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Abstract 
Uncertainty on data often makes the task of perfectly matching 
two descriptions quite ineffective. In this case, a flexible 
matching, measuring the similarity of two descriptions 
rather than their equality, is more useful. According to the 
convention of connecting similarity to the most common 
concept of distance, we present a definition of distance 
measure, based on a probabilistic interpretation of the 
matching predicate, which can cope with structural 
deformations. As the problem of matching two formulas of 
the FOPL is NP-complete, two methods arc presented in 
order to cope with complexity: firstly, a branch-and-bound 
algorithm, and secondly, a heuristic method. These ideas are 
applied to the problem of recognizing office documents in 
digital form according to their page layout. 

1 Introduction 
The nature of the problem solving task performed by most 
expert systems is classification, that is, mapping entities of the 
world into a set of predetermined solutions or recommendations 
[Clancey, 1985; Weiss and Kulikowski, 1984]. Typically, 
expert systems for diagnosis are concerned with selecting an 
answer from an existing set of diagnoses (solution elements) 
given the description of a situation. Classification is equally 
fundamental in nearly all knowledge-based pattern recognition 
systems, which have to assign appropriate interpretations to 
objects within a scene [Chandrasekaran and Keuneke, 1987]. 
Independently from the direction of reasoning, either forward 
or backward, such systems operate with a description of the 
current state in the working memory and a description of the 
conditions to be satisfied in order to select the rule. 

Unfortunately, in real applications the descriptions may be 
both incomplete and also affected by noise. The latter problem 
is especially felt in those applications in which data are directly 
detected through sensors or transducers. A scribble on a 
document or a voice in the background are two common forms 
of noise. In addition, humans can also introduce errors in the 
data due to misunderstanding or lack of attention. Another 
form of noise in a measurement occurs when the measuring 
instrument shows a poor accuracy. Finally, information may 
be incomplete due to either human inadequacy or 
malfunctioning equipment. 

When acquiring knowledge from humans, the problem 
could be solved by multi-expert knowledge acquisition and by 
applying a cross-validation technique to the rules provided by 

the experts. In automatic knowledge acquisition the problem 
is approached by making the machine learning techniques 
more robust as regards noisy and/or incomplete data [Quinlan, 
1986]. 

Bergadano et al. [1988] proposed an approach to learning 
human concepts which are inherently imprecise and context 
dependent. The method uses a two-tiered representation of 
learned concepts and a flexible matching, based on a numerical 
estimation of the typicality or certainty that an instance is a 
member of a concept, so providing a form of probabilistic 
inferential extension of a concept In this case, both concept 
metaknowledge concerning the importance of concept attributes 
as well as the (joint) probability distributions of these attributes 
are essential. 

To sum up, noisy, imprecise, context-dependent and 
incomplete descriptions demand a more flexible matching 
process, also called partial matching in [Hayes-Roth, 1979], 
where two descriptions are compared in order to identify their 
similarities rather than their equality. Generally, the term best 
match is also used when the rule which maximizes the 
similarities and minimizes the differences against the current 
state is selected. The result of a flexible matching should 
produce a number indicating how well two descriptions match. 
The number can be a value in the unit interval [0,1] such that 
1 indicates a perfect match, 0 no match at al l , and any real 
number r, re (0,1), denotes our confidence in matching. The 
definition of such a similarity measure is strictly connected to 
the most common concept of distance, as the more distant two 
objects are, the less similar they can be considered. 

Several distance measures, or conversely, several similarity 
measures, have been proposed in the fields of pattern recognition 
[Sanfeliu and Fu, 1983; Wong and You, 1985; Shapiro and 
Haralick, 1981] and machine learning [Michalskief a/., 1984; 
Kodratoff and Tecuci, 1988). They differ in a variety of 
respects: 
• representation language: propositional logic, first-order 

predicate logic, feature vectors, attributed relational graphs; 
• type of problem the distance measures are applied to: 

pattern matching in knowledge-based systems, concept 
acquisition, pattern classification, discriminant analysis, 
conceptual clustering, numerical taxonomy; 

• theoretical approach: geometrical, syntactical, probabilistic, 
entropical, fuzzy, hybrid; 

• type of corrected deformations: local or structural. 
This last point requires further explanation. Generally, an 

object (or situation) can be decomposed by successive 
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refinements until atomic parts, called primitives, are defined. 
Once these subparts and their mutual relationships are identified, 
the structure is obtained [Stepp, 1987]. The complete 
description of the object is given by: 
• the attributes of the entire structure (global attributes); 
• the attributes of some subpart (local attributes); 
• the attributes of the interrelationships between parts 

(relations). 
When the differences between the two matching 

descriptions concern the global/local attributes it is said that 
local deformationsoccur, while when the differences are at the 
level of relations then deformations are called structural. Not 
all distance measures take into account structural deformations, 
particularly those adopting a representation language which 
does not allow us to represent structural descriptions. 

