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A b s t r a c t 

In this paper we present a logical framework for 
defining consistent axiomatizations of planning 
domains. A language to define basic actions 
and structured plans is embedded in a logic. 
This allows general properties of a whole plan­
ning scenario to be proved as well as plans to 
be formed deductively. In particular, frame as­
sertions and domain constraints as invariants of 
the basic actions can be formulated and proved 
Even for complex plans most frame assertions 
are obtained by purely syntactic analysis In 
such cases the formal proof can be generated in 
a uniform way. The formalism we introduce is 
especially useful when treating recursive plans 
A tactical theorem prover, the Karlsruhe Inter­
active Verifier KIV is used to implement this 
logical framework 

1 I n t r o d u c t i o n 

In this paper we present a logical framework for defin­
ing consistent axiomatizations of planning domains. An 
effective mechanism for defining the basic operations in 
a constructive way is embedded in a logic that allows 
properties of state spaces given by these actions to be 
proved. This not only includes the deductive generation 
of plans; reasoning about the complete scenario is also 
supported by this approach 

Our work follows the "Plans are Programs" paradigm. 
This approach is not new; in deductive planning, in 
particular, it has already been discussed by several au­
thors (cf. [Green, 1969; Rosenschein, 1981; Kautz, 1982; 
Bibel, 1986; Manna and Waldinger, 1987; Biundo et 
al., 1992]). However, their contributions concentrated 
mainly on aspects of common control structures like se­
quential composition, conditional branching, and some­
times recursion. Less attention has been paid to the 
question of data structures Our approach is based on 
the idea of treating relations used in the axiomatizations 
of planning scenarios in the same way data with an alge­
braic structure are treated in ordinary programming lan-
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guages. In planning, situations are usually described by 
a set of relations between certain objects (blocks, rooms, 
robots etc.). These relations are flexible in the sense that 
they may change from one situation to another. The 
fact that these changes are local to a small section of 
the entire situation is not reflected in the basic seman­
tic concepts underlying most formalisms for deductive 
planning. So, for example, the blocks world operation 
unstack(a,b), [Genesereth and Nilsson, 1987], changes 
only the on-relation between a and 6, the clear-property 
of 6 and the table-property of a If the pile of blocks is 
just a part of some room, which in turn is just one con­
stituent of a larger scene, the unstack-operation exhibits 
very local behavior. 

A straightforward concept is to consider these rela­
tions as objects, like elements of (abstract) data types 
in ordinary programming languages In the theory of 
abstract data types most often one only considers al­
gebraic structures where all elements are (freely) gen­
erated by so-called constructors. In our case, restrict­
ing ourselves to finite relations, an appropriate set of 
Constructors" and "selectors" can easily be devised as 
well Starting with the empty relation all finite n-ary 
relations can be generated by successive applications of 
an add- operation that adds an n-tuple to a given rela­
tion As is the case with freely generated data types, 
we have to supply a corresponding delete-operation in 
order to compute with this data type It seems rea­
sonable to take these two operations as the basis of a 
planning language designed to compute changes of re­
lational structures. In our approach relations between 
unstructured objects correspond to data objects and are 
therefore considered to be finite. This seems to be a 
realistic assumption in most applications. In the con­
text of recursive plans the finiteness of relations and its 
reflection by axioms becomes essential for termination 
proofs. 

This approach, whereby one considers a fixed state 
space generated by add- (and delete') operations, un­
derlies STRIPS-like [Fikes and Nilsson, 1971] planners. 
These systems also demand a complete description of 
the operations used in the planning process. In par­
ticular, they allow an efficient treatment of the frame 
problem [McCarthy and Hayes, 1969] since it is explic­
it ly denoted which parts of a situation are changed. Our 
approach lends formal semantics to the basic concepts 
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under ly ing the S T R I P S approach and, whi le re ta in ing 
i ts effectiveness, removes most of i ts l im i ta t i ons by pro­
v id ing a more general mechanism for def in ing operat ions 
and by embedding th is mechanism in a logical f rame-
work . T h i s not on ly extends the S T R I P S approach and 
makes i t sui table for deduct ive p lann ing bu t also al lows 
whole p lann ing envi ronments to be set up in a provably 
consistent way. 

Based on elementary add- and delete-operat ions w i t h 
f ixed semantics, we w i l l begin w i t h the def in i t ion of ba­
sic act ions, and then use efficient contro l structures to 
bu i l d up more complex plans. A p a r t f r o m the usual ones, 
these contro l structures include a new non-determin is t ic 
choose construct , necessary to select objects in a non-
determin is t ic way. Domain constraints are fo rmula ted as 
tnvariants of the basic actions and can be proved f rom 
their basic def in i t ions, thus guaranteeing consistency of 
the whole p lann ing env i ronment . Due to the f ixed se­
mant ics of the e lementary operat ions, as well as the con-
t ro l s t ructures, "side effects" can be excluded in many 
cases, by a purely syntactical inspect ion of plans, thereby 
p rov id ing an efficient t rea tment of the f rame prob lem. 

