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Abstract

During the past decade, knowledge represen-
tation research in Al has generated a class of
languages called term subsumption languages
(TSL), which is a knowledge representation
formalism with a well-defined logic-based se-
mantics- Due to its formal semantics, a term
subsumption system can automatically infer
the subsumption relationships between con-
cepts defined in the system. However, these
systems are very limited in handling vague con-
cepts in the knowledge base. In contrast, fuzzy
logic directly deals with the notion of vagueness
and imprecision using fuzzy predicates, fuzzy
quantifiers, linguistic variables, and other con-
structs. Hence, fuzzy logic offers an appeal-
ing foundation for generalizing the semantics
of term subsumption languages. Based on a
test score semantics in fuzzy logic, this paper
first generalizes the semantics ofterm subsump-
tion languages. Then, we discuss impacts of
such a generalization to the reasoning capabil-
ities of term subsumption systems. The gener-
alized knowledge representation framework not
only alleviates the difficulty of conventional Al
knowledge representation schemes in handling
imprecise and vague information, but also ex-
tends the application of fuzzy logic to complex
intelligent systems that need to perform high-
level analyses using conceptual abstractions.

1 Introduction

During the past decade, knowledge representation works
in Al have generated a class of languages called
term subsumption languages (TSL), which is a knowl-
edge representation formalism with a well-defined logic-
based semantics. Using a TSL, a knowledge en-
gineer can explicitly describe defining characteristics
of concepts (unary terms) and roles (binary terms)
[Patel-Schneider et al. 1990]'. The major strength of
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'A role in a TSL corresponds to a slot in other frame-
based systems.
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term subsumption systems is their reasoning capabil-
ities offered by a classifier. The classifier is a spe-
cial purpose reasoner that automatically infers and
maintains a consistent and accurate taxonomic lat-
tice of logical subsumption relations between terms
[Schmolze and Lipkis 1983], These formalisms gener-
ally descend from the ideas presented in KL-ONE
[Brachman and Schmolze 1985]- Term subsumption lan-
guages are a generalization of both semantic networks
and frames because the languages have well-defined se-
mantics, which is often missing from frames and seman-
tic networks [Woods 1975, Brachman 1983].

Term subsumption languages are limited to express-
ing crisp concept definitions. However, many useful con-
cepts that are needed by an intelligent system do not
have well-defined boundaries, i.e., they are vague con-
cepts. For instance, we may say that a baseball player is
a good hitter if the person's hitting ratio is fairly high.
In an intelligent monitoring and control system, we may
wish to define a critical valve as a valve that has a low
tolerance of pressure. In all these examples, a concept is
defined by referring to other vague terms such as "fairly
high hitting ratio” and "low pressure tolerance”. It is
the difficulty to express these vague concepts in term
subsumption languages that motivates us to generalize
the languages.

Fuzzy logic, which is a generalization of conventional
logic, directly deals with the notion of vagueness and im-
precision using fuzzy predicates, fuzzy quantifiers, lin-
guistic variables, and other constructs. Thus, it offers
an appealing foundation for generalizing TSL to capture
Imprecise and vague linguistic terms. In particular, the
test score semantics in fuzzy logic allows us to easily gen-
eralize the term forming expression in TSL into elastic
constraints, which can be satisfied to a degree.

In the following sections, we first introduce the ba-
sics of term subsumption languages and test score se-
mantics as a background. Section 3 generalizes the se-
mantics of term subsumption languages and describes a
complete and sound subsumption test algorithm for a
simple fuzzy term subsumption language. A discussion
of related works then follows. Finally, we summarize the
potential benefits of our approach.



2 Background

2.1 Term Subsumption Languages

A term subsumption languages (TSL) distinguishes two
kinds of concepts: primitive concepts and defined con-
cepts. A primitive concept is a concept whose definition
can not be stated in the language; a defined concept is
a concept whose definition is described using other con-
cepts and a set of concept forming expressions provided
by the language. Value restriction and number restric-
tion are two concept forming constructs that are offered
by almost all TSL's. A value restriction restricts the
type of a role value (i.e., slot value), while a number re-
striction constrains the cardinality of a role value. In
this paper, a value restriction will be expressed in the
form of (:all R C) which means that all values of the
role R are of type C. A number restriction can be either
in the form of (:at-least n R), which means that the
role R has at least n values, or in the form of (:at-most
n R), which states that the role R has at most n values.