This paper introduces a definition of distance measure 
suitable for dealing with structural deformations which is 
based on a probabilistic interpretation of the matching predicate. 
The three basic characteristics of our definition are: 1) the 
possibility of dealing with rules whose conditions are not 
stated as exact descriptions of a particular situation but descri be 
(complex) properties that the situations must have; 2) the 
necessity to define, objectively or subjectively, the probability 
density functions of the features (attributes or relations) used 
to describe a situation; 3)the possibility of dealing with rules 
whose conditions are incomplete structural descriptions. 

In the fol lowing, Section 2 introduces the definition of a 
flexible matching function for evaluating the goodness of any 
match between noise-affected structural descriptions. The 
problem of matching (or unifying) two expressions with 
commutative and associative operators is NP-complcte [Garey 
and Johnson, 1979; Siekmann, 1990], moreover the 
computational cost of a flexible matching procedure increases 
with the need to calculate the similarity measure. Consequently, 
we can either try to find algorithms that perform quickly on 
average or try to find approximate algorithms that produce 
acceptable answers in an acceptable amount of time. In 
Section 3 we describe how a branch-and-bound algorithm can 
be used for reducing the average computational time of the 
actual similarity between two structural descriptions. 
Furthermore, for those applications involving complex 
descriptions and requiring an answer in relatively short time, 
we discuss the possibility of introducing a heuristic rule which 
allows us to find an approximate value of similarity. Finally, 
in Section 4, an application of the proposed distance measure 
to the recognition of office documents in digital form according 
to their page layout is illustrated. 

2 A distance measure for flexible matching 
between wff's 

Let denote the space of all the possible descriptions (or 
well formed formulas (wff's)), complying with the syntax of 
the representation language and built according to a given 
vocabulary of attributes and relations. Here we are interested 
in defining a flexible matching function: 

Flex_Match::  
which could be considered as an extension of the canonical 
(strict) matching predicate: 

Match: {false,true). 
By extension we mean that: 

Flex_Match(s,t) = 1 Match(s,t)=true 
Flex_Match(s,t) [0,1) otherwise. 

The function Flex_Match(s,t) represents a degree of 
similarity between two descriptions or even the degree 
of fitness of s on t. The definition of such a function should be 
based on a theory which is able to quantify the degree of 
similarity between two descriptions. As probability theory 
fulfils such requirements, we can assign to each pair of wf f fs 
in the probability of precisely matching the two formulas 
provided that a change is made in the description t; formally: 

Flex Match(s,t) = P(Match(s,t)) 
Such a definition marks the transition from syntactic to 

probabilistic matching. Consequently, it is possible to define a 
probabilistic distance measure, between s and t as follows: 

A more detailed definition of distance measure requires a 
rather more specific description of the representation language 
than we have given up to now. In particular, the representation 
formalism we have chosen is inspired to VL2 1 [Michalski, 
1980], The basic component of the VL21 is the selector or 
relational statement, written as: 

[L = R] 
where: 
• L, called referee, is a function symbol with its arguments; 
• R, called reference, is a set of values of the referee's domain; 

Function symbols, called descriptors, are n-adic functions 
) mapping onto one of three different kinds of domains: 

nominal, linear and tree-structured. 
Selectors can be combined by applying different operators, 

such as AND OR i and decision operator in order 
to define wf f ' s like: 

(d-formula) <c-formula) 
where d-formula is a disjunction of or-atoms (selector 
conjunctions), while c-formula is a conjunction of selectors. 
This formalism is adequate to express classification rules in 
many knowledge-based pattern recognition systems dealing 
with structural descriptions. 

