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Abstract

In the paper we study a new and natural modal
interpretation of defaults. We show that un-
der this interpretation there are whole families
of modal nonmonotonic logics that accurately
represent default reasoning. One of these log-
ics is used in a definition of possible-worlds se-
mantics for default logic. This semantics yields
a characterization of default extensions similar
to the characterization of stable expansions by
means of autoepistemic interpretation.

We also show that the disjunctive information
can easily be handled if disjunction is repre-
sented by means of modal disjunctive defaults
— modal formulas that we use in our interpre-
tation.

Our results indicate that there is no single
modal logic for describing default reasoning.
On the contrary, there exist whole ranges of
modal logics, each of which can be used in the
embedding as a "host" logic.

1 Introduction

The default logic of Reiter [1980] is a nonmonotonic for-
malism based on the paradigm of "negation as failure to
prove" and is defined by means of a certain fixed-point
construction. It is a formalism in the language of propo-
sitional calculus (or, in @a more general variant, in the lan-
guage of first-order logic). In 1982, McDermott [1982],
building on the joint work with Doyle [1980], introduced
a large class of modal nonmonotonic logics. He proposed
a general scheme which, also using "negation as failure
to prove" and a fixed-point construction, assigns to each
monotone modal logic its nonmonotonic variant. The au-
toepistemic logic of Moore [1985], an important modal
formalism, belongs to the McDermott-Doyle's family of
logics (see [Shvarts, 1990]). In recent years there have
been numerous attempts to explain and exploit the na-
ture of the relationship between the default logic and
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modal nonmonotonic logics. There are two main rea-
sons behind the interest in this particular research area.
Firstly, modal nonmonotonic logics often have clear, in-
tuitive semantics (for example, list semantics [Moore,
1985], possible-world semantics [Moore, 1984; Konolige,
1988], or preference semantics [Shoham, 1987]), and the
default logic lacks one. By embedding the default logic
into a modal nonmonotonic logic with an elegant seman-
tics, insights into semantic aspects of default logic can
be gained. Secondly, the automated inference methods
for the "host" modal nonmonotonic logic could be used
as a uniform tool for handling default theories.

The default logic was first embedded into a variant
of autoepistemic logic by Konolige [1988]. Marek and
Truszczynski [1989; 1990] proposed to embed default
logic into the nonmonotonic variant of the logic of neces-
sttation N — the modal logic that does not contain any
modal axiom schemata and uses modus ponens and ne-
cessitation as inference rules. Recently, Lin and Shoham
[1990] defined yet another, this time bimodal, nonmono-
tonic logic, which they called the logic of grounded knowil-
edge (denoted GK), and provided an interpretation of
the default logic within logic GK.

Each of these approaches has some disadvantages. We
discuss them briefly in the next section. In this paper we
consider another interpretation of defaults in the modal
language. It is somewhat related to the approach of
Siegel [1990] to modal nonmonotonic logic'. We argue
that our translation avoids the problems of the trans-
lations used iIn the earlier approaches. We show that
under this new interpretation, default logic can be faith-
fully embedded into any of the whole range of modal
nonmonotonic logics. As a consequence, possible-worlds
semantics for these modal logics yield possible-worlds
semantics for default logic, and their automated proof
methods (whenever exist) can be applied to default the-
ories. For example, in Section 4, we choose logic S4F,
that has a particularly well-structured possible-world se-
mantics, to obtain possible-world semantics for default
logic.

An important feature of the new translation is that
it easily lends itself to an extension suitable for default

"I would like to thank Vladimir Lifschitz who informed me
about the work of Siegel after seeing the preliminary version
of my paper.

Truszczynzki 393



reasonings with indefinite information in the form of dis-
junction, and generalizes the formalism for such reason-
ings introduced recently by Gelfond [1990]. In Section 5,
we introduce this extension, relate it to an earlier work
of [Gelfond, 1990] and [Gelfond et al., 1991], and apply
our formalism to discuss the "broken hand" example of
Poole [1989].

