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Abs t rac t 

This paper characterizes connectionist-type ar­
chitectures that allow a distributed solution 
for classes of constraint-satisfaction problems. 
The main issue addressed is whether there ex­
ists a u n i f o r m model of computation (where 
all nodes are indistinguishable) that guaran-
tees convergence to a solution from every ini-
tial state of the system, whenever such a so-
lution exists. We show that even for relatively 
simple constraint networks, such as rings, there 
is no general solution using a completely uni­
form, asynchronous, model. However, some 
restricted topologies like trees can accommo­
date the uniform, asynchronous, model and a 
protocol demonstrating this fact is presented. 
An a lmos t *un i f o rm , asynchronous, network-
consistency protocol is also presented. We show 
that the algorithms are guaranteed to be self-
stabilizing, which makes them suitable for dy­
namic or error-prone environments. 

1 I n t r o d u c t i o n 

Consider the distributed version of the graph coloring 
problem, where each node must select a color (from a 
given set of colors) that is different from any color se­
lected by its neighbors. This coloring task, whose se­
quential version is known to be NP-complete, belongs to 
a class of Cons t ra in t Sat is fac t ion Prob lems (CSPs) 
that present interesting challenges to distributed com­
putation, particularly in the framework of connectionist 
architectures. We call the distributed versions of such 
problems N e t w o r k Consis tency P rob lems ( N C P s ) . 
We consider what types of distributed models admit a 
self-stabilizing algorithm (namely, one that converges to 
a solution from any init ial state of the network), and 
present such algorithms when possible. 

Constraints are useful in programming languages, sim­
ulation packages and general knowledge representation 
systems, and the prospects of solving such problems 
by connectionist networks promise the combined advan­

tages of parallelism, simplicity of design and error cor­
rection capabilities. 

Indeed, many interesting problems attacked by re­
searchers in neural networks are combinatorial and many 
involve constraint satisfaction [Ballard et al., 1986, 
Dahl, 1987], In fact, any discrete state connectionist net­
work can be viewed as a type of constraint network, with 
each stable pattern of states representing a consistent 
solution. However, current connectionist approaches to 
CSPs lack theoretical guarantees of convergence (to a so­
lution satisfying all constraints), and the terms on which 
such convergence can be guaranteed ("if at all) have not 
been explored t i l l now. 

In this paper we show that widely used connectionist-
type architectures in which all nodes run identical pro-
cedures cannot admit algorithms that guarantee conver­
gence to a consistent solution, even if such a solution 
exists (Section 2). We then identify a distributed model 
that is close in spirit to the connectionist paradigm, for 
which such guarantees can be established (Section 3). 
Within this model, we characterize and provide algo­
rithms for a restricted subclass of networks that can be 
solved uniformly (Section 4). 

'This woik was partially supported by the National Sci­
ence Foundation, Grant #IRI-8821444 and by the Air Force 
Office of Scientific Research, Grant #AFOSR-90-0136. 

2 M o d e l and Def in i t ions 

2.1 CSP de f i n i t i on 

A network of binary constraints involves a set of n vari-
ables X 1 . . , X n , each represented by its domain values, 
D 1 , . . . , D n , and a set of constraints. A b i n a r y con­
s t ra in t Rij between two variables Xi and Xj is a subset 
of the Cartesian product Di x Dj that specifies which 
values of the variables are compatible with each other. 
A solution is an assignment of values to all the variables 
which satisfies all the constraints, and the constraint sat­
isfaction problems associated with these networks are to 
find one or all solutions. A binary CSP can be asso­
ciated with a cons t ra in t -g raph in which nodes repre­
sent variables and arcs connect pairs of variables which 
are constrained explicitly. (General constraint satisfac­
tion problems may involve constraints of any arity, but 
since network communication is only pairwise we focus 
on this subclass of problems.) Figure la presents a CSP 
constraint graph. 
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2.2 T h e m o d e l 

Our general communication model is known as the 
shared m e m o r y mu l t i - r eade r s ing le -wr i te r model. 
A distributed network consists of n nodes, connected by 
shared communication registers, called state registers. 
The network can be viewed as a commun ica t i on g raph 
where nodes represent processors and arcs correspond to 
communication registers. The register statei is written 
only by node i, but may be read by several nodes (all of 
i's neighbors). The state register may have several fields, 
but it is regarded as one unit. A node can be modeled 
as a finite state-machine where its state is controlled by 
a t r a n s i t i o n f u n c t i o n that is dependent on its current 
state and the states of its neighbors. In other words, an 
activated node performs an a tom ic step consisting of 
reading the states of all its neighbors, deciding whether 
to change its state and then moving to a new state (by 
writ ing in its state register)1. The collection of all tran­
sition functions is called a p ro toco l . The processors are 
anonymous, i.e. , have no identities (we use the terms 
node t and processor Pi interchangeably and as a writ­
ing convenience only). A configuration c of the system 
is the state vector of all processors. 