To describe the formal semantics of these concept
forming constructs in TSL's, we need to introduce the
following terminology. A terminological knowledge base,
denoted by X, consists of concepts and roles (which are
also called relations in some TSL's) defined using a term
subsumption language. An interpretation It of T is a
pair (V, £) where V is a set of individuals described by
terms in T and € is an extension function that maps
concepts in T to subsets of D, and roles in T to subsets
of the Cartesian product, D x D, Based on these nota-
tions, we describe the semantics of some term forming
expressions in TSL's below [Nebel 1988]:

El:and C,...CL)] = E[Ch] N - -NE[CY),
£[(:all R C)] =

{z € DIVy <z, y > E[R] = y € £[C]},
E{(:at-least n R)] =

{zeD|||{yeDl< =, y>e £[R]} |2 n},
El(;at-most n R)] =

{zeP|||{yeD| <z, y>€[R]}||<n},
£[(:range R C)] =

[cz,y>€DxD|<z, y>€E&[RIAye&[C)).

2.2 Test Score Semantics

In 1981, while the first KL-ONE workshop was be-
ing held, Lotfi A, Zadeh was advocating a meaning-
representation language called PRUF based on possibil-
ity theory in fuzzy logic [Zadeh 1978b]. The semantics
underlying PRUF is what Zadeh referred to as test score
semantics, which interprets the meaning of a predicate as
having an elastic constraint on objects Iin the database
[Zadeh 1981, Zadeh 1982]. In PRUF, a query is pro-
cessed by first applying a sequence of tests to database
objects, yielding a collection of test scores. By aggregat-
Ing these test scores, the system obtains an overall test
score that measures the compatibility between the query
and the database.

Test-score semantics is more general than the seman-
tics of term subsumption languages, in which test scores
are limited to true and fate- Unlike KL-ONE, however,

PRUF was not concerned about developing efficient spe-
cial purpose reasoners. By combining works in these two
areas, we can develop a knowledge representation system
that takes advantage of both the generality of test score
semantics and the efficient reasoning capabilities of term
subsumption systems.

3 Generalizing the Semantics of Term
Subsumption Languages

In this section, we generalize the semantics of term sub-
sumption language. First, we generalize the extension of
a term and the subsumption relationship between terms.
Then we describe how various concept forming expres-
sions can be generalized into elastic constraints using
test score semantics in fuzzy logic.

3.1 Generalizing the Extension Function and
the Subsumption Relationship

We first generalize the extension function £ such that
the extension of a concept is a fuzzy subset of V, and
the extension of a role is a fuzzy subset of V x V. A fuzzy
subset C of Pis characterized by a membership function
u. that maps elements of Dto the interval [0, 1]. The
degree to which an element x of V belongs to a concept
C is denoted as u. (z)- Similarly, the degree to which
an ordered pair < x,y > belongs to a role R is denoted
as Ur (Xx,y)- Moreover, we can generalize the extension
of a term forming expression to a fuzzy set and denote
the degree to which an object x satisfies a term forming
expression e by ue(x).

A concept C\ subsumes a concept C, if and only if
the extension of the former is a fuzzy superset of the
extension of the latter. More formally, we say that C;
subsumes C, if and only if for any set V and any exten-
sion function £ over V the following holds:

VdeD: e, (d) = s, (d) 0)

3.2 Soft Value Restriction

A value restriction Iin a terminological language con-
strains all the role values of an object to be in-
stances of a given class. For instance, a type of valve
can be defined by restricting its pressure tolerance
to an interval. We can generalize this kind of con-
straint to an "elastic constraint” or "soft constraint"
(e.g., (:all Pressure-Tolerance Low-pressure)) in
two ways. The logic implication in the original semantics

Vy Pressure-Tolerance(z,y) = Low-pressure(y) (2)

can be generalized to a fuzzy implication operator. Thus,
the degree to which a value restriction is satisfied by

an instance x is determined by the degree to which the
implication is true for x. This can be formulated as

follows:

H(.all R C) (I) = i:l;],'f [Pﬂ(x.y) =C{y) (r:yi)J (3)

where Ugr(xpy) =>c(y) (*»#) can be defined using € various
fuzzy implication operators [Magrez and Smets 1989].
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An alternative approach to generalizing the seman-
tics of a value restriction is to use the notion of con-
ditional necessity in possibility theory [Zadeh 197Ba,
Dubois and Prade 1988):