Our results bring up the following general question:
how essential in explaining default reasonings are those
aspects of modal logics that are specifically concerned
with properties of the modality? Earlier investiga-
tions [Konolige, 1988], [Marek and Truszczynski, 1990],
[Siegel, 1990], implicitly suggested that there may be
some relationship between the properties of the modal-
ity and default logic by centering around the question
of what is the right modal logic for the embedding
to work (logics K45 [Konolige, 1988], N [Marek and
Truszczynski, 1990] and T [Siegel, 1990] were consid-
ered). But there seem to be no reason for any connection
between default reasonings and modal axioms to exist.
Default reasonings first use a certain mechanism ("nega-
tion as failure to prove") to establish defaults applicable
In a given situation and then proceed like in a classical
first-order case. In the whole process there is no place
where properties of the modality (like standard modal
axiom schemata) might intervene.

Our results support this view by showing that there is
a significant degree of freedom in the choice of the "host"
modal nonmonotonic logic — any out of the whole family
of (drastically different) modal nonmonotonic logics will
do. An analysis of the translation proposed by Konolige
reveals the same "insensitivity" to the choice of modal
logic (see [Truszczynski, 1991a]), and Lin and Shoham
[1990] make a similar observation in the case of their
approach.

2 Previous approaches to the problem
of representing default logic as a
modal system

Theories in default logic are pairs (D,W), where W is
a collection of formulas in some propositional language
L, and D is a collection of nonstandard inference rules,
called defaults, that are of the form

a, MBy,...,MpBp
— ""T"""' ’

To apply default (1) and conclude 7, as in the case
of standard inference rules, one first has to establish all
its premises. The premises of defaults are of two types.
Premise a is treated in a standard way — o has to be
proved before the default can be applied. Premises M g;
are treated differently. This i8 the place when we depart
from standard monotone systems. We interpret M f; as
“B; 18 possible” (which is emphasized by the use of the
modal operator M) and define this as consistency of 5
with some theory S (the potential collection of conse-
quences of a default theory). Thus, M G; is established
if S -5,

Such treatment of the premises of defaults leads to
a nonstandard consequence operator, I'p w(S) [Reiter,

(1)
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1980]. For a theory W C L, T p w{S) consists of all facts
that can be proven from W by means of propositional
calculus and defaults in 1), applied as explained above
(with S used in consistency checking). If Ltheory S coin-
cides with the set I'p w(S) of such consequences of W,
that is, i

S =Tpw(S), (2)

then S is called an eztension of a default theory (D, W)
and is regarded as a candidate (many theories S may
satisfy (2)) for the set of nonmonotonic consequences of
(D, W),

A similar approach to nonmonotonicity but within the
language of modal logic £ — an extension of £ by a
modal operator L interpreted as “is known” — was pro-

osed by McDermott and Doyle [1980] and McDermott
1982]. The operator M, mentioned earlier, is simply an
abbreviation for -~L-. The idea was that modal formulas
would play the tole of defaults, and the standard conse-
quence operator Cng for a selected modal logic § would
replace the nonstandard consequence operator I'p (S).
To achieve nonmonotonicity, the theory I encoding the
knowledge of a reasoning agent was extended by the for-
mulas expressing “negation as failure to prove” that is,
by the formulas ~Ly for ¢ € T. Theory T (playing the
same role as S for default logic) is potentially the col-
lection of nonmonotonic consequences of I. If T agrees
exactly with consequences in logic S of JU{~Lg:p ¢ T
that is, if

T=Cng(IU{-~Lg:p €T)), (3)

then T is called an S-expansion of I, and 1s regarded as
a candidate (equation (3) may have multiple solutions)
for the set of nonmonotonic S-consequences of J.

A variant of nonmonotonic modal logic was recently
introduced by Kaminski [1991] and furtber studied in
[Truszczynski, 1991b] (see also [Konolige, 1988]). In-
slead of extending I by all formulas given by “negation
as failure to prove”, I is extended only by the results
of application of this rule to modal-free formulas of T
Formally, theory T is a ground S-expansion of [ if

T = Cns(1U{-Lp:¢ € L\T)). (4)

This approach, by restricting the applicability of the
“negation as failure to prove” rule to modal-free formu-
las, results in nonmonotonic formalisms more robust to
updates in the initial theory 7. In addition, since modal
nonmonotonic logics based on (4) apply “negation as fail-
ure” only to modal-free formulas — all that is required in
default logic —— they seem especially suitable for study-
ing default reasonings.

