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Abstract 

During the past decade, knowledge represen­
tation research in AI has generated a class of 
languages called term subsumption languages 
(TSL), which is a knowledge representation 
formalism with a well-defined logic-based se­
mantics- Due to its formal semantics, a term 
subsumption system can automatically infer 
the subsumption relationships between con­
cepts defined in the system. However, these 
systems are very l imited in handling vague con­
cepts in the knowledge base. In contrast, fuzzy 
logic directly deals wi th the notion of vagueness 
and imprecision using fuzzy predicates, fuzzy 
quantifiers, linguistic variables, and other con­
structs. Hence, fuzzy logic offers an appeal­
ing foundation for generalizing the semantics 
of term subsumption languages. Based on a 
test score semantics in fuzzy logic, this paper 
first generalizes the semantics of term subsump­
tion languages. Then, we discuss impacts of 
such a generalization to the reasoning capabil­
ities of term subsumption systems. The gener-
alized knowledge representation framework not 
only alleviates the difficulty of conventional AI 
knowledge representation schemes in handling 
imprecise and vague information, but also ex­
tends the application of fuzzy logic to complex 
intelligent systems that need to perform high-
level analyses using conceptual abstractions. 

1 In t roduct ion 

During the past decade, knowledge representation works 
in AI have generated a class of languages called 
term subsumption languages (TSL), which is a knowl­
edge representation formalism with a well-defined logic-
based semantics. Using a TSL, a knowledge en­
gineer can explicitly describe defining characteristics 
of concepts (unary terms) and roles (binary terms) 
[Patel-Schneider et al. 1990]1. The major strength of 
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'A role in a TSL corresponds to a slot in other frame-
based systems. 

term subsumption systems is their reasoning capabil­
ities offered by a classifier. The classifier is a spe­
cial purpose reasoner that automatically infers and 
maintains a consistent and accurate taxonomic lat­
tice of logical subsumption relations between terms 
[Schmolze and Lipkis 1983], These formalisms gener­
ally descend from the ideas presented in KL-ONE 
[Brachman and Schmolze 1985]- Term subsumption lan­
guages are a generalization of both semantic networks 
and frames because the languages have well-defined se­
mantics, which is often missing from frames and seman­
tic networks [Woods 1975, Brachman 1983]. 

Term subsumption languages are l imited to express-
ing crisp concept definitions. However, many useful con­
cepts that are needed by an intelligent system do not 
have well-defined boundaries, i.e., they are vague con­
cepts. For instance, we may say that a baseball player is 
a good hitter if the person's hi t t ing ratio is fairly high. 
In an intelligent monitoring and control system, we may 
wish to define a critical valve as a valve that has a low 
tolerance of pressure. In all these examples, a concept is 
defined by referring to other vague terms such as "fairly 
high hit t ing ratio" and "low pressure tolerance". It is 
the difficulty to express these vague concepts in term 
subsumption languages that motivates us to generalize 
the languages. 

Fuzzy logic, which is a generalization of conventional 
logic, directly deals with the notion of vagueness and im-
precision using fuzzy predicates, fuzzy quantifiers, l in­
guistic variables, and other constructs. Thus, it offers 
an appealing foundation for generalizing TSL to capture 
imprecise and vague linguistic terms. In particular, the 
test score semantics in fuzzy logic allows us to easily gen­
eralize the term forming expression in TSL into elastic 
constraints, which can be satisfied to a degree. 

In the following sections, we first introduce the ba­
sics of term subsumption languages and test score se­
mantics as a background. Section 3 generalizes the se­
mantics of term subsumption languages and describes a 
complete and sound subsumption test algorithm for a 
simple fuzzy term subsumption language. A discussion 
of related works then follows. Finally, we summarize the 
potential benefits of our approach. 
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2 Background 
2.1 T e r m S u b s u m p t i o n Languages 

A term subsumption languages (TSL) distinguishes two 
kinds of concepts: primit ive concepts and defined con­
cepts. A primit ive concept is a concept whose definition 
can not be stated in the language; a defined concept is 
a concept whose definition is described using other con­
cepts and a set of concept forming expressions provided 
by the language. Value restriction and number restric-
tion are two concept forming constructs that are offered 
by almost all TSL's. A value restriction restricts the 
type of a role value (i.e., slot value), while a number re-
striction constrains the cardinality of a role value. In 
this paper, a value restriction wil l be expressed in the 
form of ( : a l l R C) which means that all values of the 
role R are of type C. A number restriction can be either 
in the form of ( : a t - l e a s t n R), which means that the 
role R has at least n values, or in the form of ( :a t -most 
n R), which states that the role R has at most n values. 

