
An Environment for Experimentat ion
wi th Parsing Strategies*

Gregor Erbach
Universitat des Saarlandes

FR 8.7 Allgemeine Linguistik - Computerlinguistik
W-6600 Saarbrucken, FRG

e-mail: erbach@coli.uni-sb.de

Abstract

An environment for the experimentation with parsing
strategies is presented which consists of a parser which
can process arbitrary parsing strategies, a functional
language for the definition of strategies, and a statistical
component which helps the user assess the effects of the
different strategies.

1. In t roduc t ion

1.1. M o t i v a t i o n

The past decade has witnessed the emergence and widespread
acceptance of declarative grammar formalisms, some well-
known exemplars being Definite Clause Grammar [Pereira
and Warren 1980], Generalized Phrase Structure Grammar
fGazdar et al . 1985], and Head-driven Phrase Structure
Grammar (Pollard and Sag 1987],

In contradistinction to their more procedural predecessors
like Transformational Grammar [Chomsky 1965] and
Augmented Transition Networks [Woods 1970], today's
declarative grammar formalisms do not prescribe an order in
which the possible operations on the grammar are to be
carried out1.

What both today's declarative grammars and the procedural
grammars have in common is that they give all the sentences
generated by the grammar equal status, and do not account for
degrees of acceptability.

Consequently, many current natural language systems have
parsers that enumerate all analyses of a given string, but have
no way of preferring one analysis of ambiguous sentences.
The choice of a path in the search space is generally
accidental, and it is not possible to formulate a parsing
strategy explicitely.

This work was supported by I B M Germany's L ILOG Project.
Definite Clause Grammars are an exception only if they are

interpreted by the standard Prolog proof procedure. For
alternative processing regimes see [Pereira and Shieber 1987]

This situation is not very satisfactory both from the
psycholinguistic and from the engineering point of view.

From the psycholinguistic perspective, one property which
needs to be modeled and explained is that humans in general
consider only one reading of an ambiguous sentence. Another
property is the robustness of human sentence processing
when presented with ill-formed input.

From the engineering perspective, it would rather be
desirable to integrate syntactic preferences and semantic
processing into the parsing process for early disambiguation
in order to avoid the cost of exploring the complete search
space, and the knowledge processing needed for selecting one
reading of an ambiguous sentence.

1.2. Wha t is a Parsing Strategy

A parsing strategy determines the behaviour the parser in case
of non-determinsm [Kay 1980]. Such non-determinism may
arise by the choice of a rule to apply, and the choice of
l inguistic objects to which the rule is appl ied2 . The
application of a rule to linguistic objects is a parsing task.

In the literature, the term "parsing strategy" is used in three
different senses:

a) Avoiding useless parsing tasks
A parsing strategy is a rule-selection strategy that avoids

any structure building which does not contribute to the final
parse result. Such strategies would be top-down parsing,
which makes sure that the only rules are chosen which may
produce a parse with category S, bottom-up parsing which
ensures that only rules are chosen which are licensed by the
words in the input string, the directed parsing methods [Kay
1980, Wir6n 1987] which combine the merits of top-down
and bottom-up parsing. Head-driven parsing also falls into
this category.

2 This is the case for rule-based grammars. For principle-based
grammars like Government-Binding Theory [Chomsky 1981] or
HPSG [Pollard and Sag 1987], a parsing strategy might specify
which principle to apply first and to which linguistic object.

Erbach 931

b) Best-fim parsing (heurjsticaiiy guided search)
A parsing strategy is a heuristically guided search strategy,

[Kay 1980]. With such a strategy, more promising parsing
tasks are preferred over less promising ones. A best-first
parsing strategy prefers one of several parsing tasks, but
gives the results of the successful parsing tasks equal status.

c) Ambiguity resolution (and degrees of acceptability)
A parsing strategy provides a preference for one analysis for

ambiguous (sub)strings. It may well be that this preference
follows from the execution of a best-first strategy defined
without reference to preferences for alternative analyses. On
the other hand, a best-first parsing strategy may rely on these
preferences for its choice of the best parsing task. We return
to this issue in sections 3.2 and 3.3.

A parsing strategy is defined by a function which assigns a
priority to each parsing task. Whi le the output of the
function is a numerical priority value, little is known about
the input arguments to the function.