Since the main application of theproposed distance measure 
is noise-affected concept recognition, from now on s wi l l 
denote the description of a concept and t the observation to be 
classified. Moreover, the specializing isomorphism (s-
isomorphism) [Larson, 1977] rather than the simple 
isomorphism is used in concept recognition, therefore the 
match of s and t consists in searching for a substitution a such 
that: 

Flex_match is computed according to the following top-
down evaluation scheme: 
I) s is a disjunction of conjuncts:  

Or_atomn. Then the formulation of the flexible matching 
is given as follows: 

Flex_Match(s,t) = max Flex_Match(Or_atom i f t) (1) 

This definition corresponds to the idea that when a concept 
is polymorphic ( i> l ) , we are usually interested in finding the 
"best" matching between one of its morphisms and the 
observation t. For instance, if s [length(sl)=10..100] 
[width(s2)=5..30] and t [length(sl)=9] [width(sl)=45], 
we say that t "nearly" satisfies s simply because it is "near" to 
the first morphism of s. When correlations occur among the 
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different morphisms expressed by s, the definition above has 
to be extended so as to take them into account. 
I I ) s is a conjunction of selectors: 
Thus the computation of the flexible matching is affected by 
the consistent substitution or of the variables in s. As we are 
looking for the best matching between s and t, we define: 

Flex Match(M) = max Flex Match j(Se i t) (2) 

where Flex_Match. denotes the flexible matching function 
with the tie of the substitutions fixed by  
I I I ) s is a selector: " where/ 
is a 1-adic descriptor and {g l , g2, ..., gM} is a subset of the 
domain D o f / . Flex_ Match iSel.,t) is determined by evaluating 
the degree of similarity between the selector r(s) = Sel. and the 
corresponding selector of t,  

, which has the same referee as Sel,. Consequently: 
Flex Jvlatch (s,t) = Flex„Match(Sel i,Sel t) (3) 

and Flex_Matcn(Sel fSel t) computes the degree of similarity 
between the references of Self and Selt 

Since we are searching for an s-isomorphism, the similarity 
between the references of Sel, and Sel is equal to 1 if and only 
if the reference of Selt is more specific than that of Selz. The 
notion of specialization is intended as set inclusion, if the 
descriptor/ is a nominal or linear one. This interpretation can 
be easily extended to tree-structured descriptors: each single 
element in the reference of two selectors is replaced by all the 
values representing the leaves of the subtree having that 
particular element as its root. 

The presence of multiple values in the reference of Selt 
actually means that the value of an attribute is not known 
exactly, but it ranges over a subset of the attribute domain. This 
is a form of uncertainty in data [Dubois and Prade, 1988] and 
its management, together with the problem of incomplete 
descriptions, has been extensively described in lEsposito et 
al., 1991a]. Henceforth, we w i l l assume that m = l , that is we 
are sure about the value e taken by / in Selt. 

Let EQUAL(x,y) denote the matching predicate defined 
on any two values x and y of the same domain. Since we are 
looking for the best mapping from {e} into {g,, g 2 , . . . , g M ] , 
then the definition of flexible matching depends on the 
maximum probability of two matching selectors computed 
over the set of all possible correspondences between the 
elements of {e} and [g1, g2 ..., gM ) , that is: 

Flex_Match(Sel f, Selt) = max P(EQUAL(g.,e)) (4) 

Suchadefinition takes into account the goal of classification 
by means of event covering, thus when ee {g t , g 2 , . . . , gM) 
then MF(Sel f, Selt) = 1 because there is a perfect matcn, 
otherwise MF(Sel f, Sel,) represents the maximum probability 
that the value in the reference of Sel, equals one of the M 
values in the reference of Sels. 

The probability of the event EQUAL(g1,e) can be defined 
as the probability that an observation e could be a distortion of 
g., that is: 

(5) 
where: 
• X is a random variable assuming values in the domain D of 

/ ; 
• is a distance defined on the domain itself. 

In other words, the probability that any two values of the 

P(y) 

gi e 
Figure 1. The shaded area represents P(EQUAL(g i.e)). 
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domain D match is defined as the probability that a randon 
variable X defined on D takes a value farther than e from g{ 
given that g{ is the centroid. In Figure 1, a geometrica 
interpretation of this definition is provided. 

The definition of 6 must take into account the type of VL 2 
descriptor. In particular we propose the discrete metrics fo 
nominal descriptors: 

0 ifx-y 
[ x . y ) = ( 6 ) 

1 otherwise 
for linear not numerical descriptors: 

(7) 
where ord(x) denotes the ordinal number given to and forlinear numerical descriptors: 

(8) 
It should be observed that other reasonable choices of 8 an 

possible; nevertheless the value of P(EQUAL(g.,e)) does no 
change since we compute the probability over distance and no 
merely geometrical distance. This key point also allows us tc 
ignore problems with scaling when the similarity is computec 
over the whole set of features. 

