A New Logical Framework

for

Deductive Planning *

Werner Stephan and Susanne Biundo
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, 66123 Saarbrucken

e-mail:

Abstract

In this paper we present a logical framework for
defining consistent axiomatizations of planning
domains. A language to define basic actions
and structured plans is embedded in a logic.
This allows general properties of a whole plan-
ning scenario to be proved as well as plans to
be formed deductively. In particular, frame as-
sertions and domain constraints as invariants of
the basic actions can be formulated and proved
Even for complex plans most frame assertions
are obtained by purely syntactic analysis In
such cases the formal proof can be generated in
a uniform way. The formalism we introduce is
especially useful when treating recursive plans
A tactical theorem prover, the Karlsruhe Inter-
active Verifier KIV is used to implement this
logical framework

1 Introduction

In this paper we present a logical framework for defin-
ing consistent axiomatizations of planning domains. An
effective mechanism for defining the basic operations in
a constructive way is embedded in a logic that allows
properties of state spaces given by these actions to be
proved. This not only includes the deductive generation
of plans; reasoning about the complete scenario is also
supported by this approach

Our work follows the "Plans are Programs" paradigm.
This approach is not new; in deductive planning, in
particular, it has already been discussed by several au-
thors (cf. [Green, 1969; Rosenschein, 1981; Kautz, 1982;
Bibel, 1986; Manna and Waldinger, 1987; Biundo et
al., 1992]). However, their contributions concentrated
mainly on aspects of common control structures like se-
quential composition, conditional branching, and some-
times recursion. Less attention has been paid to the
question of data structures Our approach is based on
the idea of treating relations used in the axiomatizations
of planning scenarios in the same way data with an alge-
braic structure are treated in ordinary programming lan-

*This work was partly supported by the German Ministry
for Research and Technology (BMFT) under contract ITW
9000 8.

32 Automated Reasoning

<lasthame>@dfki.uni-sb.cie

guages. In planning, situations are usually described by
a set of relations between certain objects (blocks, rooms,
robots etc.). These relations are flexible in the sense that
they may change from one situation to another. The
fact that these changes are local to a small section of
the entire situation is not reflected in the basic seman-
tic concepts underlying most formalisms for deductive
planning. So, for example, the blocks world operation
unstack(a,b), [Genesereth and Nilsson, 1987], changes
only the on-relation between a and 6, the clear-property
of 6 and the table-property of a If the pile of blocks is
just a part of some room, which in turn is just one con-
stituent of a larger scene, the unstack-operation exhibits
very local behavior.

A straightforward concept is to consider these rela-
tions as objects, like elements of (abstract) data types
in ordinary programming languages In the theory of
abstract data types most often one only considers al-
gebraic structures where all elements are (freely) gen-
erated by so-called constructors. In our case, restrict-
ing ourselves to finite relations, an appropriate set of
Constructors" and "selectors" can easily be devised as
well Starting with the empty relation all finite n-ary
relations can be generated by successive applications of
an add- operation that adds an n-tuple to a given rela-
tion As is the case with freely generated data types,
we have to supply a corresponding delete-operation in
order to compute with this data type It seems rea-
sonable to take these two operations as the basis of a
planning language designed to compute changes of re-
lational structures. In our approach relations between
unstructured objects correspond to data objects and are
therefore considered to be finite. This seems to be a
realistic assumption in most applications. In the con-
text of recursive plans the finiteness of relations and its
reflection by axioms becomes essential for termination
proofs.

This approach, whereby one considers a fixed state
space generated by add- (and delete) operations, un-
derlies STRIPS-like [Fikes and Nilsson, 1971] planners.
These systems also demand a complete description of
the operations used in the planning process. In par-
ticular, they allow an efficient treatment of the frame
problem [McCarthy and Hayes, 1969] since it is explic-
itly denoted which parts of a situation are changed. Our
approach lends formal semantics to the basic concepts

underlying the STRIPS approach and, while retaining
its effectiveness, removes most of its limitations by pro-
viding a more general mechanism for defining operations
and by embedding this mechanism in a logical frame-
work. This not only extends the STRIPS approach and
makes it suitable for deductive planning but also allows
whole planning environments to be set up in a provably
consistent way.