Haugeneder and Gehrke [1988] propose a model where the
user can assign different weights to eight factors (init ial
priority of the rule, initial priority for different readings of the
lexemes, complexity of the structure, scoring of word
hypotheses for spoken input, priority of an active edge, span
of active edge, span of inactive edge, number of words left for
processing). We are not that committed to the input of the
heuristic function, and allow considerable more flexibility. In
our view, finding appropriate input arguments to the function
is one central objective of reasearch on parsing strategies.

1.3. Deve lopment of pa rs ing strategies as an
exper imenta l process

Like [Haugeneder and Gehrke 1988], we view the discovery of
parsing strategies as a largely experimental process of
incremental optimization. Each cycle in the development
consists of the following steps:

a) definition (or modification) of a parsing strategy
b) parsing of example sentences
c) analysis of the parser's behaviour
The third step should not only indicate whether the desired

behaviour has been achieved, but also help to locate sources
of inefficiency. These three steps must be supported by the
following features of the parser:
a) A language for the definition of parsing strategies
b) The ability to process different strategies
c) Statistics and diagnostic tools for evaluation of its

behaviour with respect to a particular parsing strategy

2. Implementation of Parsing Strategies
The system presented here allows the user to define parsing
strategies for declarative grammars in a declarative fashion by
wri t ing an prior i ty assignment function which gives a
priority to a given parsing task.

2 .1 . The Parser3

The parser is a bottom-up4 active chart parser. The
essential data structure of the parser is the agenda [Kay 1980],
a list of pairs of parsing tasks and associated priorities.

The parser can process grammars encoded in the unification
grammar formalism STUF [Bouma et al. 1988]. Because
unification of feature structures is computationally expensive,
parsing tasks correspond to unif icat ions, namely the
unification of an item with a rule to produce an active item
(or a passive item in the case of unary rules), or the
combination of an active and a passive item:

- a p p l y r u l e (Ru le -Name, I tem)
- a and p (A c t i v e - I t e r n , P a s s i v e - I t e m)

The parser can also be run without producing active items;
in this case, a rule is applied to as many items as the right-
hand side of the rule has elements, corresponding to the
parsing task a p p l y _ r u l e (Rule-Name, I t e m } , . . . , I t e m n) .

Since both rules and linguistic objects (chart items) are
involved in a parsing task, the two kinds of non-determinism
mentioned in section 1.2 arc present in the choice of a
parsing task5 : the choice of a rule, and the choice of
linguistic objects to apply the rule to.

The top level of the parsing algorithm is very simple:

w h i l e agenda no t empty , and n o t success do
1 . remove t h e t a s k w i t h t h e h i g h e s t p r i o r i t y

f rom t h e agenda
2 . e x e c u t e t h a t p a r s i n g t a s k
3 . g e n e r a t e new p a r s i n g t a s k s
4 . a s s i g n each new p a r s i n g t a s k a p r i o r i t y and

add i t t o t h e agenda
end w h i l e

A parsing strategy is defined by wri t ing a priori ty-
assignment function which is used in step 4 of the parsing
algorithm.

Without any particular priority assignment function, the
above is an algorithm schema [Kay 1980], because the choice
of a parsing task from the agenda is undetermined.

2.2. Speci f icat ion of Pars ing Strategies

3The parser is implemented in Quintus Prolog and integrated in
LILOG's linguistic development environment LEU/2.

4It is a bottom-up parser because some of the grammars have
no context-free skeleton to guide top-down analysis.

5There is another kind of non-determinism not accounted for
here. It arises when the linguistic objects which are manipulated
contain disjunctions. From a theoretical point of v iew, all
disjunctions can be brought into disjunctive normal form, and
each of the disjuncts can be treated as a linguistic object.

" I f there are several tasks with the same priority, the one that
was most recently generated wi l l be used.