Before we continue, let us recall one more important
notion. A theory T C L 18 stable if it 1s ¢losed un-
der propositional consequence and necessitation, and if
for every o € T, =Ly € T. It is well-known that S-
expansions and ground S-expansions are stable (for the
latter to hold, we require that § be normal). Stable sets
are uniquely determined by their objective part [Moore,
1985;: Konolige, 1988). That is, for each § C £ there is
exactly one stable set T such that TN L = Cn(S), where
Cn stands for the consequence operator of propositional
calculus. We will denote this unique stable set by St(S).



There have been several attempts to embed default
logic into a modal nonmonotonic logic.
(1) Konolige [Konolige, 1988] proposed to interpret a
default d given by (1) by the formula

embg(d) = La A=L-fiA.. . A=L=F, = v {b)

This translation can be extended to a default theory
(D, W) by setting

EmbK(D, W) = Wu {Eﬂlbﬂ'(d): d € D}

Under this interpretation no modal nonmonotone logic is
known to faithfully capture default reasoning. An addi-
tional modification of emnbg (2, W) is needed. This mod-
ification, involving a stable theory T, yields a subtheory
of embg (D, W) referred to as the reduct of embp (D, W)
with respect to T. Konolige proved that a consistent and
closed under provability theory S is an extension of a
default theory (D, W) if and only if St(S) 1s a ground
K45-expansion of the reduct of embg (D, W) with re-
spect to St(S). For the same interpretation, Marek and
Truszczynski [1989) showed a similar result: a consistent
and closed under provability theory S 1s an extension of
a default theory (D, W) if and only if S¢(S) is an N-
expansion of the reduct of embg (D, W) with respect to
St(S).

The problem with the approach of Konolige is that
the concept of reduct is representation dependent —
logically equivalent theories may have reducts that are
not logically equivalent. Consequently, in modal systems
using the concept of reduct, syntactically different but
logically equivalent theories may have different conse-
quences. Moreover, as we will argue later, this transla-
tion cannot be used to handle reasonings with disjunc-
tion.

(2) In another paper Marek and Truszezynski [1990] in-
troduced a different translation of the default (1):

LaA-LL-iA...ALL-f, = ~. (6)

UInder this interpretation consistent extensions of
(D, W) correspond exactly to N-expansions of the trans-
lation of (D, W). This was the first result which embed-
ded default logic into a modal nonmonotonic logic in
McDermott-Doyle’s family. The main disadvantage of
this approach is that the interpretation used does not
have a natural, intuitive justification.

(3) Lin and Shoham [Lin and Shoham, 1990] do not use
the scheme of McDermott and Doyle. They introduce
a modal nonmonotonic logic with two modalities. They
define semantics of this logic by modifying the concept of
preference semantics and faithfully embed default logic
into their logic. The solution is elegant but requires two
modalities, which introduces an extra degree of complex-
ity.

3 New modal representation of default
logic
The translation we propose is based on the most natu-

ral interpretation of a default d = M;"*Mﬁ 2: 1f a,

MpB,,...,M3, are known to an agent then the agent
knows 4. Such interpretation treats defaults in the

same way as standard inference rules are treated — ali
premises must be known — the only difference 15 that
premises are of two types. This new interpretation can
be encoded faithfully in the language of modal logic by
the formula

emb(d) = La ALMB A .. .ALMB, = Ly. (7)

We extend now this definition to the case of default
theories. Let {D, W) be a default theory. A modal the-
ory representing (I}, W) is defined by

emb(D, W) = {Lp:p e W} U {emb(d):d € D}. (8)

