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Abstract 

An environment for the experimentation with parsing 
strategies is presented which consists of a parser which 
can process arbitrary parsing strategies, a functional 
language for the definition of strategies, and a statistical 
component which helps the user assess the effects of the 
different strategies. 

1. In t roduc t ion 

1.1. M o t i v a t i o n 

The past decade has witnessed the emergence and widespread 
acceptance of declarative grammar formalisms, some well-
known exemplars being Definite Clause Grammar [Pereira 
and Warren 1980], Generalized Phrase Structure Grammar 
fGazdar et al . 1985], and Head-driven Phrase Structure 
Grammar (Pollard and Sag 1987], 

In contradistinction to their more procedural predecessors 
like Transformational Grammar [Chomsky 1965] and 
Augmented Transition Networks [Woods 1970], today's 
declarative grammar formalisms do not prescribe an order in 
which the possible operations on the grammar are to be 
carried out1. 

What both today's declarative grammars and the procedural 
grammars have in common is that they give all the sentences 
generated by the grammar equal status, and do not account for 
degrees of acceptability. 

Consequently, many current natural language systems have 
parsers that enumerate all analyses of a given string, but have 
no way of preferring one analysis of ambiguous sentences. 
The choice of a path in the search space is generally 
accidental, and it is not possible to formulate a parsing 
strategy explicitely. 

This work was supported by I B M Germany's L ILOG Project. 
Definite Clause Grammars are an exception only if they are 

interpreted by the standard Prolog proof procedure. For 
alternative processing regimes see [Pereira and Shieber 1987] 

This situation is not very satisfactory both from the 
psycholinguistic and from the engineering point of view. 

From the psycholinguistic perspective, one property which 
needs to be modeled and explained is that humans in general 
consider only one reading of an ambiguous sentence. Another 
property is the robustness of human sentence processing 
when presented with ill-formed input. 

From the engineering perspective, it would rather be 
desirable to integrate syntactic preferences and semantic 
processing into the parsing process for early disambiguation 
in order to avoid the cost of exploring the complete search 
space, and the knowledge processing needed for selecting one 
reading of an ambiguous sentence. 

1.2. Wha t is a Parsing Strategy 

A parsing strategy determines the behaviour the parser in case 
of non-determinsm [Kay 1980]. Such non-determinism may 
arise by the choice of a rule to apply, and the choice of 
l inguistic objects to which the rule is appl ied2 . The 
application of a rule to linguistic objects is a parsing task. 

In the literature, the term "parsing strategy" is used in three 
different senses: 

a) Avoiding useless parsing tasks 
A parsing strategy is a rule-selection strategy that avoids 

any structure building which does not contribute to the final 
parse result. Such strategies would be top-down parsing, 
which makes sure that the only rules are chosen which may 
produce a parse with category S, bottom-up parsing which 
ensures that only rules are chosen which are licensed by the 
words in the input string, the directed parsing methods [Kay 
1980, Wir6n 1987] which combine the merits of top-down 
and bottom-up parsing. Head-driven parsing also falls into 
this category. 

2 This is the case for rule-based grammars. For principle-based 
grammars like Government-Binding Theory [Chomsky 1981] or 
HPSG [Pollard and Sag 1987], a parsing strategy might specify 
which principle to apply first and to which linguistic object. 
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b) Best-fim parsing (heurjsticaiiy guided search) 
A parsing strategy is a heuristically guided search strategy, 

[Kay 1980]. With such a strategy, more promising parsing 
tasks are preferred over less promising ones. A best-first 
parsing strategy prefers one of several parsing tasks, but 
gives the results of the successful parsing tasks equal status. 

c) Ambiguity resolution (and degrees of acceptability) 
A parsing strategy provides a preference for one analysis for 

ambiguous (sub)strings. It may well be that this preference 
follows from the execution of a best-first strategy defined 
without reference to preferences for alternative analyses. On 
the other hand, a best-first parsing strategy may rely on these 
preferences for its choice of the best parsing task. We return 
to this issue in sections 3.2 and 3.3. 