932 Natural Language

2 . 2 . 1 . A F u n c t i o n a l L a n g u a g e f o r the
Speci f icat ion of Pars ing Strategies

We provide a restricted language, in which parsing strategies
arc specified, containing the following primitive functions:

ru le (TASK) : the grammar rule of a parsing task
i tem { N TASK7) : the n-th item of a parsing task
is (ITEM) : the feature structure of an item
path (PATH FS) : value of a path in a feature structure
c o r e f e r e n t (P A T H l PATH2 F S) :

returns 1 if P A T H l and PATH2 in the
feature structure FS are coreferent, 0
otherwise

r e s u l t i n g - i t e m (T A S K 8) :
the resulting item of a parsing task

j h s (RULE): the left-hand side of a rule
r h s (RULE): the right-hand side of a rule (a list)
i n i t i a l - p r i o r i t y (R U L E) :

the initial priority of a rule
s ta r t . i n q - v e r t ex (ITEM) :

the starting vertex of an item
e n d i n g - v e r t e x (ITEM) :

the ending vertex of an item
remainder (ITEM) : a list of feature structures, if the item

is active, the empty list if the item is
passive

daughters (I T E M) : a list of daughters, or 'lex' if the item
is lexical

a c c e p t a b i l i t y (I T E M) :
the acceptability assigned to an item
(see section 3.2)

cpu-1 i mo () : a constantly increasing value

In addit ion, the usual functions for the arithmetic
operations and comparisons, list manipulation (first, rest,
eons, length), and truth functions (and, or, if, if-then-else,
not, equal) are provided.

The user can define more complex functions from these
pr imit ive functions. Some examples are given below
(variables are designated by upper-case letters):

span(ITEM) =
e n d i n g - v e r t e x (I T E M) - s t a r t i n g - v e r t e x (I T E M)

c a t e g o r y (I T E M) p a t h ([s y n c a t] f s (l T E M))

-7

' A n item is a object consisting of starting vertex, ending
vertex, feature structure, local tree (rule name and list of daughter
items), remainder of an active item, acceptability rating, and a
unique identifier wi th which the item is referred to in the list of
daughters and in the parsing task. If the identifier is given as
input to a function, the function is applied to the corresponding
i tem.

8
For result ing items, only information about starting and

ending vertex, and the local tree is available.

c o m p l e x i t y (I T E M) -
i f (e q u a l (daugh te rs (ITEM) l e x)

]
c o m p l e x (d a u g h t e r s (ITEM)) + 1)

complex(ITEMLlST) =
i f (e q u a l (ITEMLIST ())

0
f (c o m p l e x i t y (f i r s t (ITEMLIST))

c o m p l e x (r e s t (I T E M L I S T))))

In particular, the function p r i o r i t y (STRATEGY TASK) can
be defined, which wi l l then be used as the priority assignment
function for the parsing strategy given as the first argument.

Note that the function a c c e p t a b i l i t y (I T E M) introduces
almost unlimited power because of the syntactic, semantic
and pragmatic factors enter into the determination of the
degree of acceptability of a linguistic object

2 . 2 . 2 . Some examples

Some pr ior i ty assignment functions are given in the
fol lowing. These simple parsing strategies merely serve to
illustrate the flexibil i ty of the mechanism.

depth-first (depth): Every new parsing task gets higher
priority than the other parsing tasks still on the agenda, i. e.
the agenda behaves as a stack. In practice, this can be done by
using some constandy increasing value as the priority of the
task.

p r i o r i t y (d e p t h TASK) = c p u - t i m e ()

r igh t - to - le f t f r igh t le f t) . Use the starting vertex of the
resulting item as the priority of the parsing task.

p r i o r i t y (r i g h t l e f t TASK) =
s t a r t i n g - v e r t e x (r e s u l t i n q - i t e m (T A S K))

prefer long items over short ones (longitem); Use the span
of the resulting item as the priority.

p r i o r i t y (1 o n g i t e m TASK) =
s p a n (r e s u l t i n g - i t e m (T A S K))

prefer long rules (longmie)
p r i o r i t y (l o n g r u l e TASK) =

l e n g t h (r h s (r u l e (T A S K)))

combine active and passive items before applying rules (ap)
p r i o r i t y (a p TASK) = equa l (TASK a_and_p(A P))
The priority is 1 if the task is the combination of an active

and a passive item, and 0 otherwise.

sort new to front (new-to- f ront) ; This general strategy
[Haugeneder and Gehrke 88] ensures that all new tasks are
added to the front of the agenda, i. e. that they have higher
priority than any other tasks already on the agenda. However,
an order may be imposed upon the new tasks. In order to
achieve this behaviour one ensures that the priorities for the

Erbach 933

new tasks lie in the interval between the current and the next
item number. Since item numbers are incremented by 1, the
priority must be in the interval [itemcount itemcount+1].
The heuristic function, which is defined using the primitive
functions listed above, has a range between 0 and 0.99.

p r i o r i t y (n e w - t o - f r o n t TASK) =
i t e m c o u n t () + h e u r i s t i c - f u n c t i o n (TASK)

2.3. Reduct ion of the Search Space

In the parsing process, many parsing tasks are generated.
Whenever a new passive item P is added, the fol lowing
parsing tasks are generated:
- for every rule R a task apply ru le (R,P) and
- for every active item A whose ending vertex is the starting

vertex of Pa task a__and P (A , P) .