The execution of the system can be managed either by 
a cen t ra l demon (scheduler) defined in [Dijkstra, 1974, 
Dolev et a/., 1990] or by a d i s t r i b u t e d demon defined 
in [Burns et al, 1987, Dolev et al., 1990]. The distributed 
demon activates a subset of the system's nodes at each 
step, while the central demon activates only one proces­
sor at a time (and thus can be viewed as a simplified 
version of the distributed demon). A l l activated nodes 
execute a single atomic step simultaneously. 

The central demon means that an interleaving is suf­
ficient for the analysis of the protocol. Nevertheless, on 
the implementation level, truly independent nodes can 
execute in parallel since they cannot affect each other. 
Only neighboring nodes in the constraint graph cannot 
execute at the same atomic step when a central demon 
is assumed. 

We denote C1 c2 if c2 is a configuration which is 
reached from configuration c1 by some subset of proces­
sors simultaneously executing a single atomic step. An 
execu t ion of the system is an infinite sequence of con­
figurations E = c1 C2 • • • such that for every i, ci, Ci+i. 
An execution is considered fa i r if every node participates 
in it infinitely often. 

l In fact, a finer degree of atomicity, requiring only a test-
anbSset operation, is possible, but is not used here in order 
to simplify the arguments. 

2*3 Sel f -s tab i l izat ion 

A self-stabilizing protocol [Dijkstra, 1974] is one 
with a particular convergence property. The system 
configuration-space is partitioned into two classes — le­
gal, denoted by L, and illegal. The protocol is self-
stabilizing if in any infinite fair execution, starting from 
any initial configuration (and with any input values) and 
given "enough t ime", the system eventually reaches a le­
gal configuration, and all subsequently computed config­
urations are legal. Thus a self-stabilizing protocol con­
verges from any point in its configuration-space to a sta­
ble, legal region. 

The legality of a configuration depends on the aim of 
the protocol. In our case, we wish to design a protocol 
for solving the network consistency problem. Thus, the 
set of legal configurations are those having a consistent 
assignment of values to all the nodes in the network, if 
such an assignment exists, and any set, otherwise. This 
definition allows the system to oscillate among various 
solutions, if more than one consistent assignment is pos­
sible. However, the protocols that are presented in this 
paper converge to one of the possible solutions. 

2.4 T h e l i m i t s o f u n i f o r m se l f -s tab i l iza t ion 

A protocol is u n i f o r m if ail the nodes are logically 
equivalent and identically programmed (i.e. have identi­
cal transition functions). Following an observation made 
by Dijkstra [Dijkstra, 1974] regarding the computational 
l imits of a uniform model for performing the mutual ex­
clusion task, we show that the network consistency prob-
lem cannot be solved using a uniform protocol. This is 
accomplished by presenting a specific constraint network 
and proving that its convergence cannot be guaranteed 
using any uniform protocol. 

Consider the task of numbering a ring of proces­
sors in a cyclic ascending order — we call this CSP 
the " r i n g o r d e r i n g p r o b l e m " . The constraint-graph 
of the problem is a ring of nodes with the domains 
{0, 1, . . , , n — 1}. Every arc has the set of constraints 
{(z, (t' + l) mod n)| 0 i n — 1} i.e., the left node is one 
smaller than the right one. A solution to this problem is 
a cyclic permutation of the numbers 0, . . . ,n - 1, which 
means that there are n possible solutions, and in all of 
them different nodes are assigned different values. 

T h e o r e m 1: No uniform, self stabilizing protocol can 
solve the ring ordering problem, under a central demon 
policy. 