A parsing strategy is defined by a function which assigns a 
priority to each parsing task. Whi le the output of the 
function is a numerical priority value, little is known about 
the input arguments to the function. 

Haugeneder and Gehrke [1988] propose a model where the 
user can assign different weights to eight factors (init ial 
priority of the rule, initial priority for different readings of the 
lexemes, complexity of the structure, scoring of word 
hypotheses for spoken input, priority of an active edge, span 
of active edge, span of inactive edge, number of words left for 
processing). We are not that committed to the input of the 
heuristic function, and allow considerable more flexibility. In 
our view, finding appropriate input arguments to the function 
is one central objective of reasearch on parsing strategies. 

1.3. Deve lopment of pa rs ing strategies as an 
exper imenta l process 

Like [Haugeneder and Gehrke 1988], we view the discovery of 
parsing strategies as a largely experimental process of 
incremental optimization. Each cycle in the development 
consists of the following steps: 

a) definition (or modification) of a parsing strategy 
b) parsing of example sentences 
c) analysis of the parser's behaviour 
The third step should not only indicate whether the desired 

behaviour has been achieved, but also help to locate sources 
of inefficiency. These three steps must be supported by the 
following features of the parser: 
a) A language for the definition of parsing strategies 
b) The ability to process different strategies 
c) Statistics and diagnostic tools for evaluation of its 

behaviour with respect to a particular parsing strategy 

2. Implementation of Parsing Strategies 
The system presented here allows the user to define parsing 
strategies for declarative grammars in a declarative fashion by 
wri t ing an prior i ty assignment function which gives a 
priority to a given parsing task. 

2 .1 . The Parser3 

The parser is a bottom-up4 active chart parser. The 
essential data structure of the parser is the agenda [Kay 1980], 
a list of pairs of parsing tasks and associated priorities. 

The parser can process grammars encoded in the unification 
grammar formalism STUF [Bouma et al. 1988]. Because 
unification of feature structures is computationally expensive, 
parsing tasks correspond to unif icat ions, namely the 
unification of an item with a rule to produce an active item 
(or a passive item in the case of unary rules), or the 
combination of an active and a passive item: 

- a p p l y r u l e (Ru le -Name, I tem) 
- a and p ( A c t i v e - I t e r n , P a s s i v e - I t e m ) 

The parser can also be run without producing active items; 
in this case, a rule is applied to as many items as the right-
hand side of the rule has elements, corresponding to the 
parsing task a p p l y _ r u l e (Rule-Name, I t e m } , . . . , I t e m n ) . 

Since both rules and linguistic objects (chart items) are 
involved in a parsing task, the two kinds of non-determinism 
mentioned in section 1.2 arc present in the choice of a 
parsing task5 : the choice of a rule, and the choice of 
linguistic objects to apply the rule to. 

The top level of the parsing algorithm is very simple: 

w h i l e agenda no t empty , and n o t success do 
1 . remove t h e t a s k w i t h t h e h i g h e s t p r i o r i t y 

f rom t h e agenda 
2 . e x e c u t e t h a t p a r s i n g t a s k 
3 . g e n e r a t e new p a r s i n g t a s k s 
4 . a s s i g n each new p a r s i n g t a s k a p r i o r i t y and 

add i t t o t h e agenda 
end w h i l e 

A parsing strategy is defined by wri t ing a priori ty-
assignment function which is used in step 4 of the parsing 
algorithm. 

Without any particular priority assignment function, the 
above is an algorithm schema [Kay 1980], because the choice 
of a parsing task from the agenda is undetermined. 

2.2. Speci f icat ion of Pars ing Strategies 

3The parser is implemented in Quintus Prolog and integrated in 
LILOG's linguistic development environment LEU/2. 

4It is a bottom-up parser because some of the grammars have 
no context-free skeleton to guide top-down analysis. 

5There is another kind of non-determinism not accounted for 
here. It arises when the linguistic objects which are manipulated 
contain disjunctions. From a theoretical point of v iew, all 
disjunctions can be brought into disjunctive normal form, and 
each of the disjuncts can be treated as a linguistic object. 