Based on elementary add- and delete-operations with
fixed semantics, we will begin with the definition of ba-
sic actions, and then use efficient control structures to
build up more complex plans. Apart from the usual ones,
these control structures include a new non-deterministic
choose construct, necessary to select objects in a non-
deterministic way. Domain constraints are formulated as
tnvariants of the basic actions and can be proved from
their basic definitions, thus guaranteeing consistency of
the whole planning environment. Due to the fixed se-
mantics of the elementary operations, as well as the con-
trol structures, "side effects" can be excluded in many
cases, by a purely syntactical inspection of plans, thereby
providing an efficient treatment of the frame problem.

We will restrict ourselves to a formalization within a
variant of Dynamic Logic (DL), although many of the ba-
sic ideas could be used in the context of other program-
ming logics as well (e.g., [Salwicki, 1977; Harel, 1979;
Manna and Pnueli, 1991; Kroger, 1987]). Not only does
DL seem to be expressive enough for most applications
in planning; this choice also allows an easy implemen-
tation of our formalism in an existing deductive system,
the Karlsruhe Interactive Verifier (KIV) [Heisel et a/.,
1990]. This system can be used as a logic-based shell for
setting up planning environments. This includes the def-
inition of the basic actions, the proof of invariants and
additional lemmmata, and on top of that the implemen-
tation of various planning strategies

The paper is organized in the following way: section 2
introduces the semantic background of our theory. In
section 3, we define the logic, including syntax and se-
mantics of the planning language. Section 4 shows how
state invariants can be derived from the basic operator
definitions; it also shows how the abstract operator de-
scriptions, already seen in other planning formalisms,
can be obtained, and serve as the basis for deductive
planning Section 5 is devoted to the frame problem In
section 6 we discuss some aspects of the implementation
within the KIV system. Section 7 refers to related work
and finally, we conclude with some remarks in section 8.

2 State Spaces

Our logical language will be parameterized by an alpha-
bet of “user-defined” symbols. Since many different sorts
of objects occur in most. applications, our synfaz is based
on a finite set of sort symbols Z. There will be a fam-
ily of finite, disjoint sets, C = (C; | z € Z), the system
of constants, and a family of denumerable, disjoint sets
A = (X, | z € Z), the system of vartables. Both families
ate assumed to be digjoint. Atomic formulae are built np
by the equality symbol “=" and “user-defined” relation
symbols (e.g., on, clear, table etc.). These are given by a
Z*-indexed family R = (i | £ € Z*) of disjoint sets, Ry

being the set of relation symbols of type 2. We assume
that almost all sets Ry are empty and that all of them
are finite, i.e., R:= | J{R; | z € Z°} is a finite set.

For a given triple (Z,R,C) a model! (defining the state
space) is denoted by a structure X = (D, S,I), where
D= (D, |z € 2)is asystem of carrier sefs, S is a
set of states (or situations) and 7 is a state-dependent
inlerpretation that assigns an element of the appropriate
carrier to each pair (s,c) and a relation of appropriate
type to each pair (s,r). That is, for r € Ry and z =
{z1,....2n), we have I(s5,r) C D,, x ... x D, _.

In order to evaluate terms and formulae containing
variables, we introduce tvaeluations 8 : X — D that
preserve gorts. Terms are either variables or constants.
They are evaluated by [c], 5 = Z(5,¢) and [z], s = 8(z),
respectively. Satisfiability for first-order formulas in
structures X is defined by

KkE,grin,....,m) i ([nlg ... [7)s8) €Z(s. 7).

K t:l.ﬂ T =7y iff [Tlll.ﬂ = [Tg],}p ,and
KE,sVap iff forallde D, K, 9,

where z € X, and A9 is like 4 except that g%(z) =d.

As mentioned in the introduction, we are interested
in particular finitely generated state spaces given by so-
called natural models Ky = (Dg, Sy, Zp). Dy is a family of
at most. countable sels. We define 5, to be the set of all
mappings that map the relation symbols from R to finite
relations on Dy := | J{Do, | z € Z} of appropriate type
and set Zy(s,r) = 5(r). In natural models, constants are
interpreted in a stale independent way, that is for some d
we have To{s,¢) = d for all s € 55. Note that 1n natural
models K¢ we may drop the first index when evaluating
terms.