Of course, the computation of P(EQUAL(g ,e)) must tak< 
into account the probability density function or X. When nc 
information is available on the probability distribution of X wc 
assume X to have a uniform probability distribution, that is: 

for the descriptors with a finite domain (here C is the cardinality 
of D), while 

if the domain D is an interval [a,b] (here fD denotes the density 
function). 

Having made such assumptions it can be proved that foi 
nominal descriptors wc have: 

1 ifgr* 
P ( E Q U A L ( g i , e ) ) = ( 9 ) 

(C-l) /C otherwise 

while for linear not-numerical descriptors we get: 

P(EQUAL(g,,e))= 1 ifgt=e (10) 



where: 

stcp(x) = 
0 if x < 0 

1 otherwise 
A proof of formulas (9) and (10) is given in Appendix A. 
For the descriptors with tree-structured domain the 

computation of P(EQUAL(g.,e)) makes use of the previous 
formulas. Each element in the references of Sel and Selt is 
replaced by the values representing the leaves of the subtree 
which has that element as its root. The formulas (9) and (10) 
are adopted, depending on whether the generalization hierarchy 
for the descriptor is unordered or ordered, respectively. The 
only changes to be made both in (9) and (10) consist in 
replacing C with the number of leaves of the tree-structured 
domain. 

3 Coping wi th complexity of matching 
The computation of the flexible matching when s is a 

conjunction of selectors requires the evaluation of the maximum 
conditional probability as in formula (2) as a varies. 
Unfortunately, if p and q (p q) are the number of variables in 
s and t respectively, the number of possible substitutions a is 
given by the permutation of p elements taken from a set of q 
elements, i.e. P(q,p). Consequently, the computation of 
Flex_Match(s,t) has a combinatorial cost which should be 
reduced in some way, particularly when P(q,p) is very large. 

In order to prevent an exponential growth of the 
computational time, two alternative techniques are presented 
in the following. Each of them requires that s and t were 
connected conjunctions of selectors (for a definition of 
connected formulas see [Larson, 1977]). 

Firstly, we can make use of a branch-and-bound algorithm 
which performs quickly on average. The search space can be 
represented by a tree where: 
• the nodes are variable pairs, (v.,wk), representing the 

substitution v. wk of a variable v. appearing in s with a 
variable w appearing in t; 

• a branch from a node Nl to a node N2 represents the 
instantiation of a variable of s which has not yet been 
instantiated in any node along the path from the root to N1 . 

When all the variables in s have been instantiated, the node 
of the tree representing the last instantiation can by no means 
branch (i.e. it is a leaf), and the set of the substitutions along the 
path from the root represents one possible substitution a (see 
Figure 2). 

Each node of the tree can be labeled with a pair of 

Figure 2. An example of tree explored by the branch-and-bound 
algorithm. 

This formula must be interpreted as follows: 
while varying the considered substitution the flexible 
matching between s and t is computed as the highest value 
given by the product of the degree of similarity between each 
selector of s" and t. 

When it is not possible to find a substitution satisfying (11) 
then we can set Flex_Match(s,t) = 0, since s and t have no 
similarities, not even at a level of variables (components). This 
interpretation corresponds to the heuristic thats' is a conjunction 
of Must-relations [Winston, 1984], thus the computation of 
(12) is performed only if a perfect matching can be detected 
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numbers. The first number represents the partial measure of 
fitness computed only on those selectors of s whose variables 
have already been instantiated along the path to the node. The 
second number represents the exact number of selectors in s 
which gave a contribution to the computation of the partial 
measure of fitness. If there is a branch from a node Nl toa node 
N2 then the value of the partial measure of fitness in N2 must 
be less or equal to that associated with N1, due to the definition 
of flexible matching. In other words, walking along a path from 
the root towards a leaf of the tree, the partial distance measure 
associated with each node can only decrease or remain the 
same. A similar (but increasing) monotonic property is also 
true for the second value reported in node labels. These 
considerations suggest how a branch-and-bound algorithm 
can help in finding the best substitution more quickly. In fact, 
it is sufficient to consider a function cost composed by the 
partial distance measure and the opposite of the number of 
selectors in s which contributed to the computation of the 
partial distance. Minimizing the function cost while the tree is 
extended allows us to find the best substitution without 
necessarily exploring all the possible alternatives. When s is a 
disjunction of or-atoms, the algorithm proceeds exploring 
alternative consistent instantiations of variables belonging to 
all the or-atoms, otherwise it could spend too much time trying 
to evaluate the distance measure concerning a single "bad** or-
atom. 