" I f there are several tasks with the same priority, the one that 
was most recently generated wi l l be used. 
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2 . 2 . 1 . A F u n c t i o n a l L a n g u a g e f o r the 
Speci f icat ion of Pars ing Strategies 

We provide a restricted language, in which parsing strategies 
arc specified, containing the following primitive functions: 

ru le ( TASK) : the grammar rule of a parsing task 
i tem { N TASK7 ) : the n-th item of a parsing task 
is (ITEM) : the feature structure of an item 
path (PATH FS) : value of a path in a feature structure 
c o r e f e r e n t ( P A T H l PATH2 F S ) : 

returns 1 if P A T H l and PATH2 in the 
feature structure FS are coreferent, 0 
otherwise 

r e s u l t i n g - i t e m ( T A S K 8 ) : 
the resulting item of a parsing task 

j h s ( RULE ): the left-hand side of a rule 
r h s ( RULE ): the right-hand side of a rule (a list) 
i n i t i a l - p r i o r i t y ( R U L E ) : 

the initial priority of a rule 
s ta r t . i n q - v e r t ex (ITEM) : 

the starting vertex of an item 
e n d i n g - v e r t e x (ITEM) : 

the ending vertex of an item 
remainder (ITEM) : a list of feature structures, if the item 

is active, the empty list if the item is 
passive 

daughters ( I T E M ) : a list of daughters, or 'lex' if the item 
is lexical 

a c c e p t a b i l i t y ( I T E M ) : 
the acceptability assigned to an item 
(see section 3.2) 

cpu-1 i mo () : a constantly increasing value 

In addit ion, the usual functions for the arithmetic 
operations and comparisons, list manipulation (first, rest, 
eons, length), and truth functions (and, or, if, if-then-else, 
not, equal) are provided. 

The user can define more complex functions from these 
pr imit ive functions. Some examples are given below 
(variables are designated by upper-case letters): 

span(ITEM) = 
e n d i n g - v e r t e x ( I T E M ) - s t a r t i n g - v e r t e x ( I T E M ) 

c a t e g o r y ( I T E M ) p a t h ( [ s y n c a t ] f s ( l T E M ) ) 

-7 

' A n item is a object consisting of starting vertex, ending 
vertex, feature structure, local tree (rule name and list of daughter 
items), remainder of an active item, acceptability rating, and a 
unique identifier wi th which the item is referred to in the list of 
daughters and in the parsing task. If the identifier is given as 
input to a function, the function is applied to the corresponding 
i tem. 

8 
For result ing items, only information about starting and 

ending vertex, and the local tree is available. 

c o m p l e x i t y ( I T E M ) -
i f ( e q u a l ( daugh te rs ( ITEM) l e x ) 

] 
c o m p l e x ( d a u g h t e r s ( ITEM)) + 1 ) 

complex( ITEMLlST) = 
i f ( e q u a l ( ITEMLIST ( ) ) 

0 
f ( c o m p l e x i t y ( f i r s t (ITEMLIST) ) 

c o m p l e x ( r e s t ( I T E M L I S T ) ) ) ) 

In particular, the function p r i o r i t y (STRATEGY TASK) can 
be defined, which wi l l then be used as the priority assignment 
function for the parsing strategy given as the first argument. 

Note that the function a c c e p t a b i l i t y ( I T E M ) introduces 
almost unlimited power because of the syntactic, semantic 
and pragmatic factors enter into the determination of the 
degree of acceptability of a linguistic object 

2 . 2 . 2 . Some examples 

Some pr ior i ty assignment functions are given in the 
fol lowing. These simple parsing strategies merely serve to 
illustrate the flexibil i ty of the mechanism. 

depth-first (depth): Every new parsing task gets higher 
priority than the other parsing tasks still on the agenda, i. e. 
the agenda behaves as a stack. In practice, this can be done by 
using some constandy increasing value as the priority of the 
task. 