The reason for introducing states was, of course, that
we want Lo study operators that take us from one world
to another. In particular, we are interested in a small
set of operators that can be used as atomic constructs in
our planning language, just as assignment statements are
used in conventional programming languages. Looking
at the state space given by a natural model Ky it is more
or less obvious how these elementary operations should
look. They can be defined for arbitrary structures X if
treated as relations on S

For each r € H; and z = (z;,...
a-r

v2n) let d — r and

—ro D% ox D, —8xS8

he defined as

sd—r(d,.. ..d,)s& iff
I(s'r) = I(s,r) — {(dy,. ... dn)} and
I(5 Y= 2L(s,7") for v #£r
and
sa—r(dy, .. .dg)s" iff
I(s" ry = I(s,r)U{(d1,...,d.)}, and

I(s",P"Y=TI(s,r") for ¥ #r
Theorem 1

1) In naturel models Ky the relations a — r(...) and
d—r{(...) arc total functions.

Stephen and Biundo 33

2) In natural models Ky for any two stales 5 and &' there
eriats @ finite sequence of elementary add -and delete-

operations opy, ..., op,, such thel s op; o ... op, &,
where ‘o’ denotes the composition of relations.
3) If for elementary operations op,, op;
{opy,0p3} # {d—r(dy,...,dn),a—r(dr,...,dn)} , then
opy copz = opa o Op1
—r(dy,...,dy)oa—r{d,,...,dy} = a—r{di,....dn),
a-r(dy,...,dy)od—r{dy,.. ,d,) = d—r(dy, ... dn).
o
In general structures K, if Az I(s,z) = Az .Z(s',7) im-
plies 5 = ¢, the relations a — r(...) and d — r(...) are

partial functions. A more serious restriction is imposed
by requiring the add- and delete-operations to be total
functions. This means that no interesting domain con-
straints will hold for the whole state space. But what
can we do then if we are interested only in states where,
for example, we have on{y,z) Aon{z,z) - ¥y = = 7
The answer is simply Lo check whether the set of states
with the above property is closed under the basic actions
we want to use in our plans. That is, we treat domain
constraints as mveriants of the basic actions. Since the
concept of invariant is broader than the concept of do-
main constraint-——domain constraints must, of course, be
invariants of the basic actions—our approach does not
impose any restriction on the formulation of planning
problems. It offers, as we shall discuss in section 4, the
advantage of proving formulae to be invariam, thereby
ensuring the soundness of the whole axiom system.

It can be proved (in a way which would have to be
made precise) that all structures X° where the constants
are rigid symbols and T(s, r) is always a finite relation
are “contained” in a natural model Xy. Hence, the only
crucial question is whether we can define (or “program”)
sufficiently many actions in a sufficiently abstract way.
The property stated in part two of the theorem guaran-
tees that the basis of our planming language is power-
ful enough: All states can be reached from each other
by applying finite sequences of basic add- and delele-
operations. Of course, this does not mean that all actions
can be “programmed” in a satisfactory way. Indeed it
turns out that the control structures have to be carefully
designed. ln particular, we need a non-deterministic
choose construct in connection with recursive actions.
The choose construct will be introduced in section 3.

3 The Logic

We start with the definition of the syntax of our plan-
ning language. Actions ® and action abstractions ¥ are
defined relative to a vocabulary given by (Z,C, R, X). In
addition, we use a system A = (A; |2 € Z°) of names
for abstractions.

r o= skip| abort | delete-r(7;,...,7,) |
add-r(ry,...,m) | (71;%2) | (7 o 7m2) |
if v then =, else x; fi |
choose r begin 7 end |¥(1,...,7,)

¥ = a|reca(r,...,x,).7|recsa(z,,. ,z,)m,

34 Automated Reasoning

where is a first-order formula and r is a relation symbol
from R. We impose the usual type constraints. The oc-
currence of z following choose is a binding occurrence,
the scope of which consists of the plan enclosed by “be-
gin” and “end”.

Let X = (D, S,7) be a structure for (Z,C,R). The
semantics of plans ¥ is given by a valuation [.. }s, where
[x]3 CSxS.

skip)s = {(s,5) | 5 = 5'}

abort]s = {}

..-r(n,.; yT)]p = '
{(5,8) 15 . —r(Ins]s 5. - -2 [1nke) 5}

”1-'2)];9) [ri)s ol "215

if ¢ then 7, else »; fi]s) =
(Ne o lmls) U ((2¢7)s) o [mals),
where 5 (M) s il s=+5 and K5 ¢

(71 or m2)]5) = [mi]s U lmals
choose ¢ begin 7 end]s = |J {[7]s: | d € D. },

where z € X,
freca(z),....zx) 7 (r,.. ., mW))p =

U {[recna(zy,....za) 7 (r1,...,)]s | n > 0}
[rec"'i'ia(:l ey .'IT,-.).T (Tll o)]ﬁ -

