal,
41(3):273-312, January 1990.

[Dijkstra, 1974] E. W. Dijkstra. Self stabilizing systems
in spite of distributed control. Communications of the
ACM, 17(l l):643-644, 1974.

[Dolev et al, 1990] S. Dolev, A. Israeli, and S, Moran.
Self stabilization of dynamic systems assuming only
read/write atomicity. In Proceedings of PODC-90,
pages 103-118, Quebec City, August 1990.

[Even, 1979] S. Even. Graph Algorithms. Computer Sci­
ence Press, Maryland, USA, 1979.

[Freuder and Quinn, 1987] E. C. Freuder and M.J.
Quinn. The use of lineal spanning trees to repre­
sent constraint satisfaction problems. Technical Re­
port 87-41, University of New Hampshire, Durham,
New Hampshire, 1987.

[Freuder, 1982] E.C. Freuder. A sufficient condition for
backtrack-free search. Journal of the ACM, 29(1):24-
32, January 1982.

[Korach et al, 1984] E. Korach, D. Rotem, and
N.Santoro. Distributed algorithms for finding centers
and medians in networks. ACM Transactions on Pro­
gramming Languages and Systems, 6(3);380-401, July
1984.

[Mackworth and Freuder, 1985] A. K. Mackworth and
E.C. Freuder. The complexity of some polinomial net­
work consistency algorithms for constraint satisfaction
problem. Artificial intelligence, 25:65-74, 1985.

[Minton et al, 1990] S. Minton, M. D. Johnston, A. B.
Philips, and P. Laird. Solving large scale constraint
satisfaction and scheduling problems using a heuristic
repair method. In Proceedings of AAAI-90, Boston,
1990.

324 Automated Reasoning