p r i o r i t y ( d e p t h TASK) = c p u - t i m e ( ) 

r igh t - to - le f t f r igh t le f t ) . Use the starting vertex of the 
resulting item as the priority of the parsing task. 

p r i o r i t y ( r i g h t l e f t TASK) = 
s t a r t i n g - v e r t e x ( r e s u l t i n q - i t e m ( T A S K ) ) 

prefer long items over short ones (longitem); Use the span 
of the resulting item as the priority. 

p r i o r i t y ( 1 o n g i t e m TASK) = 
s p a n ( r e s u l t i n g - i t e m ( T A S K ) ) 

prefer long rules (longmie) 
p r i o r i t y ( l o n g r u l e TASK) = 

l e n g t h ( r h s ( r u l e ( T A S K ) ) ) 

combine active and passive items before applying rules (ap) 
p r i o r i t y ( a p TASK) = equa l (TASK a_and_p(A P)) 
The priority is 1 if the task is the combination of an active 

and a passive item, and 0 otherwise. 

sort new to front (new-to- f ront) ; This general strategy 
[Haugeneder and Gehrke 88] ensures that all new tasks are 
added to the front of the agenda, i. e. that they have higher 
priority than any other tasks already on the agenda. However, 
an order may be imposed upon the new tasks. In order to 
achieve this behaviour one ensures that the priorities for the 
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new tasks lie in the interval between the current and the next 
item number. Since item numbers are incremented by 1, the 
priority must be in the interval [itemcount itemcount+1]. 
The heuristic function, which is defined using the primitive 
functions listed above, has a range between 0 and 0.99. 

p r i o r i t y ( n e w - t o - f r o n t TASK) = 
i t e m c o u n t ( ) + h e u r i s t i c - f u n c t i o n (TASK) 

2.3. Reduct ion of the Search Space 

In the parsing process, many parsing tasks are generated. 
Whenever a new passive item P is added, the fol lowing 
parsing tasks are generated: 
- for every rule R a task apply ru le (R,P) and 
- for every active item A whose ending vertex is the starting 

vertex of Pa task a__and P ( A , P ) . 

Whenever an active item A is added: 
- for every passive item P whose starting vertex is the ending 

vertex of the A a task a_and_p ( A, P) . 

However, not all parsing tasks do succeed - in fact, most of 
them fail. But, assigning a priority to a parsing task which is 
going to fail anyway is a waste of effort. 

We have implemented a computationally inexpensive filter 
which eliminates most of the useless parsing tasks. The filter 
uses only a subset of the information present in the feature 
structures of the rules, and encodes this as a Prolog term. If 
the unification of the Prolog terms involved in the parsing 
task fails, the parsing task cannot succeed. The parsing tasks 
which pass the filter are assigned a priority and added to the 
agenda. 

The use of a filter resulted in a reduction of the total parse 
time of 60 to 70 percent. 

2.4. Stat is t ica l I n f o r m a t i o n 

We assume that the definition of parsing strategies is an 
experimental process of incremental optimization. In order to 
obtain information about the behavior of a parsing strategy, 
the fo l lowing statistics are collected during the parsing 
process. 
A 1 : cpu-time until first result is found 
A2: cpu-time after complete exploration of the search space 
B: number of possible parsing tasks ( i . e. the total search 

space) 
C: number of parsing tasks on the agenda ( i . e. the 

reduced search space) 
D l : number of successful parsing tasks ( i . e. number of 

chart items) after finding the first parse 
D2: number of successful parsing tasks ( i . e. number of 

chart items) after complete exploration of the search 
space 

E l : number of parsing tasks which contribute to the first 
result ( i . e. number of nodes in the result tree(s) 
including active items) 

E2: number of parsing tasks which contribte to all results 
( i . c. number of distinct nodes in all result trees 
including active items) 

E3: number of parsing tasks which contribute to the 
correct reading ( i . e. number of nodes in the chosen 
result tree). There must be feedback from further 
processing steps about which reading for an 
ambiguous sentence was the correct one. 