{m*{a — rec.a(x|, .. z,,) w)]ﬁ" 4a s

where d; = [r]sfor 1 <i<n and 7* results

from = by suitably renaming the bound

variables, so as to avoid clashes.
frecy,a(zy,.. .,2) 7 (1, ..., w)]s = {},
fa(rs,. 7a)le = {)

We have defined the semantics for arbitrary structures
K. However, the reader should bear in mind that we are
interested only in natural models Ky, where the add- and
delete-operations are total functions on the set of states.

rec a{ry,...,#n).7 I8 a recursive action r,,..., I, be
ing the formal parameters and r being the body of that
action. To simplify our exposition we restrict ourselves
te simple recursive actions, an extension to mutuvally re-
cursive ones being straightforward. The semantics (and
proof theory) of recursive abstractions relies on fintle
approzimations. As can be seen from the semantic defi-
nitions above rec,, a(z;,...,z,).7 denotes the n'th ap-
proximalion of the meaning of rec a{ry,..., z,).7. Un-
interpreted reasening is achieved by using induction on
the indices of approximations in order to prove state-
menls about recursive actions.

The language is referentially transparent with respect
to variables. Side eflects occur only on the level of re-
lations (states). This 1s reflected in the axiomatization
which, in this aspect, is simpler than that of ordinary
DL and close to that given in {Kautz, 1982].

The choose construct guesses a new element by chang-
ing the valuation (environment) that 18 used to evaluate
the subsequent action. However, this change of environ-
ments as in the case of parameter passing follows a strict
stack discipline, thal 1s, the effect of choosing a new ele-
ment can not work outside Lhe plan enciosed by “begin”
and “end”. The choose construct is necessary to “move”
in structures,

To be able to reason about these changes, we follow
the approach taken in Dynamic Logic, in that we extend
the predicate logic used so far by formulae [r]p and [? —

r(&1,...,&n)]w, where r is a relation symbol and the §
are either terms or “placeholders” ©.

The formal semantics of this new type of formulas is
given by

K Eup 7o iff K g e
for all 5’ such that s [7]s &'

Kh',ﬂ [?_"(El‘-usfn)]‘P iff KFI',{"P

for all s such that

I(r, 8"y and I(r,s) differ in (dy,...,d,),

onlyifforall 1<i<n di=[§]poréi =&

and I(r',6"Y =I(r' s} forall v’ £ r
Intuitively, [r]i has to be read: "If » tcrminates,
holds afterwards.” The dual operator <w>>, defined by
<w>p 1 =[7]op has to be read: "r terminates with
@.” The (modal) operator [? — r(£,,...,&,)] refers 1o all
states that differ from the given one in at most the value
of r, where some argument positions are fixed. For ex-
ample, {? ~ on(©, ©] v means that v holds in all states
that differ from the given one in at most the on-relation
whereas [? —on(7, 7,)]y means that p holds in all states
that differ from the given one in at most the an-relation
between the objects denoted by 7, and 7,,. In ordinary
DL, this is achieved by quantifying on program variables.
A kind of “yuantification” like the one above lncreases
the expressive power of the formalism in general and is
necessary for inductive proofs.

The axiomatization follows the paradigiu of so-called
untnterpreted reasoning, where we do not rely on the ex-
pressive power of the underlying data structure. The
semantics and proo! theory of recursive actions {plans)
is outside the scope of Lhis paper, however, a general
introduction to uninterpreted reasoning, as it is imple-
mented in the KIV system, can be found in [Heise! rt al.,
1989]. An axiomatization of a very powerful procedure
concept for imperative programming languages is given
in [Stephan, 1989]. Hete we present only some axioms
for the non-standard constructs.

As is the case with assignments in ordinary program-
ming languages, the effects of the add- and delrte-
operations on first-order formulae can be described in
an exhaustive way.

Theorem 2 Let p be a formula such thal all bound
variables are distinet from the variables ocrurring
m T, ..., Th. Then the tweakest precondition (in
the semse of [Dijkstra, 1976]) of ¢ with respect to
delete-r(ry,..., 1,) and add-r(ry,. ... ™) erc the for-
mulae @ and ¢, respectively, where @ results from p by
replacing all atomie subformulac

al ﬂ"l) by

(r(cr;,.,.,a,,)/\ (mEmvV.. v # a,,))
and ¢ resulls from @ by replacing all atomic subformulae
Lag) by
((n Fa V...V ﬁrr,.}—rr(rrl,....a,.)),

riay,..

r{m, ..