B(:ail R C) () = NEC(C(PNR(%!!)) (4)

= 1 - Poss(~C(y)|R(z,y)) (5)

_ - maxy {min [1 — #C (y)yﬂﬂ (;,,-? IJ)]} (6)
maxy pr (7, y)

In essence, this formula computes a measure that a
Pressure-Tolerance of x is necessarsly a college gradu-
ate. It is easy to verify that both generalizations of the
value restriction above are consistent with the original
semantics. For the rest of our discussion, we will be
using Fiquation 6 as the generalized semantics of value
restrictions.

3.3 Soft Number Restriction

The cardinality of a fuzzy set Is defined using sigma-
counts in test-score semantics[Zadeh 1981]:

ECOUNT(A) = Z palzi) (7)

where A 1s a fuzzy set charactenzed by a membership
function pg4. We can thus generalize the number re-
striction in terminological languages to a “soft” number
restriction using sigma-counts and fuzzy numbers:

H{.at-least n R2) (2} = pat—teast-n (Z pr2(z. y)) (8)
¥

H(.at-most n R2) (I) — Hat-most—n (Z PRZ(I' y)) (9)
¥

where at-least-n and at-most-n are fuzzy subsets of
real numbers characterized by the following membership
functions:

0 z<n-1
ﬂdt—leaat—n(i’:) - {3—ﬂ+1 ﬂ—lﬂzﬁn

1 z>n

1 :<n
f»‘ﬁt—mout—n(z) n+l—2z n _‘Sz‘_:_ﬂ'l'l

0 z>n+ 1

where z 15 a real number.

3.4 Fuzzy Conjunction

Finally, the degree an instance satisfies a conjunction of
sub-expressions can be computed using the “min” ope:-
ator in fuzzy set theory. For instance, suppose Critical-
Valve 15 defined as a valve whose pressure tolerance is
low. This can be expressed as

(defconcept Critical-Valve (:and Valve
(:all Pressure-Tolerance Low-pressure)))

The degree to which an instance 1s a Critical-Valve
can thus be defined as follows:

Ucritical-Valve (Z) = min{givaive (2}, fican PT 1y (2}} (10)
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where PT and L stand for “Pressure-Tolerance” and
“Low-pressure” respectively.

It should be noted, however, that other Triangular
Norms operators could be used to represent the conjunc-
tion of the sub-expressions. Moreover, by considering the
bounds imposed by all Triangular Norms, we could rep-
resent the lower and upper bounds of such intersection
as:

M Critical-Valve (:) —_
[mﬂ.}[{[},ﬂ\r’alve (R‘J) + #(:all PT L) ('T) _ 1}i
min{FValve (3); #{:all PT L) (I)} ] (11)

3.5 Defining Fuzzy Concepts Using
Membership Functions

A fuzzy concept can also be defined by describing its
membership function explicitly, or by modifying the
membership function of an existing fuzzy concept. To
do the former, we also need to specify the domain of the
membership function, which 1s called the universe of dis-
course in fuzzy set theory. For instance, we may define
the fuzzy concept Low-pressure by specifying its mem-
bership function and its universe of discourse as follows:

(defconcept Low-pressure
runiverse-of-discourse Alry-pressure
:membersghip-fx (lambda (p) {low p)))

where low 1s a function that returns the membership
degree for a given pressure, Once such a fuzzy set is
completely specified, we can define many other fuzzy sets
using modifiers (also called hedges in fuzzy logic) such

as NOT, VERY, SLIGHTLY, etc. This can be expressed
in a generalized term subsumption language as follows:

(defconcept Very-Low-pressure
(:VERY Low-pressure) ).

4 Subsumption Test

The major component of a term subsumption sys-
temn’s reasoner 18 a subsumption test, which determnines
whether a term description subsumes (i.e., is more gen-
eral than) another term description. In our generalized
term subsumption systems, a term a subsumes another
term & if and only if the extension of a is a fuzzy superset
of the extension of b (1.e., V2 € D pa(zx) > up(z)).