The values obtained by counting parsing tasks (B, C, D 
and E) are also available for each rule of the grammar. B, C, 
D2 and E2, which involve exhaustive search, are independent 
of a particular parsing strategy. They exhibit global 
properties of the grammar, and are useful in the determination 
of parsing strategies. 

These figures are available after one parse, and may also be 
summed up over a number of parses. The ratio between these 
figures which is the basis for the development of parsing 
strategies. 

Time efficiency: The ratio A1/A2 (CPU-time after first 
parse / CPU-time after exhaustive search) indicates the time 
efficiency of the chosen parsing strategy. A value of 0.6 
would indicate that finding the first parse with that parsing 
strategy takes 60% of the time which is needed for finding all 
parses. A value that is greater than 1 indicates that the time 
needed for assigning priorities to parsing tasks is greater than 
the time saved by using the parsing strategy. 

Successful possible tasks: The ratio D2/B indicates which 
proportion of all parsing tasks is successful. 

Successful tasks on agenda: The ratio D2/C indicates which 
proportion of the parsing tasks on the agenda are ultimately 
successful. Ideally, this ratio should be equal to 1. If this 
value is very low for a particular rule, means that it is a rule 
which passes the filter (cf. section 2.3), but is frequently 
unsuccessful. In this case, the filter should be improved. If 
this is not possible with reasonable effort, the rule should be 
assigned low priority. 

Space efficiency (for a strategy): The ratio D1/D2 (chart 
items after first parse / chart items after exhaustive search) 
gives an indication of how much space for storing chart items 
is saved by the parsing strategy. This can be an very 
important issue if large structures are built for each item, as 
is the case with feature-value grammars. 

Useless items (for a Strategy); The ratio E1/Dl (used items 
/ built items) indicates how many of the successful tasks are 
used in the first final result with a particular parsing strategy. 
Ideally, the value should be equal to 1. 

Useless items (with exhaustive searctri:The ratio E2/D2 
(used items / built items after exhaustive search) indicates 
which proportion of successful tasks are used in any of the 
final results. If available, the ratio E3/D2 should be used. If 
this value is low for some rule, the rule is frequently 
successful, but rarely contributes to the final parse result(s). 

Such rules are particularly disastrous, because their 
successful execution creates new items, which in turn lead to 
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the generation of new parsing tasks. Such rules should be 
assigned low priority. An example is the apposition rule, 
which combines any two adjacent NPs, as in the following 
examples: 

Noam Chomsky, the well-known linguist, ... 
Our teacher, a notorious drug addict, 

2.5. Towards a Sel f -opt imiz ing Parser 

The results of the above statistics can be used to f ind a 
reasonable parsing strategy automatically. In this case, the 
priority assignment function would take as its only input the 
rule involved in the parsing task. 

A promising parsing strategy would delay rules that 
- arc frequently successful, but rarely contribute to the final 

result (ratio E3/D2 or E2/D2), or 
- are not filtered out, but frequently fail (ratio D2/C). 

One formulation of such an automatically defined parsing 
strategy might given below: 

where C, D2 and E3 are the statistical figures for a 
particular rule summed over a representative number of 
parses. 

3. Cr i ter ia for Pr ior i ty Assignment 

3 . 1 . Surface Propert ies 

Our experiments have shown that parsing strategies based on 
surface properties of chart items, such as length, starting 
position, syntactic category do not have any significant 
advantages over depth-first search. 

Strategies based on the statistics described in section 2.4 
were more successful, and reduced the time for finding the 
first parse of a sentence by about 40 percent. Our experiments 
only adressed the issue of finding one parse result quickly 
(which is appropriate for unambiguous strings), but did not at 
all address the issue of finding the preferred reading first. 

3 . 2 . Degrees of Acceptab i l i ty 

Psycholinguistic research strongly suggests that some 
analyses of an ambiguous sentence are more acceptable than 
others. While it is not clear how degrees of acceptability are 
determined, it is quite obvious how they can be used in the 
definition of parsing strategies: the priority of a parsing task 
should be high if the items involved in it have a high degree 
of acceptability. 