As second al ternative, it is possible to decompose s into two 
parts: 

so that: 
• s* = Sel1>Sel2 Selr, r k, is a conjunction of selectors 

such that the referee of Sel, i = 2, 3, ..., r, contains the 
maximum non-null number of variables not appearing in the 
referees of Sel | Sel2 , . . ,,ScI i-1; 

• s" is a conjunction of the remaining selectors in s. 
The constraint of connection upon s ensures that all the 

distinct variables in s were in s'. As a consequence, the search 
for a substitution a such that can be weakened into: 

(11) 
Under such a hypothesis the events Flex_Match i(Sel,t), 

i=r+1, r+2, . . . , k, become independent since the substitution a 
that verifies (11) has already bounded the variables in s\ As a 
result, we have: 



between s' and t Sometimes the choice of s' is not unique, in 
that case a simple preference criterion based on the sum of 
weights of the selectors in s' may help to select the best 
alternative. 

4 Application to Document Recognition 
The flexible matching algorithm has been employed and 

tested as a part of PLRS, a system for digitized office document 
recognition based upon the page layout [Esposito et al„ 1990]. 
Within the scope of the ODA/ODIF standards [Horak, 1985], 
a document presents two hierarchical structures: both the 
layout (or geometric) and the logical structure. The former 
concerns the internal organization of the document, i.e. the 
areas containing text and images, and some components are: 
set of pages, pages, frames and basic blocks. The logical 
structure associates the content of a document with a hierarchy 
of logical components, such as articles, summaries, sections, 
paragraphs, page numbers, logotypes, and so on. Furthermore, 
documents can be grouped into classes according to a specific 
criterion, such as the kind of processing or the common subject. 

PLRS classifies single page documents using only on the 
page layout structure, i.e. the invariant geometrical 
characteristics shared by documents belonging to the same 
class, due to underlying printing standards or writing style. An 
extension of PLRS exploits the results of the document 
classification process in order to identify the logical components 
of a document again using the page layout structure. However, 
this problem, named document understanding, is still under 
study and it wi l l not be dealt with in this paper. 

The rules used for the page layout recognition are produced 
by means of a process of inductive learning, in which some 
meaningful examples of document classes, relevant for a 
specific office, are used to train the system. This allows the " in 
field" customization of the system, thus avoiding the definition 
of user-handwritten classification rules for a specific office. 
The form of a recognition rule is: 

<condition> ::> <decision> 
where: 
• <condition> is a VL2 1 wf f in disjunctive normal form; 
• <decision> refers to a document class. 

The page layout of a document is automatically described 
in symbolic form, as a VL21 conjunctive formula, by a document 
processing system performing the following steps: 
• preprocessing of the digitized document; 
• segmentation into basic blocks through the Run Length 

Smoothing Algorithm (RLS A) ; 
• layout analysis, that groups together blocks satisfying some 

predefined requirements, such as closeness, alignment, and 
so on, into larger blocks, called frames, and produces 
numerical tables describing each frame; 

• translation of the numerical tables produced by the previous 
step into VL2 1 symbolic descriptions. 

The descriptors used in the document description are: 
CONTAIN_IN_POS(Doc,Block),WIDTH(Block), 

HEIGHT(Block),TO.RIGHT(Blockl ,Block2), 
ON_TOP(Blockl ,Block2), ALIGN(Block l ,Block2) 

and a page layout description of a training document is reported 
in the following: 

[contain_n_pos(x 1 ,x2)=north] 
[contain_in_pos(xl ,x3)=northjwest] 
[contain_in_pos(x 1 ,x4)=centre] [width(x2)=large]  

The classification of a new document consists of two steps. 
Firstly the condition part of each recognition rule generated by 
the learning system is matched against the symbolic description 
of the new document. Secondly, the document is assigned to 
the class specified in the decision part of the matching rule.Due 
to the presence of noise affecting the VL2 1 descriptions of 
documents, such as a scribble on a document or sensing 
problems, it is not possible to use a canonical (strict) matching 
procedure forclassifying test documents, therefore the proposed 
flexible matching is adopted. 