Proo f : In order to obtain a contradiction, assume 
that there exists a uniform self-stabilizing protocol for 
solving the problem In particular, it would solve the 
ring-ordering problem for a ring having a composite 
number of nodes, n = r ' j ( r , g > l ) . Since convergence 
to a solution is guaranteed from any initial configura-
tion, it also applies to one where all nodes are in identical 
states. We construct a fair execution for such a protocol 
for which the network never converges to a consistent 
solution, contradicting the self stabilization property of 
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the protocol. Assume the following execution: 

Note that nodes PO, Pq, P2q, - • • P(r-1)q' after their 
first activation, move to identical states because their in-
puts, init ial states and transition functions are identical, 
and when each one of them is activated their neighbors 
are in identical states too. The same holds for any se-
quential activation of processors  
j < q}. Thus, cycling through the above schedule assures 
that PO and Pq for instance, move to identical states 
over and over again an infinite number of times. Since a 
consistent solution requires their states to be different, 
the network wi l l never reach a consistent solution, thus 
yielding a contradiction.  

Theorem 1 implies that it is generally impossible to 
guarantee convergence to a consistent solution using a 
uniform protocol. It also implies that such convergence 
cannot be guaranteed for a class of sequential algorithms 
using so called "repair" methods, such as in [M in ton ti 
at., 1990]. It does not, however, exclude the possibility 
of existence of uniform protocols for restricted activation 
policies. 

We can also show that, when using a distributed de­
mon, convergence (to a solution) cannot be guaranteed 
even for t ree -ne tworks . Consider, for instance, the col­
oring problem in a tree-network constructed from exactly 
two connected nodes each having the domain { B L A C K , 
WHITE}. Since the two nodes are topologically identi­
cal, If they start from identical init ial states and both of 
them are activated simultaneously, they can never be as­
signed different values. Consequently, the network does 
not converge to a legal solution, although one exists. 
This counterexample can be extended to a large class of 
trees, where there is no possible way to distinguish be­
tween two internal nodes. We wil l show, however, (sec­
tion 4) that for a central demon a uniform self stabilizing 
tree-network consistency protocol does exist. 

Having proved that the network consistency problem 
cannot be solved using a uniform protocol, even with 
a central demon, we switch to a slightly more relaxed 
model of an "a lmost u n i f o r m " protocol, whereby all 
nodes but one are identical. We denote the special node 
as Po-

3 Consistency-Generat ion Protocol 

Our network consistency protocol is based on a sequen-
tial version of a back t rack ing algorithm, called back-
j u m p i n g . When implemented on a variable ordering 
generated by a dep th - f i r s t t raversa l of the constraint 
graph, the technique enables a distributed implementa­
tion. A preliminary version of this protocol appears in 
[Collin and Dechter, 1990]. 
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3.1 Sequent ia l aspects of cons t ra in t sat is fact ion 

The most common algorithm for solving a CSP is back-
tracking. In its standard version, the algorithm traverses 
the variables in a predetermined order, provisionally as-
signing consistent values to a subsequence (X1,..., Xi) 
of variables and attempting to append to it a new in­
stantiation of Xi+1 such that the whole set is consistent. 
If no consistent assignment can be found for the next 
variable Xi+1, a deadend situation occurs; the algorithm 
"backtracks" to the most recent variable, changes its as­
signment and continues from there. 

One useful improvement of backtracking, called back-
j u m p i n g [Dechter, 1990] consults the topology of the 
constraint graph to guide its "backward" phase. Specif­
ically, instead of going back to the most recent variable 
instantiated it j u m p s back several levels to the first 
variable connected to the deadend variable. It turns 
out that when using a depth-first search (DFS) on the 
constraint graph (to generate a DFS tree) and then con­
ducting backjumping in an inorder traversal of the DFS 
tree, [Even, 1979] the jump-back destination of variable 
X is the parent of X in the DFS tree. 

The nice property of a DFS tree that allows a parallel 
implementation is that any arc of the graph which is not 
in the tree connects a node to one of its tree ancestors 
(i.e. along the path leading to it from the root). Conse­
quently, the DFS tree represents a useful decomposition 
of the graph: if a variable X and all its ancestors are re­
moved from the graph, the subtrees rooted at X wil l be 
disconnected (Figure lb ) . This translates to a problem-
decomposition strategy: if all ancestors of variable X 
are instantiated, then the solutions of all its subtrees are 
completely independent and can be performed in parallel 
( see also [Freuder and Quinn, 1987]). 