In addition, rules should be given an initial priority, which 
may be determined by the function given in section 2.5. The 
same is true for different readings of lexical items, which can 
be given an initial probability. 

The priority of a parsing task is then a function of 

- the degree of acceptability of the constituents involved (or 
the initial probability of readings of lexical items) 

- the initial priority of the rule involved 
One possible such function for a task involving n items 

would be: 

It would be mathematically more tempting to view the 
acceptability values for items and initial priorities for rules as 
probabilities, because the theory of probability is well 
understood. The priority assignment function could then be 
defined by multiplying all the probabilities: 

Two objections may be raised against such an approach. 
First, multiplication wi l l always make the probability of a 
new node equal to or less then the probabilities of its 
daughters. For this reason, the probability decreases as trees 
get larger. This effect must somehow be compensated. The 
second objection against probabilt ics is that serious 
calculation with probabilities requires reliable statistical data, 
which may not be available. 

In the following we discuss some factors which play a role 
in determining the acceptability of a constituent 

3 .2 .1 . LP- ru les 

In German, violation of a linear precedence rule does not 
make a string completely unaccaptable, but reduces its 
adaptabil i ty [Uszkorcit 1986]. Each LP-rule may have a 
different weight, and violation of the LP-rule wil l decrease the 
acceptability of the constituent in which the rule is violated 
according to its weight. 

3.2.2. A t tachment Preferences 

Attachment preferences have been extensively studied in 
psycholinguistics (e. g. [Fodor and Frazier 1970]). One main 
principle is Right Association, which means that a modifier 
is "attached into the phrase marker as a right sister to existing 
constituents and as low in the tree as possible". 

This strategy can be modelled by a strategy, which prefers 
parsing tasks in which the modifier is the rightmost 
constituent, and which have a short span. Semantic factors 
can override syntactic attachment preferences. 

3.2.3. Semantic Processing 

Since the purpose of language is to convey meaning, the 
acceptability of substrings cannot be determined solely on 
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syntactic grounds, but must also take into account the 
semantics. Early semantic processing is useful for checking 
selectional restrictions, and in the resolution of ambiguities. 
With the approach presented here, the results of early 
semantic processing can be integrated directly into the parsing 
process, and help to choose the most promising paths in the 
search space. 

3 . 3 . I l l - f o rmed Inpu t 

Parsing strategies are very useful for dealing with ill-formed 
input. In one scheme for processing ill-formed input (Erbach 
1987, Mellish 1989], hypotheses are added to the chart in 
order to correct ill-formedness. For example, missing words 
are added, superfluous words removed. These hypothetical 
items are then used to construct items which would be 
constituents if the hypothesis were true. 

In order to prevent the unrestricted introduction of 
hypotheses, a cost is associated with each hypothsis. The 
cost associated with a constituent is the sum of the costs of 
its daughters. A parsing strategy wi l l try to minimize the 
cost, i. e. the higher the cost of the resulting item, the lower 
its priority. 

In this way, the analysis which contains the fewest and the 
less costly hypotheses is preferred. 

4 . Conclus ion 

We have presented an environment for the experimentation 
with parsing strategies consisting of: 
- a parser which can process various parsing strategies 
- a functional language for the definition of strategies 
- a statistical component which helps the user assess the 

effects of the different strategies. 
There are two general approaches which seem promising 

for discovering a good parsing strategy. 
The first approach is to use the statistics compiled about 

individual rules in order to assign a priority to each rule, 
which is then used as the priority of the parsing task 
involving the rule. This method can be applied automatically. 

The second, and more ambitious, approach, involves the 
notion of degree of acceptability of a constituent. Such an 
approach makes the priority of a parsing task depend on the 
degrees of acceptability of the constituents involved, and on 
the initial priority of the rule. 

The most important research issues are 
- how to determine degrees of acceptability, 
- how to calculate the degree of acceptability of a new 

constituent from the degrees of acceptability of its 
daughters, and 

- how to formulate a parsing strategy that makes use of 
degrees of acceptability and other properties of the parsing 
task, in order to obtain the desired reading with a minimun 
of search. 
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