To describe the formal semantics of these concept 
forming constructs in TSL's, we need to introduce the 
following terminology. A terminological knowledge base, 
denoted by X, consists of concepts and roles (which are 
also called relations in some TSL's) defined using a term 
subsumption language. An interpretation IT of T is a 
pair (V, £) where V is a set of individuals described by 
terms in T and € is an extension function that maps 
concepts in T to subsets of D, and roles in T to subsets 
of the Cartesian product, D x D , Based on these nota­
tions, we describe the semantics of some term forming 
expressions in TSL's below [Nebel 1988]: 

2.2 Test Score Semant ics 
In 1981, while the first KL-ONE workshop was be­
ing held, Lotfi A, Zadeh was advocating a meaning-
representation language called PRUF based on possibil­
ity theory in fuzzy logic [Zadeh 1978b]. The semantics 
underlying PRUF is what Zadeh referred to as test score 
semantics, which interprets the meaning of a predicate as 
having an elastic constraint on objects in the database 
[Zadeh 1981, Zadeh 1982]. In PRUF, a query is pro-
cessed by first applying a sequence of tests to database 
objects, yielding a collection of test scores. By aggregat­
ing these test scores, the system obtains an overall test 
score that measures the compatibil ity between the query 
and the database. 

Test-score semantics is more general than the seman­
tics of term subsumption languages, in which test scores 
are l imited to true and fate- Unlike KL-ONE, however, 

PRUF was not concerned about developing efficient spe­
cial purpose reasoners. By combining works in these two 
areas, we can develop a knowledge representation system 
that takes advantage of both the generality of test score 
semantics and the efficient reasoning capabilities of term 
subsumption systems. 

3 Generalizing the Semantics of Term 
Subsumption Languages 

In this section, we generalize the semantics of term sub­
sumption language. First, we generalize the extension of 
a term and the subsumption relationship between terms. 
Then we describe how various concept forming expres­
sions can be generalized into elastic constraints using 
test score semantics in fuzzy logic. 

3.1 Genera l i z ing t he Ex tens ion Func t i on and 
the S u b s u m p t i o n Re la t ionsh ip 

We first generalize the extension function £ such that 
the extension of a concept is a fuzzy subset of V, and 
the extension of a role is a fuzzy subset of V x V. A fuzzy 
subset C of Pis characterized by a membership function 
uc that maps elements of Dto the interval [0, 1]. The 
degree to which an element x of V belongs to a concept 
C is denoted as uc (z)- Similarly, the degree to which 
an ordered pair < x,y > belongs to a role R is denoted 
as UR (x,y)- Moreover, we can generalize the extension 
of a term forming expression to a fuzzy set and denote 
the degree to which an object x satisfies a term forming 
expression e by ue(x). 

A concept C\ subsumes a concept C2 if and only if 
the extension of the former is a fuzzy superset of the 
extension of the latter. More formally, we say that C1 

subsumes C2 if and only if for any set V and any exten­
sion function £ over V the following holds: 

0) 
3.2 Soft Va lue R e s t r i c t i o n 

A value restriction in a terminological language con­
strains all the role values of an object to be in­
stances of a given class. For instance, a type of valve 
can be defined by restricting its pressure tolerance 
to an interval. We can generalize this kind of con­
straint to an "elastic constraint" or "soft constraint" 

" (3) 

where UR(Xpy) =>c(y) (*»#) can be defined using € various 
fuzzy implication operators [Magrez and Smets 1989]. 
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2 Even though Brathman and Levesque's algorithm for 
computing the subeumption of concept descriptions in Fl-

has polynomial time complexity, Bernhard Ncbel has recently 
shown that the problem of determining the subsumption of 
terms, in general, is intractable[Nebel 1989]. 
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where U is the universe of discourse of these con-
cepts. Otherwise, return false. 