We w i l l restr ict ourselves to a fo rmal iza t ion w i t h i n a 
var iant o f D y n a m i c Logic ( D L ) , a l though many of the ba­
sic ideas could be used in the context of other p rogram­
m i n g logics as wel l (e.g., [Salwick i , 1977; Hare l , 1979; 
M a n n a and Pnue l i , 1991; Kroger, 1987]). Not only does 
DL seem to be expressive enough for most appl icat ions 
in p lann ing ; th is choice also al lows an easy imp lemen­
ta t i on of our fo rma l i sm in an exist ing deduct ive system, 
the Kar lsruhe Interact ive Verif ier ( K I V ) [Heisel e t a/., 
1990]. Th is system can be used as a logic-based shell for 
set t ing up p lann ing envi ronments. Th is includes the def­
in i t i on of the basic act ions, the proof of invar iants and 
add i t iona l l e m m m a t a , and on top of t ha t the imp lemen­
ta t ion of various p lann ing strategies 

The paper is organized in the fo l lowing way: section 2 
introduces the semantic background of our theory. In 
section 3, we define the logic, inc lud ing syntax and se­
mant ics of the p lann ing language. Section 4 shows how 
state invar iants can be derived f r om the basic operator 
def in i t ions; it also shows how the abstract operator de-
scr ipt ions, already seen in other p lann ing formal isms, 
can be ob ta ined, and serve as the basis for deductive 
p lann ing Section 5 is devoted to the f rame problem In 
section 6 we discuss some aspects of the imp lementa t ion 
w i t h i n the K I V system. Section 7 refers to related work 
and finally, we conclude w i t h some remarks in section 8. 
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They define basic actions as atomic consti tuents of their 
p lann ing language tha t are ax iomat ized freely by de­
scr ib ing their precondi t ions and effects, respectively. 
Our approach goes beyond this by prov id ing a STRIPS-
l ike way of def in ing basic actions and sett ing up con­
sistent p lann ing scenarios on top of tha t . The logical 
fo rma l i sm is extended to reason about these basic ac­
t ions as wel l as about composi te plans bu i l t out of them. 
In bo th cases th is includes recursive def ini t ions. 

W i t h the work of Pednaul t [Pednaul t , 1986; Pednault , 
1989] the approach we presented in th is paper shares 
the idea of describing basic actions in a STRIPS- l ike 
manner, t ha t is, by g iv ing add and delete lists for rela­
t ions. Moreover, bo th approaches embed these descrip­
t ions in to a logical fo rma l i sm tha t can be used to rea­
son about plans. We begin w i t h the observation that 
the appropr ia te semant ical background for in tegrat ing 
this S T R I P S approach in to deduct ive p lann ing are mod­
els based on f in i te ly generated relat ions. Wh i l e A D L 
uses a f ixed fo rm of cond i t iona l add and delete lists 
our approach allows to p rogram basic operat ions in a 
careful ly chosen p rog ramming language tha t covers A D L 
schemata in a s t ra igh t fo rward way. In our approach it is 
easy to add non-determin ism and also in the determinis­
tic case we can do w i t h o u t aux i l ia ry relat ions which seem 
to be necessary in A D L to describe more compl icated 
actions. In our set t ing we s tar t out w i t h the definition 
of basic actions. The def ining programs always have a 
precise meaning in the under ly ing semantical structures. 
From these def ini t ions which in add i t ion are independent 
of each other we then prove doma in constraints, derived 
descript ions, and f rame assertions. These issues are not 
addressed in the A D L work. In add i t i on , we have out­
l ined a me thod to generate certain f rame assertions even 
for composite plans by a purely tex tua l analysis. A l ­
though many ideas presented above are independent of 
the logical basis we want to stress tha t the ab i l i ty to rea­
son about the s t ructure of (possibly) recursive def ini t ions 
(programs) is essential in th is context . 

As already ment ioned above, our fo rma l i sm is based on 
the S T R I P S ideas tha t have been given fo rmal semantics 
by Li fschi tz [Li fschi tz, 1986]. We feel t ha t our fo rma l i sm 
in some sense "procedural izes" Li fschi tz 's approach and 
extends it in some way, e.g. as far as the t reatment of 
negative effects etc. is concerned. However, invest igat ing 
th is re lat ionship in more deta i l goes beyond the scope of 
th is paper. Separate work w i l l be devoted to tha t issue. 

8 Conclusion 

Comb in i ng characterist ic features of conventional p lan­
n ing w i t h techniques borrowed f r o m p rog ramming logics, 
we have in t roduced a new theory of act ion based on a 
special var iant of Dynamic Logic. Plans may be con­
structed using r ich contro l structures inc lud ing recur­
s ion, non-determin is t ic branching, and a special choose 
construct . In our approach, we s ta r t out by the def ini­
t i on of basic act ions and are then able to prove prop­
erties about the state space generated by these actions. 
Th i s includes f rame assertions and doma in constraints. 
In th is way, we prevent our p lann ing env i ronment f r o m 
runn ing in to inconsistencies. These are possible in other 
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systems where f rame assertions and domain constraints 
are considered to be ax ioms. An efficient t reatment of 
the f rame prob lem is prov ided by a method to generate 
most f rame assertions non-deduct ively (w i t h the possi­
b i l i t y of a un i f o rm f o rma l proof w i t h i n the system). Our 
theory of act ion clearly is not restr icted to blocks-wor ld-
type p lann ing domains. One could equally well define a 
theory for an in te l l igent help system context where the 
p lann ing domain is a command language env i ronment . 
There the ab i l i t y of reasoning about recursive plans is 
essential. Imp lemen t i ng our logical f ramework in the 
K I V system provides the basis not only for a deductive 
p lann ing system, bu t also for a complete deductive p lan­
n ing env i ronment , i.e., a system tha t also assists a user 
in developing a consistent ax iomat iza t ion of his p lan­
n ing doma in . Fur thermore, th is no t ion o f envi ronment 
can be extended by imp lement ing tact ics for temporal 
pro ject ion, plan val idat ion and other reasoning methods. 
Fur ther work is devoted to the automated generation of 
recursive plans and an extension of the logical f ramework 
to para l le l ism. 
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