In a landmark paper that discussed the tradeoff be-
tween the expressiveness and the tractability of sub-
sumption test, Ronald J. Brachman and Hector J.
Levesque described a simple term subsumption language
F L~ that has a sound and complete algorithm for the
subsumption test [Brachman and Levesque 1984}, In
this section, we show that a similar fuzzy term subsump-
tion language, called 7S£, also has a sound and com-

plete algorithm for the subsumption test. The grammar
of a FTSL™ 18 shown below.

Even though Brathman and Levesque's algorithm for
computing the subeumption of concept descriptions in FI
has polynomial time complexity, Bernhard Ncbel has recently
shown that the problem of determining the subsumption of
terms, in general, is intractable[Nebel 1989].



< term-definition> 1=
< primitive-concept-definition>
| <defined-concept-definition>
| <primitive-role-definition>
¢ primitive-concept-definition> ::=
(defconcept <c-name>>
(:and <c-name>* :primitive })
< defined-concept-definition> ;=
(defconcept < c-name>
(:and <concept-forming-expr>"t ))
| (defconcept <c-namme>>
‘untverse-of-discourse <c-name>
:membership-fx <lambda expression> )
| (defconcept <c-name>
(<modifier> <c-name>) )
<medifier> = :NOT | :VERY | .SLIGHTLY
<concept-f0rming-expr} = <c-names>
| (:all <t-name> <¢-name>}
| (:some <r-name>)
< primitive-role-definition> ;=
(defrole <r-name> :primitive )

The subsumption algorithm for FTSL™ 15 a
slightly modified version of that of F{~ presented in
Brachman and Levesque 1984]:

Subsumption Algorithm for F7SL~: SUBS?[a,b]

1. If a and b are both defined by membership func-
tions, then return true if they have the same uni-
verse of discourse and their membership functions
satisfy the conditions:

Ve € Ups(z) 2 p(z)

where U is the universe of discourse of these con-
cepts. Otherwise, return false.

2. If only one of the two concepts are defined using
membership functions, return false.

3. If both a and b are defined using concept forming
expressions, normalize their descriptions by recur-
sively replacing all non-primitive concepts in the de-
scriptions by their definitions.

4. Flatten the normalized concept description by re-
moving all nested :and operators.

5. Collect ail arguments to an :all for a given role.

6. Assuming the description of a is now (:and a; ...
an) and the description of b is now (:and by ... by),
then return true iff for each a;

(a) if a; is an atom (i.e., the name of a primitive
concept) or a :some, then one of the bj is a,

(b) if aj is (:all r cq), then one of the b; is (;all
r c,) where SUBS?[c4,C5].

By slightly modifying Brachman and Levesque's proof
about the soundness and completeness of FL 'S sub-
sumption algorithm in [Brachman and Levesque 1984],

> We assume that before testing the subsumption of a con-
cept that is defined using modifiers, the system has computed
its membership function using the standard interpretation of
those modifiers in fuzzy logic-

we can show that the algorithm above is both complete
and sound. To prove the soundness of the algorithm,
we must show that if SUBS?[a,b] is true, then a indeed

subsumes b. Suppose SUBS?[a,b] is true, a and b must
be 1n one of cases helow:

1. Both a and b have the same universe of discourse

and their membership functions satisfy the test that
a i1s a fuzzy superset of b.

2. Both a and b are defined using concept forming ex-
pressions. For any conjunct in a, say a;, either g
1s among the b; or 1t 15 of the form (:allr ¢;). In
the latier case, there is an (:all r co) among the
b; where SUBS?(c;,c2]. To prove by induction, we
need to show that il £lei] D E£{ey], then

El(:allre)} D E[(: allr co)). (12)
Since £[cy] D &[eq], we have

Yy e, (¥) > pes(y).

Using the generalized semantics for :all (i.c., Equa-
tion 6), we get

ﬂ(;a.ll r c;){m) 2 HFlallr Cg)(r)'

Equation 12 thus follows. So no matter what a; is,
the extension of b {(which is the conjunction of all
the b;’s) must be a subset of a;. Since this is true
for every g;, the extension of b must also be a subset,
of the extension of a.

So, whenever SUBS?[a,b] is true, a subsumes b.

To prove the completeness of the algorithm, we need
to show that anytime SUBS?[a,b] is false, there is an
extension function £ such that £[a] 2 £{bl. There are
five cases that may cause SUBS?[a,b] to return false.