3.2 Genera l N e t w o r k Consis tency p ro toco l 

The network-consistency (NC) protocol is logically com­
posed of two self-stabilizing subprotocols that can be 
executed interleaved (we divide the second subprotocol 
into two parts in order to simplify the explanation): 

1, DFS-tree generation 

2. (a) graph-traversal protocol 
(b) value-assignment 

These subprotocols are unrelated to each other and, 
thus, can be independently replaced by any other version 
of implementation. 

The basic idea of the protocol is to decompose the net­
work into several independent subnetworks, according to 
the DFS-tree structure, and to instantiate these subnet­
works in parallel. A proper order of value instantiation 
is guaranteed by the graph traversal protocol. 

3.2.1 Ne ighbo rhoods a n d states 
A self-stabilizing algorithm for generating a DFS-tree 

is presented in [Collin and Dolev, 199l] and wi l l not be 
discussed here. This subprotocol is almost uniform and 
is the source of non-uniformity for the whole NC proto­
col. When the algorithm stabilizes each internal node, 
t, has one adjacent node, parent(i), designated as its 
paren t in the tree, and a set of ch i l d nodes denoted 



children(i). Figure 2 indicates the environment of an 
internal node (2a), the root (2b), and a leaf (2c). The 
link leading from parent(i) to i is called i's i n l i n k while 
the links connecting t to its children are called i's ou t -
l inks . The set of its neighboring nodes along the path 
from the r o o t to i are called i's predecessors. The role 
of the root is played by the special processor PO. Each 
node i (representing variable Xi) has a list of possible 
values, denoted as Domain,, and a pairwise relation Rij 

with each neighbor j. The domain and the constraints 
may be viewed as a part of the system or as inputs that 
are always valid (though they can be changed during the 
execution, forcing the network to readjust itself to the 
changes). 

Figure 2: Node's neighborhood set 

The state-register of each node contains the following 
fields: 

1. A value field to which it assigns either one of its 
domain values or the symbol "*" (to denote a dead-
end). 

2. A mode field indicating the node's "belief" regard-
ing the status of the network. A node's mode is 
ON if its value or its ancestors' values were changed 
since the last time it was in a forward phase, or 
otherwise it is OFF ♦ The modes of all nodes also 
give an indication of whether they have reached a 
consistent state (all in an OFF mode). 

3. Two boolean fields called parent.tag and 
children tag, which are used by the graph-
traversal protocol (Section 3.2.2). 

3.2.2 Graph - t rave rsa l p ro toco l 

The graph-traversal protocol is handled by a self-
stabilizing p r i v i l ege passing mechan ism. According 
to this protocol a node obtains a privilege to act, granted 
to it either by its parent or by its children. A node is 
allowed to change its state only if it is privileged. 

Our privilege passing mechanism is an extension 
of a mutual exclusion protocol for two nodes called 
balance-unbalance [Dijkstra, 1974, Dolev et al, 1990]. 
Once a DFS-tree is established, this scheme is imple­
mented by having every state register contain two fields: 
parent Jag t referring to its inlink and children Jag, re-
ferring to all its outlinks. A link is balanced, if the 
children Jag and the parent Jag on its end points have 
the same value, and the link is unbalanced otherwise. 
A node, i, becomes privileged if its inlink is unbalanced 

and a l l its outlinks are balanced2. The privilege can be 
passed backwards to the parent by balancing the incom­
ing link or forward to the children by unbalancing the 
outgoing links (i.e. by changing the parent Jag or the 
children Jag value accordingly). A node applies the NC-
protocol only when it is privileged, otherwise it leaves its 
state unchanged. 

Denote a b ranch to be a tree-path from the root to a 
leaf. The privilege-passing mechanism eventually con­
verges to a set of legal ly con t ro l l ed configurations, 
in which no more than one node is privileged on ev­
ery branch. Figure 3 shows such a configuration (the 
parent Jag and the children Jag of every node are spec-
ified above and below the node respectively). This prop-
erty assures that eventually a node and its ancestors can-
not reassign their values simultaneously. The privileges 
travel along the branches backwards and forwards. We 
omit the proof due to space limitations. 