In order to test our approaches to coping with complexity 
in flexible matching, we organized an experiment in which a 
set of 72 single page documents, belonging to nine different 
classes, has been considered. Four classes are letters, each 
class containing generic printed letters of the same company, 
while other four classes are magazine indexes; the ninth class 
is a reject class, representing the rest of the world. Fifty 
instances were selected as training examples, leaving the 
remaining 22 documents for the testing process. 

The results of the application of both branch-and-bound 
algorithm and the heuristic method in the flexible matching 
procedure applied to the test documents are reported in Table 
1 and 2, respectively. In Table 1 entries containing a " * " mean 
that the value of the flexible matching (FM) is not known since 
the search has been interrupted. This happens when the partial 
similarity measure becomes lower than a fixed threshold (0.3 
in our experiment). In Table 2 null "FM" values indicate that 
a strict matching on s' is not possible (see formula (12)). In 
both tables, an FM value 1.0 in the column denoted by rule 
indicates the presence of a perfect matching between the test 
document and the rule generated for the i-th class. The results 
concerning a full comparison between the canonical matching 
procedure and the flexible matching have been reported in 
[Esposito et al, 1991b in press]. 

As we could theoretically expect, entries in Table 1 are 
never less than the corresponding ones in Table 2, since the 
branch-and-bound algorithm finds the highest similarity. It 
should be observed that the classification results do not change 
at all if the heuristic method is used and the class corresponding 
to the highest value of similarity is taken as the membership 
class. The correct class is reported in the first column of Table 
2. Both the tables also present the throughput time, expressed 
in seconds, for each flexible matching and the total time per 
document (last column) or per class (last row). We can conclude 
from a comparison of these time entries that the branch-and-
bound method needs much more time than the heuristic 
method, and this is a great limitation for a real-time document 
handling system. 

5 Conclusions 
In the paper a definition of a flexible matching is presented: 

it is based on a probabilistic interpretation of the matching 
predicate and proves useful to cope both with noisy data and 
with structural deformations. Unfortunately, computing the 
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Table 1 
Classification results using the Branch-and-Bound algorithm 

Table 2 
Classification results using the heuristic on matching 

similarity of two descriptions is computationally impractical, 
therefore two distinct methods are adopted to reduce the 
complexity: firstly, branch-and-bound algorithm, and 
secondly, a heuristic method. The flexible matching has been 
applied to the recognition of digitized office documents and 
the results of both the algorithms are presented. 

A Proof of formulas (9) and (10) 
Let us recall the definition (5) given above: 

(IB) 
Henceforth, in order to simplify our notation, we will use 

g instead of gi As already said, formula (IB) takes into account 
both the type of domain which g and e belong to and the 
probability distribution of the domain values. 

By assuming that the probability distribution is uniform, 
and remembering the definition of 5 for nominal domains, we 
have: 

where C is the number of elements of the domain. 
For ordinal domains, (IB) becomes: 
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Finally, resubstistuting ord(g) and ord(e) to g and c, 
respectively, we have formula (10). 

References 
[Bergadano et al., 1988] Francesco Bergadano, Stan Matwin 

Ryszard S. Michalski, and Jianping Zhang. Representing 
and Acquiring Imprecise and Context-dependent Concepts 
in Knowledge-based Systems. In Zbigniew.R. Ras, and 
Lorenza Saitta, (Eds.) Methodologies for Intelligent 
Systems, 3, pages 270-280, Amsterdam, The Netherlands, 
Elsevier Science Publishers B. V., 1988. 

[Chandrasekaran and Kcuneke, 1987] Bruce Chandrasekaran, 
and Anne Kcuneke. Classification problem solving.A 
tutorial from an AI perspective. In Pierre A.Devijver, and 
Josef Kittler (Eds.) Pattern Recognition Theory and 
Applications, Berlin, Germany, Springer-Verlag,1987. 

[Clancey, 1985] Wil l iam J. Clancey. Heuristic Classification. 
Artificial Intelligence. 27(4):289-350,1985. 

[Dubois and Prade, 1988] Didier Dubois, and Henry Prade. An 
Introduction to Possibilistic and Fuzzy Logics. In Philippe 
Smets, E. H. Mamdani, Didier Dubois, and Henry Prade 
(Eds.) Non-Standard Logics for Automated Reasoning, 
pages 315-316, London, England, Academic Press, 1988. 