1. Assume that a, b are both defined by membership
functions, but they have diflerent universe of dis-
course or there exists an z; such that p,(z;) <
po(z;). In either case, the extension of a is not a
superset of the extension of b.

2. Assume that a 1s defined by concept expressions,
and b 1s defined by a membership function. Let *
be an object not in b’s universe of discourse, we can
construct an extension function & that assigns * o
all concepts defined by concept expressions, and as-
signs <* *> to all roles. Hence, * is in the extension
of a, but not that of b.

J. Assume that some atom g; does not appear among
the b;. Let £ assign the ordered pairs <0,1>,<1,1>
to every role and 0,1 to every primitive concept ex-
cept a;, to which it assigns 1. Hence, O 18 1n the
extension of b, but not that of a.

4. Assume that a; is (:some r), which does not appear
among the b;. Let £ assign 0,1 to every primittve
concepts and <0,1>,<1,1> to every role except r,
to which it assigns only <1,1>. Hence, 0 is in the
extension of b, but not that of a.

5. Assume that a; 18 (:all r ¢;), where If {:all r
¢o) appears among the b;, then, by induction, c;
does not subsume c2. Let £ be an extension func-
tion not using ¢ or 1 but such that some object
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* has a higher membership degree in ¢z than in
c; (i.e., pey(*) < pies(*)). Then, let £ contain
£* and assign 0,1 to every primitive concepts and
<0,1>,<1,1>> to every role except r, to which it as-
signs <1,1>,<0,*>. Based on the generalized se-
mantics of :all construct, we have

pal0] = pa,[0) = 1 = (1 ~ g, (#)) = pe, (»)  (13)
(0] = pra11, 5[0 = pea(*)  (14)
(15)

It then follows that the membership degree of 0 in
a is less than that in b.

In all cases, we have shown that £[a] is not a fuzzy super-
set of £[b]. So, a does not subsume b when SUBS?[a,b]
is false. Therefore, we have proved that the subsumption
algorithm is sound and complete.

5 Related Work

Most existing works in extending frame-based knowl-
edge representation languages for uncertainty manage-
ment lie in the category of probabilistic extensions. Lo-
kendra Shastri has developed a framework, based on the
principle of maximum entropy, for dealing with uncer-
tainty in semantic networks [Shastri and Feldman 1985,
Shastri 1989]. His approach is based on the assumption
that the system has certain statistical data (e.g., the
number of red apples, the number of sweet apples, ...).
Based on these statistical data, Shastri's evidential the-
ory answers questions of the following kind: Given that
an instance, x, Is red and sweet, is x more likely to be an
apple or a grape 9 The major shortcoming of Shastri's
theory is the difficulty in obtaining marginal probability
judgements that are required by his model.

Heinsohn and Owsnicki-Klewe recently proposed a
model of probabilistic reasoning in hybrid term sub-
sumption systems [Heinsohn and Owsnicki-Klewe 1988].
Probabilistic knowledge is represented as probabilistic
implications in the form of C,=f£, where s denotes
the conditional probability P(C,(x)\C4(x)), C; and C,
are concepts defined in the terminological knowledge
base. The reasoning mechanism of their model is proba
bilistic inheritance (i.e., the inheritance of probabilistic
implications in concept taxonomy). The issue of non-
monotonicity of probabilistic inheritance has also been
discussed in [Grosof 1986].

Even though these probabilistic extensions to frame-
based reasoning could potentially enlarge the applicabil-
ity of term subsumption systems, they do not directly
address the issue of representing and reasoning about
the subsumption relationships between vague concepts,

6 Summary

We have described an approach for generalizing term
subsumption languages to fuzzy logic. Using test score
semantics, we have generalized the concept forming con-
structs in term subsumption languages into elastic con-
straints. By slightly modifying previous works in term
subsumption languages, we are able to show a complete
and sound subsumption algorithm for a simple fuzzy
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term subsumption language. The generalized knowl-
edge representation framework not only alleviates the
difficulty of conventional Al knowledge representation
schemes in handling imprecise and vague information in
an intelligent system, but also enables an intelligent sys-
tem to construct an abstraction hierarchy automatically
based on the semantics of elastic concept descriptions,
some of which may be vague and imprecise. Hence, our
approach facilitates the development of complex intelli-
gent systems where the system's capability in perform-
iIng high-level analysis using conceptual abstraction and
analyzing vague and imprecise information are both es-
sential.
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