3.2.3 Value-ass ignment 
The value-assignment has a f o r w a r d and a backward 

phases, corresponding to the two phases of the sequen­
tial backtracking algorithm. During the forward phase, 
nodes in different subtrees assign themselves values con-
sistent with their predecessors or verify the consistency 
of their assigned values. When a node senses a dead-
end it assigns its value field a "*" and initiates a back-
ward phase. When the network is consistent (all the 
processors are in an OFF mode) the forward and back­
ward phases continue, where the forward phase is used 
to verify the consistency of the network and the back­
ward phase just returns the privilege to the root to start 
a new forward wave. Once consistency verification is 
violated, the node sensing the violation initiates a new 
value-assignment. Since the root has no ancestors, it 
does not check consistency. It only assigns a new value 
at the end of each backward phase, when needed, and 
then initiates a new forward phase. A more elaborate 
description follows. 

An internal node can be in one of three situations: 

• Node i is act ivated by i ts parent wh ich is in 
an ON mode (this is the forward phase of value 
assignments). In that case some change of value 
in one of its predecessors might have occurred. I t , 
therefore, finds the first value in its domain that is 
consistent with all its predecessors, puts itself in an 
ON mode and passes the privilege to its children. If 
no consistent value exists, it assigns itself the" *" 

2Note that this is well defined since we prove thai even­
tually all siblings have the same parent-tag. 
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value (a deadend) and passes the privilege to its 
parent ( ini t iat ing a backward phase). 

• N o d e i is ac t i va ted by i t s pa ren t w h i c h is in 
an OFF m o d e . In that case it verifies the consis­
tency of its current value with its predecessors. If 
it is consistent it stays in an OFF mode and passes 
the privilege to its children. If not, it assigns itself 
a new value, moves to an ON mode, and passes the 
privilege to its children3. 

• N o d e i is ac t i va ted by i t s ch i l d ren (backward 
phase). If one of the children has a V value, the 
processor selects the next consistent value from its 
domain and passes the privilege to the children. If 
no consistent value is available, it assigns itself a "*"  
and passes the privilege to its parent4. If all children 
have a consistent value, i passes the privilege to its 
parent. 

The value-assignment protocol is uniform since each 
node has both the root's protocol and the non-root's 
protocol and wil l decide between them based on the role 
assigned to it by the DFS-tree protocol. 

The self-stabilization property of the NC protocol is 
inherited from its subprotocols; DFS-tree generation, 
privilege-passing and value-assignment. Once the self-
stabilization of privilege-passing is established, it assures 
the adequacy of the control for distributedly implement­
ing DPS-based backjumping, which guarantees the con­
vergence of the network to a legal solution, if one exists, 
and if not it keeps checking ail the possibilities over and 
over again. 

3.3 C o m p l e x i t y analysis 

A crude estimate of the time complexity of the NC pro­
tocol can be given by computing the maximal number 
of state changes from the time the privilege-passing has 
stabilized unti l final convergence. The search space that 
is generated by the sequential DFS-backjumping obeys 
the following recurrence: Tm = l+b-k'Tm-x wi th To = 1, 
which yields Tm — (b . k ) m + 1 where Tm stands for the 
search space generated by sequential DFS-backjumping 
with depth m or less, b is the maximal branching degree 
and k bounds the domain sizes. Our bound improves the 
one presented in [Freuder and Quinn, 1987]. Note that 
since 6m < n we get that Tm = 0 ( n k m + 1 ) , Clearly, in 
the worst parallel execution we get a sequential behav­
ior with the same time complexity — exponential in the 
depth of the DFS-tree. However, often, due to parallel 
instantiations of different subtrees, the parallel protocol 
may have, on the average, a significant speedup over the 
sequential one. We believe that the speedup (of our pro­
tocol over the same sequential algorithm) is of 0(n/m). 
As an extreme example, consider problem instances that 

3A leaf, having no children, is always activated by its par­
ent and always passes the privilege back to its parent (initi­
ating a backward phase). 

4Due to the privilege passing mechanism, when a parent 
sees one of its children in a deadend it has to wait until al l 
of them have given him the privilege. This is done to guar­
antee that all subtrees have a consistent view regarding their 
predecessors' values. 
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have a backtrack-free solution along the DFS ordering. 
These wi l l be solved in 0(n) sequentially, while in 0(m) 
in parallel. To conclude, our protocol convergence can be 
achieved in polynomial time for networks with a bounded 
depth of the DFS-tree, 

The average performance of the NC protocol can 
be further improved by adding to it a uniform self-
stabilizing arc-consistency subprotocol [Mackworth 
and Freuder, 1985]. A network is said to be arc-
consistent if for every value in each node's domain there 
is a consistent value in all its neighbors1 domains. Arc-
consistency can be achieved by a repeated execution of a 
"relaxation procedure", where each node reads its neigh­
bors' domains and eliminates any of its own values for 
which there is no consistent value in one of its neighbors' 
domains. This protocol is clearly self-stabilizing. 