Whenever an active item A is added:
- for every passive item P whose starting vertex is the ending

vertex of the A a task a_and_p (A, P) .

However, not all parsing tasks do succeed - in fact, most of
them fail. But, assigning a priority to a parsing task which is
going to fail anyway is a waste of effort.

We have implemented a computationally inexpensive filter
which eliminates most of the useless parsing tasks. The filter
uses only a subset of the information present in the feature
structures of the rules, and encodes this as a Prolog term. If
the unification of the Prolog terms involved in the parsing
task fails, the parsing task cannot succeed. The parsing tasks
which pass the filter are assigned a priority and added to the
agenda.

The use of a filter resulted in a reduction of the total parse
time of 60 to 70 percent.

2.4. Stat is t ica l I n f o r m a t i o n

We assume that the definition of parsing strategies is an
experimental process of incremental optimization. In order to
obtain information about the behavior of a parsing strategy,
the fo l lowing statistics are collected during the parsing
process.
A 1 : cpu-time until first result is found
A2: cpu-time after complete exploration of the search space
B: number of possible parsing tasks (i . e. the total search

space)
C: number of parsing tasks on the agenda (i . e. the

reduced search space)
D l : number of successful parsing tasks (i . e. number of

chart items) after finding the first parse
D2: number of successful parsing tasks (i . e. number of

chart items) after complete exploration of the search
space

E l : number of parsing tasks which contribute to the first
result (i . e. number of nodes in the result tree(s)
including active items)

E2: number of parsing tasks which contribte to all results
(i . c. number of distinct nodes in all result trees
including active items)

E3: number of parsing tasks which contribute to the
correct reading (i . e. number of nodes in the chosen
result tree). There must be feedback from further
processing steps about which reading for an
ambiguous sentence was the correct one.

The values obtained by counting parsing tasks (B, C, D
and E) are also available for each rule of the grammar. B, C,
D2 and E2, which involve exhaustive search, are independent
of a particular parsing strategy. They exhibit global
properties of the grammar, and are useful in the determination
of parsing strategies.

These figures are available after one parse, and may also be
summed up over a number of parses. The ratio between these
figures which is the basis for the development of parsing
strategies.

Time efficiency: The ratio A1/A2 (CPU-time after first
parse / CPU-time after exhaustive search) indicates the time
efficiency of the chosen parsing strategy. A value of 0.6
would indicate that finding the first parse with that parsing
strategy takes 60% of the time which is needed for finding all
parses. A value that is greater than 1 indicates that the time
needed for assigning priorities to parsing tasks is greater than
the time saved by using the parsing strategy.

Successful possible tasks: The ratio D2/B indicates which
proportion of all parsing tasks is successful.

Successful tasks on agenda: The ratio D2/C indicates which
proportion of the parsing tasks on the agenda are ultimately
successful. Ideally, this ratio should be equal to 1. If this
value is very low for a particular rule, means that it is a rule
which passes the filter (cf. section 2.3), but is frequently
unsuccessful. In this case, the filter should be improved. If
this is not possible with reasonable effort, the rule should be
assigned low priority.

Space efficiency (for a strategy): The ratio D1/D2 (chart
items after first parse / chart items after exhaustive search)
gives an indication of how much space for storing chart items
is saved by the parsing strategy. This can be an very
important issue if large structures are built for each item, as
is the case with feature-value grammars.

Useless items (for a Strategy); The ratio E1/Dl (used items
/ built items) indicates how many of the successful tasks are
used in the first final result with a particular parsing strategy.
Ideally, the value should be equal to 1.

Useless items (with exhaustive searctri:The ratio E2/D2
(used items / built items after exhaustive search) indicates
which proportion of successful tasks are used in any of the
final results. If available, the ratio E3/D2 should be used. If
this value is low for some rule, the rule is frequently
successful, but rarely contributes to the final parse result(s).