]

Analogous to the well known assignment axioms we have

[delete-r{7y, . ..
[add-t(7y, ..

, Tn)jip — ¢ and
S ey

In addition to that, uninterpreted reasoning requires ax-
ioms like:

Vizigwm|1<i<n)—
[deletc-r(:)][adq~r(j)] TR
[add-r{y))[delete-i(7)] ¢ ,
[delete-r(F)][add-r'(§}] ¢
[add-r'()l{delete-r(z)] ¢
{delete-r(£)](add-1{Z)] ¢ — [add-r{z)] ¢,
|add-r(z))[delete-r(2})] ¢ — [delete-r(Z)] ¢,

For the choose construct we have
[choose z begin 7 end|p — Yy [7¥]p ,

where y is a fresh vanable. The axioms for the simple
structured commands are as usual. Examples for general
(modal) axioms are

[x)(o — %) — ([7]p — =]y},
Vz[r]p — [r]¥zep ,

where x must not occur free in », and
Vzp — o7,

where 7 is free for z in @, and] denotes the substitution
of v for all ftee occurrences of r in .

4 Actions and Plans

We are now going to outline how planning domaine can
consistently be defined in our theory. In section 6 we will
discuss briefly the technical aspects of a logic based shell
for planning and the implemention of planning strategies
within such a system. Our treatment of the frame prob-
lem will be discussed seperately. The main concern of
this section is to demonstrate how basic actions can be
defined in an abstract way and that domain constraints
can be treated adequately.

There is no technical distinction between basic actions
and derived plans composed out of them. The latter
can be used without restriction as basic operations for
higher levels of the planning process. However, we have
to start out with some set of basic actions that are hand-
coded. The first step involves fixing the set of relation
symbols we want to use. At the end of this section we
will discuss how defined notions, like above in the blocks
wotld scenario can be added to the theory.

The unstack operation, for example, can be defined
as a simple abstraction ¥,,.

rec unstock(x,y). if on(x, y) Aclear(z)
then add — table(r);
add — clear(y);
delete — on{z,y)
else abort fi.
In most applications, the state space is restricted by so-
called domain constrainis. In the blocks world, for ex-
ample, we have Y& (c:‘ear(z) — =3y only, r.)).

In our setting, domain constraints ate treated as tavars-
ants. For p being the equivalence above, we can prove
the assertion v — [yun(z,y)]p. If a similar assertion

Stephan and Biundo 35

holds for all basic actions, we can use the domain con-
straint in all states reached by arbitrary plans made
up of these basic actions, provided ¢ has been included
in the description of the initial state. This fact can be
proved formally in our setting.

The great advantage is that adding domain constraints
in such a way guarantees censistency with the definition
of the basic actions and, with that, consistency of the
whole planning environment. Having deduced a set of
domain constraints, we may also simplify the descrip-
lion of the basic actions to be used in the planning pro-
cess. From the definition given above, a sufficient {ab-
stract)} description of the unstack operation (in the style
of [Kautz, 1982]) would be:

on(z, y) Aclear{z) — <yyn(z,y) > table(z) A clear(y).

As another example, suppose we have a world where
blocks have colours and let red, black, and while be the
only colours that occur. An operator paintblack [Bibel «f
al., 1989] that changes the colour of any block to hlack
is defined by the abstraction p,

add — black(z),
delete — white(r);
delete — red(x) .

rec paintb(z).

If we can prove thal the formula

Yr (red(z)beack(r)\?whitr(r)), stating that every
black has exactly one of Lhe three colours, is an invariant
of all basic actions, then <7yps(x) > black(r) sufliciently
describes our action.

Note that 1t is not necessary to specify adding or delet-
ing negative facts in our approach. So, even without. the
domain constraint above, ~while(z} as well as ~wred(x)
can he proved to hold after the execution of 4,

Definitions of hasic actions can be more compiex than
those presented above. Using the choese construct we
are able to define, for example, the non-determimstic
dump operator [Kautz, 1982], that transfers all blocks
from a certain box into ancther by

rec dump(z,y). if 3z in(z, r)
then choose :
begin if in{z, 1)
then add - in(:, y);
delete — in{z, r};
dump(z, y)
else abort fi
end
else skip fi

and prove theorems about i,

The language introduced above can also be used to
treat “recursively defined notions”, like the abour rela-
tion in the blocks world seenario. This kind of relations
often causes problems in planning environments, see for
example [Kautz, 1982). Let 4,5 be the recursive abstrac-
tion

36 Automated Reasoning

rec above(z,y). if —on(z,y)
then choose 2
begin if on(z, y)
then above(z, z)
else abort fi
end
else skip fi.