2. If only one of the two concepts are defined using 
membership functions, return false. 

3. If both a and b are defined using concept forming 
expressions, normalize their descriptions by recur­
sively replacing all non-primitive concepts in the de­
scriptions by their definitions. 

4. Flatten the normalized concept description by re-
moving all nested :and operators. 

5. Collect ail arguments to an : a l l for a given role. 

6. Assuming the description of a is now (:and a1 ... 
an) and the description of b is now (:and b1 ... bm), 
then return true iff for each ai 

(a) if ai is an atom (i.e., the name of a primitive 
concept) or a :some, then one of the bj is a,*. 

(b) if ai is ( : a l l r c1), then one of the bj is (;all 
r c2) where SUBS?[c1,c2]. 

By slightly modifying Brachman and Levesque's proof 
about the soundness and completeness of FL- 'S sub-
sumption algorithm in [Brachman and Levesque 1984], 

3 We assume that before testing the subsumption of a con­
cept that is defined using modifiers, the system has computed 
its membership function using the standard interpretation of 
those modifiers in fuzzy logic-



In all cases, we have shown that £[a] is not a fuzzy super­
set of £[b]. So, a does not subsume b when SUBS?[a,b] 
is false. Therefore, we have proved that the subsumption 
algorithm is sound and complete. 

5 Related W o r k 
Most existing works in extending frame-based knowl­
edge representation languages for uncertainty manage­
ment lie in the category of probabilistic extensions. Lo-
kendra Shastri has developed a framework, based on the 
principle of maximum entropy, for dealing with uncer-
tainty in semantic networks [Shastri and Feldman 1985, 
Shastri 1989]. His approach is based on the assumption 
that the system has certain statistical data (e.g., the 
number of red apples, the number of sweet apples, ...). 
Based on these statistical data, Shastri's evidential the-
ory answers questions of the following kind: Given that 
an instance, x, is red and sweet, is x more likely to be an 
apple or a grape 9 The major shortcoming of Shastri's 
theory is the difficulty in obtaining marginal probability 
judgements that are required by his model. 

Heinsohn and Owsnicki-Klewe recently proposed a 
model of probabilistic reasoning in hybrid term sub-
sumption systems [Heinsohn and Owsnicki-Klewe 1988]. 
Probabilistic knowledge is represented as probabilistic 
implications in the form of C1 C2 where s denotes 
the conditional probability P(C2(x)\C1(x)), C1 and C2 
are concepts defined in the terminological knowledge 
base. The reasoning mechanism of their model is proba 
bilistic inheritance (i.e., the inheritance of probabilistic 
implications in concept taxonomy). The issue of non-
monotonicity of probabilistic inheritance has also been 
discussed in [Grosof 1986]. 

Even though these probabilistic extensions to frame-
based reasoning could potentially enlarge the applicabil­
ity of term subsumption systems, they do not directly 
address the issue of representing and reasoning about 
the subsumption relationships between vague concepts, 

6 Summary 

We have described an approach for generalizing term 
subsumption languages to fuzzy logic. Using test score 
semantics, we have generalized the concept forming con­
structs in term subsumption languages into elastic con­
straints. By slightly modifying previous works in term 
subsumption languages, we are able to show a complete 
and sound subsumption algorithm for a simple fuzzy 
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term subsumption language. The generalized knowl­
edge representation framework not only alleviates the 
difficulty of conventional AI knowledge representation 
schemes in handling imprecise and vague information in 
an intelligent system, but also enables an intelligent sys­
tem to construct an abstraction hierarchy automatically 
based on the semantics of elastic concept descriptions, 
some of which may be vague and imprecise. Hence, our 
approach facilitates the development of complex intelli­
gent systems where the system's capability in perform­
ing high-level analysis using conceptual abstraction and 
analyzing vague and imprecise information are both es­
sential. 
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