4 Network Consistency for Trees 

In the rest of the paper we discuss protocols for a re­
stricted class of network topologies — trees. Our aim 
is to see whether such a restricted class of problems can 
be solved using the more relaxed, uniform, distributed 
model, and whether it can result in a more efficient pro-
tocol. 

It is well known that the sequential network consis­
tency problem on trees is tractable, and can be achieved 
in linear time [Mackworth and Freuder, 1985], A special 
algorithm for this task is composed of an arc-consistency 
phase (that can be efficiently implemented on trees), fol-
lowed by value assignment in an order created by some 
roo ted t ree. It has been shown that an arc-consistent 
tree enables back track-free value assignment with no 
deadends [Freuder, 1982]. Applying the general NC pro-
tocol together with the arc-consistency protocol to a tree 
wil l already result in an improved performance: when 
arc-consistency is established, one forward phase of the 
value-assignment protocol wil l assign values to all the 
nodes in linear time since no deadends wil l be encoun­
tered (see also [Dechter and Dechter, 1988]). Therefore, 
the almost-uniform NC protocol if applied to trees is 
guaranteed to converge in a polynomial number of steps. 

Since, the DFS subprotocol of our general algorithm 
was the source for its non-uniformity, we reexamine the 
possibility that for trees, a rooted directed tree can be 
imposed via a uniform protocol. We already showed that 
when using a distributed demon, a uniform, network-
consistency protocol for trees is not feasible. Therefore, 
the only avenue not yet explored is whether under a cen­
tral demon such a protocol does exist. We next show 
that this conjecture is indeed correct. 

4.1 A u n i f o r m t ree-consis tency p r o t o c o l 
In principle a uniform tree-consistency (TC) protocol 
can be extracted from the general NC protocol by 
only replacing the DFS-tree protocol with a u n i f o r m 
roo ted - t ree protocol, since any rooted-tree is also a 
DFS-tree. Since the arc-consistency protocol, the value-
assignment protocol and the privilege-passing protocol 
are already uniform, the resulting TC protocol wil l be 
uniform, as desired. Nevertheless, we wil l show that for 
trees, the value-assignment protocol can be simplified as 



well, while there is no need to have a special privilege-
passing mechanism at a l l . 

The TC protocol consists of the following three sub-
protocols: 

1. arc-consistency 

2. tree-directing 

3. tree-value-assignment 

When the arcs are consistent and the tree has been 
directed, value assignment is eventually guaranteed by 
having each node follow the rule (of the t ree-va lue-
ass ignmen t protocol): " C H O O S E A V A L U E CONSISTENT 

WITH YOUR PARENT'S ASSIGNMENT". Such a value mus t 
exist, since otherwise the value assigned by the parent 
would have been removed by the arc-consistency proce­
dure. Since, as we wi l l show, the tree-directing protocol 
is self-stabili2ing, and since the arc-consistency protocol 
is self-stabilizing as well, the value-assignment protocol 
eventually converges to a consistent solution. 

In order to d i r e c t the tree, we must break the sym­
metry reflected by the identical codes and the lack of 
identifiers, by exploit ing the topology of the tree. For 
this task we use a distr ibuted protocol for rinding the 
centers of a tree [Korach ti al., 1984]. A center of a 
tree is a node whose maximal distance from the leaves is 
min imal . Consider a sequential algori thm that works in 
phases, so that in every phase the leaves of the previous 
phase are removed f rom the tree. In the last phase the 
tree has either one or two connected nodes left. These 
nodes are the centers of the tree. 

Our protocol distr ibutedly simulates the above algo­
r i thm- If only one center exists, it plays the role of a root 
and all the arcs are directed towards i t . When two cen­
ters exist, the direction of the link that connects them 
remains ambiguous and both of them can be viewed as 
a root since all other links are directed towards them as 
before. In this case, each one of the two centers consid­
ers the other one to be its parent, and the tree-directing 
protocol, results in a p s e u d o - r o o t e d - t r e e where the 
centers (one or two nodes) play the root role. 