Using this piece of program the relation above can be
defined by

above(z,y} 1 — <yau(r, y) >true
We are then able to prove lemmata like

AX Aabove(z, y) Az # u) — [Yun(u, v)]above(z, y) ,
on{z,y) — above(z,y) ,and
(Oﬂ(y'z) Aabove(:,y)) — above(x, z) ,

where ¥ is the set of domain constraints.

5 The Frame Problem

Considering the unstack-operation and analyzing its def-
inition reveals the fact that the only relations affected
by unstack are table, clear, and on. This, in particular,
means that unsteck has no side effects on, for example,
the colours of blocks. Thus,

white{x) — [yun(a, 8)white(r)

appears to be a valid (frame) assertion. This observation
leads us to an efficient treatment of the frame problem,
which has the following proper foundation.

In onr approach, the basic actions of a planning do-
main are defined as abstractions, the bodies of which
in simple cases merely contain Lhe elementary add- and
delete-operations. From these definitions of basic ac-
tions, frarne assertions can be mferred using uninter-
preted reasoning. Clearly, we have Lo use the basic ax-
1oms for the add- and delcte-operations, respectively, in
these deductions. In general, frame assertions are of Lhe
form

r(r,,...,r,,)—o[:-'r]((—or(r,,..,,r,,)) ,

where the condition ¢ consists of inequalities. In fact,
another frame assertion for the unstack-operation would
be:

on(z,¥) = [Yun(a, b)] ((r ZavyEbd) — on(:,y)) .

Of course, the frame assertions can be proved for com-
plete plans as well.

One main advantage of our approach, however, is that
a comprehensive subset of valid frame assertions can be
obtained in a non-deductive way by an aigorithm that
analyzes the syntactical structure of plans. Aasertions
generated by this algorithin can be proved in a uniform
way, that 18, we can provide a proof procedure (tactic in
KIV) that automatically generates a proof for each such
assertion. We shall now outline the basic ideas underly-
ing this algorithm.

In order to formulate the general method for comput-
ing sound frame assertions (for general plans), we have

to analyze the semantics of our planning language. It
turns out that for each plan 7 and each relation symbol
r, the formal execution tree of 7 conlains only a finite
number of different applications ol the elemeutary op-

erations .. — r(...), if we do not take into accouni, those
arguments that are program variables bound by a cheose
construct. In such a generalized ‘call’ .. — r(7, ..., %),

we write 7; = @, if #; is such an argument. Let Ra(w,r)
and R,(n, r) denote the set of all applications of clemen-
tary add- and delete-operations that are reachable by
respectively. Using this notation we get the following
result.

Theorem 3 For cach m and eack relation symbol v the
Jollowing wnplications are provable in our ariomalization

r(oy,....0n) — [7] /\(rond(rzp) | op € fga(mr))
— iz, ..., 00),
—r{oy,...,00) — [7] Alcond(op) | op € Ra(7,r))

i _‘I"(UI, . --|“n) v

where condlop) =\ o | nfwand 1 <i<n).

Clearly, the extensive use of the choose coustruct re-
duces the number of computed lrame axioms. All cases
nol covered by these computed [rame axioms have 1o be
ptoved in a non-uniform way.

6 Implementation

Although this paper s mamly devoled to the presen-
tation of our theory, we will shorlly describe how a
logic based planning environment can be implemented
within an (existing) tactical theorem proving system.
The paradigm of tactical theorem proving seems to be
especially well suited to the kind of environment we have
in mind (see also [Guinchiglia ¢ e, 1992]). Based on
a general logical framework, derived rules and tacties
can be defined and are then used to implement efficient
planning strategies or other reasoning methods on plans.

Like many other systemns in the area of tactical theo-
remn proving the KIV system is based on a sequent cal
culus. Program (plan) synthesis, [Heisel ef ol 1991],
is supported by so-called meta variables. Given plan-
ning problems by sets of formulae I' and A, we start
with the goal T.T = <7a>AA | and instantiate
the metavariable ?a during a goal-directed (backward-
chaining) proof. I is the set of domain constraints.
Strategies like progression and regression (cf. [Kautz,
1982]) can easily be implemented on the basis of a set
of suitable derived rules and tactics. For example, our
treatment of domain constraints can be implemented by
a derived scheme like & = {x) AL. These strategies
can uge the “computed” frame assertions to determine
the invariant part of a pre- or postcondition.