[Esposito et al., 1990] Floriana Esposito, Donato Malerba, 
Giovanni Semcraro, Enrico Annese, and Giovanna Scafuro. 
Empirical Learning Methods for Digitized Document 
Recognition: an Integrated Approach to Inductive 
Generalization. In Proceedings of the Sixth IEEE 
Conference on Artificial Intelligence Applications, pages 
37-45, Santa Barbara, California, March 1990. 

[Esposito et al . , 1991a] Floriana Esposito, Donato Malerba, 
and Giovanni Semeraro. Classification of incomplete 
structural descriptions using a probabilistic distance 
measure. To appear in Proceedings of the International 
Conference on Symbolic-Numeric Data Analysis and 
Learning, Paris, France, September 1991. 

[Esposito et al, 1991b in press] Floriana Esposito, Donato 

Malerba, and Giovanni Semeraro. Classification in Noisy 
Environments Using a Distance Measure Between 
Structural Symbolic Descriptions. To appear inlEEETrans. 
on Pattern Analysis and Machine Intelligence, 1991. 

[Garey and Johnson, 1979] Michael R. Garey, and David S. 
Johnson. Computers and Intractability, page 252, San 
Francisco, California, W.H. Freeman & Co., 1979. 

[Horak, 1985] Wolfgang Horak. Office Document Architecture 
and Office Document Interchange Formats: Current Status 
of International Standardization. In IEEE Computer, 
18(10):50-60, October 1985. 

[Kodratoff and Tecuci, 1988] Yves Kodratoff, and Gheorghe 
Tecuci, Learning Based on Conceptual Distance. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
PAMI-10(6):897-909, November 1988. 

[Larson, 1977] James B. Larson, Inductive Inference in the 
Variable Valued Predicate Logic System VL2 1 : 
Methodology and Computer Implementation. Doctoral 
dissertation, Dept of Computer Science, University of 
Il l inois, Urbana, Ill inois, May 1977. 

[Michalski, 1980] Ryszard S. Michalski. Pattern Recognition 
as Rule-Guided Inductive Inference. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, PAMI -
2(4):349-361, July 1980. 

[Michalski et al., 1986] Ryszard S. Michalski, Ivan Mozetic, 
J. Hong, and Nada Lavrac. The AQ15 Inductive Learning 
System: An Overview and Experiments. Intelligent Systems 
Group, Dept. of Computer Science, University of Illinois, 
Urbana, Illinois, 1986. 

[Quinlan, 1986] J.Ross Quinlan. Induction of Decision Trees. 
Machine Learning, 1(1):81-106,1986. 

[Sanfcliu and Fu, 1983] Alberto Sanfeliu, and King Sun Fu. 
A distance measure between attributed relational graphs 
for Pattern Recognition. IEEE Trans, on Systems, Man, 
and Cybernetics, SMC-13(5):353-362, May-June 1983. 

[Shapiro and Haralick, 1985] LindaG. Shapiro, and Robert H. 
Haralick. Structural descriptions and inexact matching. 
IEEE Transactions Pattern Analysis and Machine 
Intelligence, PAMI-3(5):504-519, September 1981. 

[Siekmann, 1990] Jorg H. Siekmann. An Introduction to 
Unification Theory. In Ranan B. Banerji (Ed.) Formal 
Techniques in Artificial Intelligence: A Sourcebook, pages 
369-424, Amsterdan, The Netherlands, Elsevier Science 
Publishers B. V., 1990. 

[Stepp, 1987] Robert E. Stepp, Machine Learning from 
Structured Objects. Proceedings of the Fourth lnternational 
Workshop on Machine Learning, pages 353-363, Irvine, 
California, 1987. 

[Weiss and Kulikowski, 1984] Sholom M.Weiss, and Casimir 
Kulikowski. A Practical Guide to Designing Expert 
Systems. Totowa, New Jersey, Rowman and Allanheld, 
1984. 

[Winston, 1984] Patrick Henry Winston, Artificial Intelligence 
(2nd Ed.), pages 391-414, Reading, Massachusetts, 
Addison-Wesley, 1984. 

[Wong and You, 1985] Andrew K.C. Wong, and Manlai You. 
Entropy and distance of random graphs with application to 
structural pattern recognition. IEEE Trans. Pattern Analysis 
and Machine Intelligence, PAMI-7(5):599-609,1985. 

664 Learning and Knowledge Acquisition 