In the rest of the paper, we assume familiarity with ba-
sic concepts of {monotone) modal logic. For all undefined
concepts the reader is referred to Huges and Cresswell
[1984]. All modal logics considered in this paper con-
tain propositional calculus and use necessitation (/L)
as an additional inference rule. Besides standard modal
logic systems like K, T, S4, $5 and K45, we will con-
sider the following two logics:

1. T~ -— the logic containing only axiom schema T,

2. S4F — the logic determined by the class of Kripke
frames with the accessibility relation of the form
(M x M)U(M; x My)U(My x M,), where M, and
M, are disjoint (M, may be empty) and contain all
the worlds of the model. Logic S4F contains logic
S4 and s included in logic $5. It can be axioma-
tized by the axiom schemata of $4 and the followng
additional axiom F: ¢ A MLy = L{Mp V ¢} (see
[Segerberg, 1971]).

Our first theorem contains the main result of the pa-
per.

Theorem 3.1 Let (D, W) be a defaull theory and let
S C L be consistent and closed under proposilional con-
sequence. The following conditions are equivalent:

1. S s an extension of (D, W),

2. SHS)=Cnp_(emb(D, W)U {-Le:@¢ & SUS)}}),

3. St(S) = Cnglemb(D, W)L {-Lp:p ¢ Si(S})), for
any modal logic § such that T~ C S C S4F,

4. SHS) = Cngyqp(emb(D, W)U {—Ly:p & Si(5)}).

Thus, under the translation (7) — (8) for any of a
big range of modal logics (T~ — S4F) its nonmono-
tonic variant (exactly as introduced in [McDermott and
Doyle, 1980; McDermott, 1982]) can be used to express
default reasonings, without the need for representation-

dependent concepis like reduct.
Let us now consider representing default reasoning 1n

ground modal nonmonotonic logics. We will again use
our new translation of defaults. A similar result to the
previous one holds: there 18 a whole range of logics that
can be used for an embedding.

Theorem 3.2 Let S be any logic such that T C S C
S4F. A consisient and closed under propostfional prov-
ability theory S ts an exiension of e default theory
(D, W) if and only if Si(S) is a ground S-expansion of
emb(D, W).

This theorem will be used in the next section in a def-
inition of a possible-words semantics for default logic,
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where logic S4F, which has a relatively simple Kripke-
model characterization is selected as a modal counter-
part of default logic.

Even larger range of equivalent logica, in the sense
of faithful representation of default reasoning, can be
found if the concept of ground expansion i8 combined
with the concept of the reduct of embd(D, W} In such
case any of the logics from the range T — S5 can be
used. Similarly, for the original approach of Konolige
[1988] (translation embyx combined with the concept of
reduct), we can prove that any of the modal logics in
the range K — S5, and not only logic K45 used in
[Konolige, 1988], allows us to faithfully encode default
logic (see [Truszczynski, 1991a) for details).

4 Possible-worlds semantics for default
logic

In the previous section we have presented two results
etnbedding default logic into nonmonotonic modal logics
of McDermott and their ground variants. In each case
we have a significant degree of freedom in choosing the
underlying monotone logic. In this section, we make use
of this freedom. Our approach is based on Theorem 3.2,
and for logic & we choose S4F'.

A (defauli) model is a triple M = (M, M3, V), where
M, and M, are sets such that M; "M, = B and M, # §,
and V 1s a function assigning to each m € M a proposi-
tional valuation V{m).

We say that a formula ¢ 1s true {holds) in a world m of
M) U My if ¢ 18 true in the valuation V{(m) (in symbols:
(M,m) = ¢). We say that a pair (M, m), where m €
M, satisfies default (1) (in symbols, (M, m} = d) if
whenever o 15 true in all worlds in M, U M, and each
3; holds in at least one world of M3, then ~ holds in all
worlds in M; U M;. We say that a pair (M, m), where
m € M,, satisfies default (1) {( M, m) = d) If whenever
o 18 true in all worlds in M+ and each f; holds in at least
one of the worlds in M,, then v holds in all worlds in
Ms>. In a standard way, we define now satisfiability of
a default by a model. Namely, M |=d, f (M, m) 4
for each m € M; UM,. In a similar fashion, we define
satisfiability of a formula by a model: forp € L, M E ¢
if ¢ 15 true 1n all worlds from M; U M.