We claim that this ambiguity w i l l not hurt the tree-
value-assignment protocol at al l . Note that the "f i rst" 
center that applies the assignment protocol, assigns it-
self a value consistent w i th the other. When the other 
one is scheduled, it is supposed to assign itself a value 
that is consistent w i th the first one. However, its cur-
rent assignment is already consistent (since the first one 
has taken care of that already) and thus it remains un-
changed. A l l other nodes assign values that are consis-
tent w i th their parents as before. The central demon 
policy assures that only one (neighboring) center w i l l be 
scheduled each t ime. 

This approach yields a relatively simple uniform tree-
directing protocol that simulates the above description. 
Assume the number of nodes in the network5 is n. Every 
node i has the fol lowing fields: 

5We can overcome the necessity of knowing the size of the 
network by using dynamic memory allocation. However, for 
the sake of the simplicity of the code we assume the knowl-
edge of n. 

N i[0. [ n /2 ] ] - a vector that counts the number of i'S 
neighbors in each phase of the sequential algori thm. 
N i [j] records the number of neighbors of t in phase j. 
If Ni[j] = 1 it means that i becomes a leaf in the j-
th phase (although it may be init ialized incorrectly). 
Ni[O] is repeatedly initialized to the number of VB 
neighbors in the network (so that JVj[0] = 1 means 
that i is a leaf in the original tree). 

parent i - a variable assigned the value j if node j be­
comes the parent of i (the enumeration is local to 
i ) . When the network stabilizes, namely when all 
the iV-vectors converge, every node has one neigh­
bor only that is eligible to be its parent, except a 
single center which has none, and no two nodes arc 
parents of each other except, perhaps, the two cen­
ters. 

The protocol works by having each node scan its neigh­
bors' jV-vectors and compute its own accordingly. Since 
the j - t h entry of vector N i represents the number of 
i's neighbors in the j - th phase, its value is recursively 
computed by decreasing the number of neighbors that 
became leaves from the entire number of neighbors in 
the previous phase. Each node chooses as its parent the 
neighbor that was not removed from the tree earlier than 
itself. Figure 4 presents a pseudo-code for the protocol. 
Recall that the code is repeated forever, although from 
some point on, the tree does not change. 

A proper convergence of the iV-vectors is guaranteed 
by the fact that Ni[j] depends only on Ni[j] - 1] and 
{Nk[j-l] k€ neighbors(i)}, which are properly updated 
earlier. The base of this iterative convergence is applied 
by assigning to Ni[0] the actual number of neighbors of 
i in the network. 

The complexity of the tree protocol is clearly linear 
in the network's size since all its subprotocols are, and 
hence it equals the sequential t ime complexity. However, 
the parallel t ime can be further linearly bounded by the 
d i a m e t e r of the tree where the diameter is the longest 
path between any two leaves of the tree. 

5 Conclusions 

The results presented in this paper establish theoretical 
bounds on the capabilities of connectionist architectures 
and other distributed approaches to constraint satisfac­
t ion problems. 

The paper focuses on the feasibility of solving the 
network consistency problem using self-stabilizing dis­
tr ibuted protocol, namely, guaranteeing a convergence 
to a consistent solution, if such exists, from any ini t ial 
configuration. Such property is essential for dynamic 
environments, where unexpected changes could occur in 
some of the constraints. 

We proved that a uniform protocol, one in which all 
nodes are identical, cannot solve the network consistency 
problem even if only one node is activated at a t ime. 
Consequently, although such protocols have obvious ad-
ventages and are closer in spirit to neural networks ar­
chitectures, they cannot guarantee convergence to a so­
lut ion. On the other hand, distinguishing one node from 
the others is sufficient to guarantee such a convergence 
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Figure 4: Uniform tree-directing procedure for node i 

even when sets of nodes are activated simultaneously. A 
protocol for solving the problem under such conditions 
is presented. 

We then demonstrated that, when the network is re­
stricted to trees, a uniform, self-stabilizing protocol for 
solving the problem does exist, but only under asyn­
chronous control (one neighboring node is activated at a 
time). 

It is stil l an open question whether a uniform proto-
col is feasible under some specific ordering of the asyn­
chronous activation. 

Regarding time complexity, we have shown that in 
the worse-case the distributed and the sequential pro-
tocols have the same complexity bound; exponential in 
the depth of the DFS tree. On the average, however, a 
linear speed up is feasible for bounded depth networks. 
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