1n this way, we obtain considerable efficient implemen-
tations that can be easily changed, extended, and com-
bined and that are guaranteed io be sound wilh respect
to the basic formalism.

7 Related Work

Rosenschein and Kautz were the first using Dynamic
Logic in planning [Rosenschein, 1981; Kautz, 1982]

They define basic actions as atomic constituents of their
planning language that are axiomatized freely by de-
scribing their preconditions and effects, respectively.
Our approach goes beyond this by providing a STRIPS-
like way of defining basic actions and setting up con-
sistent planning scenarios on top of that. The logical
formalism is extended to reason about these basic ac-
tions as well as about composite plans built out of them.
In both cases this includes recursive definitions.

With the work of Pednault [Pednault, 1986; Pednault,
1989] the approach we presented in this paper shares
the idea of describing basic actions in a STRIPS-like
manner, that is, by giving add and delete lists for rela-
tions. Moreover, both approaches embed these descrip-
tions into a logical formalism that can be used to rea-
son about plans. We begin with the observation that
the appropriate semantical background for integrating
this STRIPS approach into deductive planning are mod-
els based on finitely generated relations. While ADL
uses a fixed form of conditional add and delete lists
our approach allows to program basic operations in a
carefully chosen programming language that covers ADL
schemata in a straightforward way. In our approach it is
easy to add non-determinism and also in the determinis-
tic case we can do without auxiliary relations which seem
to be necessary in ADL to describe more complicated
actions. In our setting we start out with the definition
of basic actions. The defining programs always have a
precise meaning in the underlying semantical structures.
From these definitions which in addition are independent
of each other we then prove domain constraints, derived
descriptions, and frame assertions. These issues are not
addressed in the ADL work. In addition, we have out-
lined a method to generate certain frame assertions even
for composite plans by a purely textual analysis. Al-
though many ideas presented above are independent of
the logical basis we want to stress that the ability to rea-
son about the structure of (possibly) recursive definitions
(programs) is essential in this context.

As already mentioned above, our formalism is based on
the STRIPS ideas that have been given formal semantics
by Lifschitz [Lifschitz, 1986]. We feel that our formalism
in some sense "proceduralizes" Lifschitz's approach and
extends it in some way, e.g. as far as the treatment of
negative effects etc. is concerned. However, investigating
this relationship in more detail goes beyond the scope of
this paper. Separate work will be devoted to that issue.

8 Conclusion

Combining characteristic features of conventional plan-
ning with techniques borrowed from programming logics,
we have introduced a new theory of action based on a
special variant of Dynamic Logic. Plans may be con-
structed using rich control structures including recur-
sion, non-deterministic branching, and a special choose
construct. In our approach, we start out by the defini-
tion of basic actions and are then able to prove prop-
erties about the state space generated by these actions.
This includes frame assertions and domain constraints.
In this way, we prevent our planning environment from
running into inconsistencies. These are possible in other

Stephan and Biundo 37

systems where frame assertions and domain constraints
are considered to be axioms. An efficient treatment of
the frame problem is provided by a method to generate
most frame assertions non-deductively (with the possi-
bility of a uniform formal proof within the system). Our
theory of action clearly is not restricted to blocks-world-
type planning domains. One could equally well define a
theory for an intelligent help system context where the
planning domain is a command language environment.
There the ability of reasoning about recursive plans is
essential. Implementing our logical framework in the
KIV system provides the basis not only for a deductive
planning system, but also for a complete deductive plan-
ning environment, i.e., a system that also assists a user
in developing a consistent axiomatization of his plan-
ning domain. Furthermore, this notion of environment
can be extended by implementing tactics for temporal
projection, plan validation and other reasoning methods.
Further work is devoted to the automated generation of
recursive plans and an extension of the logical framework
to parallelism.

References

[Bibel et a/., 1989] W. Bibel, L. Farinas del Oerro,
B. Fronhofer, and A. Herzig. Plan Generation by
Linear Proofs: On Semantics. In GWA189: Cur-
man Workshop on Artificial Intelligence, pages 50-62

Springer LNCS 216, 1989.

[Bibel, 1986] W. Bibel. A Deductive Solution for Plan

generation. New Generation Computing, 4:115-132,
1986.

[Biundo et al, 1992] S. Bitindo, D. Dengler, and
J. Kohler. Deductive Planning and Plan Reuse in

a Command Language Environment. In Proceedings
of the 10th European Conference on Artificial Intelli-
gence, pages 628-632, 1992.