Note that for each model A there is an equivalent
mode] M’ = (M, M,, V') (that is, for each default d,
M = d if and only if M’ |= d) such that valuations
assigned to worlds in M/, i = 1,2, are distinct. Conse-
quently, if £ has only finitely many propositional vari-
ables, then each model has an equivalent finite model.

In commonsense reasoning we often restrict the class of
models by imposing additional conditions. For example,
Moore’s autoepistemic interpretations of the language
L1 [Moore, 1985] are defined with respect to a theory
T C Lg, called the modal index of an interpretation. A
valuation v of £ is autoepistemic with respect to T if
v(Ly) = 1 if and only if ¢ € T. The class of autoepis-
temic interpretation has been used by Moore to define
the concept of stable erpansion and the nonmonotonic
formalism called autoepisiemic logic.

In this paper, we proceed similarly. Let § C £. A
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mode| M is called sirongly consisient with S
{p € Liv(g)=1, foreveryve V3} CS.

Let (D, W) be a default theory. We say that (D, W)
S-entatls a, where a stands for a default or for a formula
from £, if a i1s satisfied in all models strongly consis-
tent with S in which (D), W) is satisfied. We denote the
relation of S-entailment by 5. We have the follow-
ing theorem providing a characterization of extenstons
analogous to Moore’s definition of stable expansions by
means of autoepistemic interpretations.

Theorem 4.1 Let (D, W) be e default theory. Let S C
L. Theory S 1s an extension of (D, W) sf and only if

S={p€L:(DW) ks ¢},

that 18, if S 18 ezactly the set of all formulas {rue 1n all
S-models of (D, W).

5 Effective disjunction

One of the problems of nonmonotonic formalisms often
is that the semantics of the disjunction operator does
not accurately capture the intuitive understanding of
disjunction [Poole, 1989; Gelfond, 1990). We will show
that our embedding of defaults can be used to handle
disjunction. In commonsense reasoning we often use a
"constructive" or "effective" disjunction — knowing aVb,
each belief set an agent will construct will contain a or
b — instead of the classical, nonconstructive interpreta-
tion in which we may know aVb without knowing which
of the two disjuncts is true. The distinction between the
two can easily be achieved in the modal language. The
"constructive" disjunction can be expressed as La V Lb
and the "noneffective" one by L({aV b).

Let us consider the following example due to Poole
[Poole, 1989], Suppose that normally people's left (resp.
right) arms are usable and people with broken left (resp.
right) arms are exceptions. Suppose also that we remem-
ber seeing a friend with a broken arm, but we cannot re-
member which. Intuitively, we should not conclude that
both his arms are usable. A straightforward default en-
coding of this situation by a default theory (D, W) is as
follows:

D= {M_"ﬂbj’ M—‘abr}.

ul H,—

and
W = {bl = ab;, b, = ab,, b Vbr}.

Clearly, this default theory has exactly one extension and
it contains the formula u; A u,, contrary to the intuition.

The reason for the inadequacy of the default logic to
handle such situations is that default logic does not have
a mechanism to deal with effective disjunction. Recently
an extension of default logic was proposed in [Gelfond ef
al., 1991] which commonsense disjunction is expressed by
means of a new connective. In this extension of default
logic the abovementioned paradox disappears.

Let us now consider the encoding of the above situa-
tion using modal disjunctive defaults of the form:

LaALMBA.. ALMBp =Ly V...VLy. (9



Using such formulas, the Poole’s example can be encoded
as follows (recall that M = —L-):

] = {L-Lab; = Lu;, L-Lab, = Lu,,
L(b; = aby), L(b, = ab,), Lb; v L, ).

Consider now logic S4. In [Shvarts, 1990: Marek ef al.,
1990] S4-expansions are characterized and algorithms
to compute them described. Using these results, one
can find that the above theory has two S4-expansions:
one generated by {ab;,b;,u,} and the other generated
by {ab.,b,, u:}, which coincides with the intuition. The
same result can be obtained for any logic from the range
T~ — S4F.