Such rules are particularly disastrous, because their
successful execution creates new items, which in turn lead to

934 Natural Language

the generation of new parsing tasks. Such rules should be
assigned low priority. An example is the apposition rule,
which combines any two adjacent NPs, as in the following
examples:

Noam Chomsky, the well-known linguist, ...
Our teacher, a notorious drug addict,

2.5. Towards a Sel f -opt imiz ing Parser

The results of the above statistics can be used to f ind a
reasonable parsing strategy automatically. In this case, the
priority assignment function would take as its only input the
rule involved in the parsing task.

A promising parsing strategy would delay rules that
- arc frequently successful, but rarely contribute to the final

result (ratio E3/D2 or E2/D2), or
- are not filtered out, but frequently fail (ratio D2/C).

One formulation of such an automatically defined parsing
strategy might given below:

where C, D2 and E3 are the statistical figures for a
particular rule summed over a representative number of
parses.

3. Cr i ter ia for Pr ior i ty Assignment

3 . 1 . Surface Propert ies

Our experiments have shown that parsing strategies based on
surface properties of chart items, such as length, starting
position, syntactic category do not have any significant
advantages over depth-first search.

Strategies based on the statistics described in section 2.4
were more successful, and reduced the time for finding the
first parse of a sentence by about 40 percent. Our experiments
only adressed the issue of finding one parse result quickly
(which is appropriate for unambiguous strings), but did not at
all address the issue of finding the preferred reading first.

3 . 2 . Degrees of Acceptab i l i ty

Psycholinguistic research strongly suggests that some
analyses of an ambiguous sentence are more acceptable than
others. While it is not clear how degrees of acceptability are
determined, it is quite obvious how they can be used in the
definition of parsing strategies: the priority of a parsing task
should be high if the items involved in it have a high degree
of acceptability.

In addition, rules should be given an initial priority, which
may be determined by the function given in section 2.5. The
same is true for different readings of lexical items, which can
be given an initial probability.

The priority of a parsing task is then a function of

- the degree of acceptability of the constituents involved (or
the initial probability of readings of lexical items)

- the initial priority of the rule involved
One possible such function for a task involving n items

would be:

It would be mathematically more tempting to view the
acceptability values for items and initial priorities for rules as
probabilities, because the theory of probability is well
understood. The priority assignment function could then be
defined by multiplying all the probabilities:

Two objections may be raised against such an approach.
First, multiplication wi l l always make the probability of a
new node equal to or less then the probabilities of its
daughters. For this reason, the probability decreases as trees
get larger. This effect must somehow be compensated. The
second objection against probabilt ics is that serious
calculation with probabilities requires reliable statistical data,
which may not be available.

In the following we discuss some factors which play a role
in determining the acceptability of a constituent

3 .2 .1 . LP- ru les

In German, violation of a linear precedence rule does not
make a string completely unaccaptable, but reduces its
adaptabil i ty [Uszkorcit 1986]. Each LP-rule may have a
different weight, and violation of the LP-rule wil l decrease the
acceptability of the constituent in which the rule is violated
according to its weight.

3.2.2. A t tachment Preferences

Attachment preferences have been extensively studied in
psycholinguistics (e. g. [Fodor and Frazier 1970]). One main
principle is Right Association, which means that a modifier
is "attached into the phrase marker as a right sister to existing
constituents and as low in the tree as possible".

This strategy can be modelled by a strategy, which prefers
parsing tasks in which the modifier is the rightmost
constituent, and which have a short span. Semantic factors
can override syntactic attachment preferences.

3.2.3. Semantic Processing

Since the purpose of language is to convey meaning, the
acceptability of substrings cannot be determined solely on

Erbach 935

syntactic grounds, but must also take into account the
semantics. Early semantic processing is useful for checking
selectional restrictions, and in the resolution of ambiguities.
With the approach presented here, the results of early
semantic processing can be integrated directly into the parsing
process, and help to choose the most promising paths in the
search space.

3 . 3 . I l l - f o rmed Inpu t

Parsing strategies are very useful for dealing with ill-formed
input. In one scheme for processing ill-formed input (Erbach
1987, Mellish 1989], hypotheses are added to the chart in
order to correct ill-formedness. For example, missing words
are added, superfluous words removed. These hypothetical
items are then used to construct items which would be
constituents if the hypothesis were true.