[Dijkstra, 1976] E.W. Dijkstra. A Discipline of Pro-
gramming. Prentice Hall, London, 1976.

[Fikes and Nilsson, 1971] RE. Fikes and N..I Nilsson.
STRIPS: A New Approach to the Application of The-
orem Proving to Problem Solving. Artificial Intelli-
gence, 2:189-208, 1971.

[Genesereth and Nilsson, 1987] MR. Genesereth and
N.J. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann Publishers, Los Altos, Cal-
ifornia, 1987.

[Green, 1969] C. Green. Application of Theorem Prov-
ing to Problem Solving. In Proceedings of the 1st In-
ternational Joint Conference on Artificial Intelligence,
pages 219-239, 1969.

[Guinchiglia et al, 1992] F. Guinchiglia, P. Traverso,
A. Cimatti, and L. Spalazzi. Tactics. Extending the
Notion of Plan. In Proc. of the ECA1-92 Workshop
on Beyond Sequential Planning, 1992.

[Harel, 1979] D. Harel. First Order Dynamic Logic.
Springer LNCS 68, New York, 1979.

[Heisel et al, 1989] M. Heisel, W. Reif, and W. Stephan.
A Dynamic Logic for Program Verification. In

38 Automated Reasoning

A. Meyer and M. Taitslin, editors, Proceedings of Logic
at Botik, pages 134-145. Springer LCNS 363, 1989.

[Heisel et al, 1990] M. Heisel, W. Reif, and W. Stephan.
Tactical Theorem Proving in Program Verification. In
Proceedings of the 10th International Conference on
Automated Deduction, pages 117-131. Springer LCNS
449, 1990.

[Heisel et al, 1991] M. Heisel, W. Reif, and W. Stephan.
Formal Software Development in the KIV System. In
Automating Software Design, R. McCartney and M.R.
Lowry (eds.). AAAI Press, 1991.

[Kautz, 1982] H.A. Kautz. Planning within First-Order
Dynamic Logic. In Proceedings of the CSCSI/SCEIO,
pages 19-26, 1982.

[Kroger, 1987] F. Kroger. Temporal Logic for Programs.
Springer, Berlin, Heidelberg, New York, 1987.

[Lifschitz, 1986] V. Lifschitz. On the Semantics of
STRIPS. In MP. Georgeff and AL. Lansky, editors,
Reasoning about Actions and Plans, pages 1-8. Mor-
gan Kaufmann Publishers, Los Altos, 1986.

[Manna and Pnueli, 1991] Z. Manna and A. Pnueli. The
Temporal Logic of Reactive and Concurrent Systems.
Springer, New York, 1991.

[Manna and Waldinger, 1987] Z. Manna and R. Waldin-
ger How to Clear a Block: Plan Formation in Situa-
tional Logic. Journal of Automated Reasoning, 3:343
377, 1987.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes.
Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Michie,
editors, Machine Intelligence Vol 4, pages 463-502.
Edinburgh University Press, Edinburgh, 1969.

[Pednault, 1986] E. Pednault. Formulating Multiagent,
Dynamic-World Problems in the Classical Planning
Framework. In MP. Georgeff and AL. Lansky, edi-
tors, Reasoning about Actions and Plans, pages 47-82.
Morgan Kaufmann Publishers, Los Altos, 1986.

[Pednault, 1989] E. Pednault. ADL: Exploring the Mid-
dle Ground Between STRIPS and the Situation Calcu-
lus. In Proceedings of the 1st International Conference
on Principles of Knowledge Representation and Rea-
soning, pages 324 332. Morgan Kaufmann Publishers,
1989.

[Rosenschein, 1981] S. Rosenschein. Plan Synthesis: A
Logic Perspective. In Proceedings of the 7th Inter-
national Joint Conference on Artificial Intelligence,
pages 331-337, 1981.

[Salwicki, 1977] A. Salwicki. Algorithmic Logic. A Tool
for Investigations of Programs. In Logic, Foundations
of Mathematics, and Computability Theory, Butts and
Hintikka (eds.), pages 281-295. D. Reidel Publishing
Company, Dordrecht, Holland, 1977.

[Stephan, 1989] W. Stephan. Axiomatisierung rekur-
siver Prozeduren in der Dynamischen Logik. Habilita-
tionsschrift, Universitat Karlsruhe, Karlsruhe, 1989.