In fact, more can be shown. Namely, each nonmono-
tonic logic S, for logics S such that T~ C § € S4, and
each ground nonmonotonic logic &, for logics S such that
T C & C S4F, can be used as a nonmonotonic system
capable of distinguishing between “effective” and “non-
effective” disjunction. These 18sues will be discussed in
detail in the full version of the paper.

Let us briefly mention here that formulas used to rep-
resent default proposed by Konolige [1988] and Marek
and Truszczynski [1990] cannot be extended to handle
disjunction, because they use modal-free formulas to rep-
resent consequents of defaults and, thus, cannot distin-
guish between the “effective” and “noneffective” inter-
pretations of disjunction.

6 Conclusions

In the paper we presented a new and natural interpre-
tation of defaults as modal formulas. We have shown
that under this interpretation there are whole families
of modal nonmonotonic logics that accurately represent
default reasoning. We proposed a semantics for default
logic based on the embedding we found.

We also have shown that the disjunctive information
can easily be handled within our modal system, disjunc-
tive defaults.

A very important conclusion of this research is that
there is no single, distinguished modal logic for describ-
ing default reasoning. On the contrary, there exist whole
ranges of modal logics, each of which can be used in
the embedding as a "host" logic. This shows that, in
agreement with the intuition, in order to capture default
reasoning the most important step is to translate into a
nonmonotonic modal system the principle of "negation
as failure to prove". Once this is made, then the choice
of particular modal axiom schemata is of secondary im-
portance, in fact, there is a large degree of freedom in
which of them to choose.

7 Proof of Theorem 3.1

Let us define in a precise way the operator I'p w (5). To
this end, let us introduce a formal system PC + (D, 5)
as the formal system containing propositionai calculus
and an additional set Dg of inference rules, where Dg =

{%IMED and S -8, 1 <i<n} By

I'pw(S) we denote the set of all formulas that have a
proof from W in the system PC + (D, S). It is well-
known that T'p w (S) can alternatively be defined as the

minimal set closed under provability in PC+(D, S) that
18, the minimal set closed under propositional provability
and the rules in Dg (this is the original definition of
I'p w{5) given in [Reiter, 1980]).

Throughout the proof we use the following abbrevia-
tions: T = SY(S) and I = emb(D, W), The reduct of
emb( D, W) with respect to St(S) (in symbols: [y) is the
theory containing {Ly: ¢ € W} and formulas Lo = L+,

such that for some 3, ... B, M& € D and for
alli, =3; ¢ S. Ig = Rlemb(D, W), 51(5)). We will also
use the following facts listed below:
P1l: For a normal modal logic &, and for S C L, if
5 C Cng(I U {~Lp:p € L\ Si{S)}), then St(S) €
Cng({TU{=Lp:p € L\ St(S)}) ([Truszczynski, 1991b]).
For any modal logic § containing necessitation, and for
SCLASCCng(Iu{-Lo:p & St(S)}), then St(S) C
C'ng](ILJ {~Ly:p ¢ 5t(5)}) ([Marek and Truszezynski,
1990));
P2: If S C T C 85 are two modal logics with necessi-
tation, then each S-expansion of [ 1s a T-expansion of /
([McDermott, 1982])):
P3: Logic S5 18 complete with respect to the class of
universal Kripke models that 1s, models with a universal
accessibility relation {[Hughes and Cresswell, 1984]);
P4: Each consistent stable set i1s of the form {o: M
¢}, for some universal Kripke model M [Moore, 1984]:
P5: Stable sets are closed under provability in S5 ([Me-
Dermott, 1982]);
P6: A theory S C £ closed under propositional con-
sequence, 18 closed under rules in Dg if and only if
emd(D, W) C St(5) if and only if /g C St{S) (straight-
forward to prove).
1 = 2. Assume that § = I'p w(S5). Then, if p € §,
¢ has a proof ©y,...,p0,(= ¢) from W 1n the system
PC + Ds. We will show, by induction on the length of
the proof, that ¢ € Cnp_{emb(D W)U {-Lp:9 & T}).
Assume that the claim holds for all formulas in & with
proofs of length < n. If p,(= ) 1s a tautology or s a
member of W, then ¢ € Cnp_(emb(D, W)U {-Lyp:¢ ¢
T}). If ¢, is oblained from ¢;, ;. where ¢,7 < n, by
means of modus ponenes, then the induction hypothesis
applies and ¢;, ¢; € Cnp_{emb(D, W)U{~Lyp:p & T}).
Consequently, ¢ € CnT_(emb(D, Wiu{-Le:w g T}).
The last possibility is that ¢, is obtained from
pw¢, 1 < n, by mcans of a rule f’- € De¢. Then,