In order to prevent the unrestricted introduction of
hypotheses, a cost is associated with each hypothsis. The
cost associated with a constituent is the sum of the costs of
its daughters. A parsing strategy wi l l try to minimize the
cost, i. e. the higher the cost of the resulting item, the lower
its priority.

In this way, the analysis which contains the fewest and the
less costly hypotheses is preferred.

4 . Conclus ion

We have presented an environment for the experimentation
with parsing strategies consisting of:
- a parser which can process various parsing strategies
- a functional language for the definition of strategies
- a statistical component which helps the user assess the

effects of the different strategies.
There are two general approaches which seem promising

for discovering a good parsing strategy.
The first approach is to use the statistics compiled about

individual rules in order to assign a priority to each rule,
which is then used as the priority of the parsing task
involving the rule. This method can be applied automatically.

The second, and more ambitious, approach, involves the
notion of degree of acceptability of a constituent. Such an
approach makes the priority of a parsing task depend on the
degrees of acceptability of the constituents involved, and on
the initial priority of the rule.

The most important research issues are
- how to determine degrees of acceptability,
- how to calculate the degree of acceptability of a new

constituent from the degrees of acceptability of its
daughters, and

- how to formulate a parsing strategy that makes use of
degrees of acceptability and other properties of the parsing
task, in order to obtain the desired reading with a minimun
of search.

R e f e r e n c e s

[Bouma el al. 1988] G. Bouma, E. Konig, and H. Uszkoreit.
A Flexible Graph-Unif icat ion Formalism and its
Application to Natural-language Processing. IBM Journal
of Research and Development 32(2), 170-184.

[Chomsky 1965] Noam Chomsky. Aspects of the Theory of
Syntax. Cambridge, MA: M I T Press.

[Chomsky 1981] Noam Chomsky. Lectures on Government
and Binding. Dordrecht: Foris.

[Erbach 1987] K. G. Erbach. Parsing Ill-formed Input with an
Augmented Chart Parser. Appendix to: K. G. Erbach. An
efficient chart parser using different strategies. Department
of Art i f ic ial Intelligence Discussion Paper Number 52.
University of Edinburgh.

[Fodor and Frazier 1970] J. Fodor and L. Frazier. The
Sausage Machine: A New Two-Stage Parsing Model. In
Cognition 6.

[Gazdar et al. 1985] G. Gazdar, E. Klein, E. Pullum, I. Sag.
Generalized Phrase Structure Grammar. Oxford: Basil
Blackwell.

[Haugeneder and Gehrke 1988] Hans Haugeneder and Manfred
Gehrkc. Improving Search Strategies, An Experiment in
Best-First Parsing. COLING 1988, Budapest, 237 -241 .

[Kay 19801 Martin Kay. Algorithm Schemata and Data
Structures in Syntactic Processing. Report CSL-80-12,
Palo Alto, CA: XEROX PARC.

[Mellish 1989] Chris Mellish. Some Chart-Based Techniques
for Parsing I l l-formed Input. 27th A C L Proceedings,
Vancouver, 102-109.

[Pereira and Shieber 1987] F. Pereira and S. M. Shieber.
Prolog and Natural Language Analysis. CSLI Lecture
Notes No. 10, Stanford, CA.

[Pereira and Warren 1980] F. Pcreira and D. H. D. Warren.
Definite Clause Grammars for Natural Language Analysis.
A Survey of the Formalism and a Comparison with
Augmented Transition Networks. In Artif icial Intelligence
13,231 -278.

[Pollard and Sag 1987] Carl Pollard and Ivan Sag.
Information-based Syntax and Semantics. Volume 1:
Fundamentals. CSLI Lecture Notes No. 13, Stanford, CA,
1987.

[Uszkoreit 1986] Hans Uszkoreit. Constraints on Order.
Report No. CSLI-86-46. Center for the Study of Language
and Information. Stanford, CA.

[Wir6n 1987] Mars Wiren. A Comparison of Rule-Invocation
Strategies in Context-Free Chart Parsing. 3rd European
ACL Conference Proceedings. Copenhagen, 226 - 235.

[Woods 1970] W. A. Woods. Transition Network Grammars
for Natural Language Analysis. Communications of the
ACM 13,591 -606.

936 Natural Language