there is a defauli d = e M8 MBm = D guch

P
that all -3 €& S. Consequently, all L-L-fF €
Cnp_(emb(D, W)U {-Lp:p ¢ T}). By the induction
hypothesis, ¢; € Cnp_(emb(D, W)U {~Ly:p € T1).
Thus, Lg; € Cnp_(emb(D, W)U {~Ly:¢ ¢ T'}). More-
over, emb(d) = Lp; A L-L-8) A .. A L-L-fBy = Loy
1s a member of Cnp_(emb(D, W)U {-Lyg:@ & T}) (re-
call that M = —~L—). Thus, Ly, € Cnp_{emb(D, W)U
{-~Leg:¢ ¢ T}). Applying axiom T, we get that pn(=
@) € Cnp_(emb(D, W)u {-Lp.9o € T}).

By P1, it follows that St(S) C Cnyp_(emb(D W)U
{~Le: ¢ & T}). To prove the converse inclusion, observe
that St(S) is closed under provability in T~ (by PJ),
St(S) 2 emb(D, W) (since S is an extension of (D, W),
S is closed under rules from Ds and P6 applies). Finally,
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since T = St(S) and St(S) is stable, {~Lyp:p ¢ T} C
St(5).

2 => 3 and 3 = 4. These implications follow by P2.

4 = 1. The definition of the reduct yields

CHS‘IF(IU{*—nan:-p f T}) = CHSE(IRU{-:L@?: © & T})

Thus, 5t(5) = Cngyqp(lrVU {~Ly:p g SHT)}).
Next, we will show that

St(S) = Cngg{IrU {~Lyip € L\ TY).

Since T 15 stable, T 18 closed under provability in S5
(by P5). In addition, {-~Ly:p € L\ T} € T. Thus,
Cngg(IrU{~Ly:p € L\T}) C T. To prove the converse

inclusion it suffices, by Pl, to show that
S C Cngg(IrU{~Lp:p € L\T}).

Consider ¢ € 5§ and any umversal Knipke mode] AM =
(M,R,V) such that M = IgU {~Lp:p € L\ T}. Let
M = (M RV}, MNM' =9, be a universal Kripke
model such that T = {¢: M’ = ¥} (apply P4). De-
fine N = (M" R",V"), by letting M" = M UM’
RF=RUMx MYUR and V" = VUV’ It follows
from the definition of A that A, m’ | {-Le:p & T},
for every m’ € M’. Thus, also for every m € M,
N,m |= {-Lyp:p ¢ T}. Next, it i8 easy to see thal
if ¥ € £ then A,m |= ¢ if and only if M, m }= ¢, and
N,m E Ly if and only if M,m |= Ly. Thus, for ev-
ecyme€ M, Nm k= Ig. Since Ig C T, M',m = Ip,
for every m € M'. Consequently, N.m |= [g, for ev-
ery m € M’. Summarizing, N k& Igu {-Le.p ¢ T).
By the definitions of the model A" and of the logic S4F,
it follows that N = ¢. Thus, M = ¢ and, by P3,
L € CHS5(IR U {ﬂLWHP €L \ T})

Now, St(5) is a ground S5-expansion of Ix and, by
a result of Kaminski {Kaminski, 1991}, St(S) is a min-
imal stable theory containing I'p. Consequently, S i1s a

minimal set closed under rules from Dg. Hence, S is an
extension of ([, W). O
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