
A N e w Logical F ramework
for

Deduc t i ve P lann ing *

W e r n e r S t e p h a n and Susanne B i u n d o
German Research Center for Art i f ic ia l Intelligence (D F K I)

Stuhlsatzenhausweg 3, 66123 Saarbrucken
e-mail: <lastname>@dfki.uni-sb.cie

A b s t r a c t

In this paper we present a logical framework for
defining consistent axiomatizations of planning
domains. A language to define basic actions
and structured plans is embedded in a logic.
This allows general properties of a whole plan­
ning scenario to be proved as well as plans to
be formed deductively. In particular, frame as­
sertions and domain constraints as invariants of
the basic actions can be formulated and proved
Even for complex plans most frame assertions
are obtained by purely syntactic analysis In
such cases the formal proof can be generated in
a uniform way. The formalism we introduce is
especially useful when treating recursive plans
A tactical theorem prover, the Karlsruhe Inter­
active Verifier KIV is used to implement this
logical framework

1 I n t r o d u c t i o n

In this paper we present a logical framework for defin­
ing consistent axiomatizations of planning domains. An
effective mechanism for defining the basic operations in
a constructive way is embedded in a logic that allows
properties of state spaces given by these actions to be
proved. This not only includes the deductive generation
of plans; reasoning about the complete scenario is also
supported by this approach

Our work follows the "Plans are Programs" paradigm.
This approach is not new; in deductive planning, in
particular, it has already been discussed by several au­
thors (cf. [Green, 1969; Rosenschein, 1981; Kautz, 1982;
Bibel, 1986; Manna and Waldinger, 1987; Biundo et
al., 1992]). However, their contributions concentrated
mainly on aspects of common control structures like se­
quential composition, conditional branching, and some­
times recursion. Less attention has been paid to the
question of data structures Our approach is based on
the idea of treating relations used in the axiomatizations
of planning scenarios in the same way data with an alge­
braic structure are treated in ordinary programming lan-

*This work was partly supported by the German Ministry
for Research and Technology (BMFT) under contract ITW
9000 8.

guages. In planning, situations are usually described by
a set of relations between certain objects (blocks, rooms,
robots etc.). These relations are flexible in the sense that
they may change from one situation to another. The
fact that these changes are local to a small section of
the entire situation is not reflected in the basic seman­
tic concepts underlying most formalisms for deductive
planning. So, for example, the blocks world operation
unstack(a,b), [Genesereth and Nilsson, 1987], changes
only the on-relation between a and 6, the clear-property
of 6 and the table-property of a If the pile of blocks is
just a part of some room, which in turn is just one con­
stituent of a larger scene, the unstack-operation exhibits
very local behavior.

A straightforward concept is to consider these rela­
tions as objects, like elements of (abstract) data types
in ordinary programming languages In the theory of
abstract data types most often one only considers al­
gebraic structures where all elements are (freely) gen­
erated by so-called constructors. In our case, restrict­
ing ourselves to finite relations, an appropriate set of
Constructors" and "selectors" can easily be devised as
well Starting with the empty relation all finite n-ary
relations can be generated by successive applications of
an add- operation that adds an n-tuple to a given rela­
tion As is the case with freely generated data types,
we have to supply a corresponding delete-operation in
order to compute with this data type It seems rea­
sonable to take these two operations as the basis of a
planning language designed to compute changes of re­
lational structures. In our approach relations between
unstructured objects correspond to data objects and are
therefore considered to be finite. This seems to be a
realistic assumption in most applications. In the con­
text of recursive plans the finiteness of relations and its
reflection by axioms becomes essential for termination
proofs.

This approach, whereby one considers a fixed state
space generated by add- (and delete') operations, un­
derlies STRIPS-like [Fikes and Nilsson, 1971] planners.
These systems also demand a complete description of
the operations used in the planning process. In par­
ticular, they allow an efficient treatment of the frame
problem [McCarthy and Hayes, 1969] since it is explic­
it ly denoted which parts of a situation are changed. Our
approach lends formal semantics to the basic concepts

32 Automated Reasoning

under ly ing the S T R I P S approach and, whi le re ta in ing
i ts effectiveness, removes most of i ts l im i ta t i ons by pro­
v id ing a more general mechanism for def in ing operat ions
and by embedding th is mechanism in a logical f rame-
work . T h i s not on ly extends the S T R I P S approach and
makes i t sui table for deduct ive p lann ing bu t also al lows
whole p lann ing envi ronments to be set up in a provably
consistent way.

Based on elementary add- and delete-operat ions w i t h
f ixed semantics, we w i l l begin w i t h the def in i t ion of ba­
sic act ions, and then use efficient contro l structures to
bu i l d up more complex plans. A p a r t f r o m the usual ones,
these contro l structures include a new non-determin is t ic
choose construct , necessary to select objects in a non-
determin is t ic way. Domain constraints are fo rmula ted as
tnvariants of the basic actions and can be proved f rom
their basic def in i t ions, thus guaranteeing consistency of
the whole p lann ing env i ronment . Due to the f ixed se­
mant ics of the e lementary operat ions, as well as the con-
t ro l s t ructures, "side effects" can be excluded in many
cases, by a purely syntactical inspect ion of plans, thereby
p rov id ing an efficient t rea tment of the f rame prob lem.

We w i l l restr ict ourselves to a fo rmal iza t ion w i t h i n a
var iant o f D y n a m i c Logic (D L) , a l though many of the ba­
sic ideas could be used in the context of other p rogram­
m i n g logics as wel l (e.g., [Salwick i , 1977; Hare l , 1979;
M a n n a and Pnue l i , 1991; Kroger, 1987]). Not only does
DL seem to be expressive enough for most appl icat ions
in p lann ing ; th is choice also al lows an easy imp lemen­
ta t i on of our fo rma l i sm in an exist ing deduct ive system,
the Kar lsruhe Interact ive Verif ier (K I V) [Heisel e t a/.,
1990]. Th is system can be used as a logic-based shell for
set t ing up p lann ing envi ronments. Th is includes the def­
in i t i on of the basic act ions, the proof of invar iants and
add i t iona l l e m m m a t a , and on top of t ha t the imp lemen­
ta t ion of various p lann ing strategies

The paper is organized in the fo l lowing way: section 2
introduces the semantic background of our theory. In
section 3, we define the logic, inc lud ing syntax and se­
mant ics of the p lann ing language. Section 4 shows how
state invar iants can be derived f r om the basic operator
def in i t ions; it also shows how the abstract operator de-
scr ipt ions, already seen in other p lann ing formal isms,
can be ob ta ined, and serve as the basis for deductive
p lann ing Section 5 is devoted to the f rame problem In
section 6 we discuss some aspects of the imp lementa t ion
w i t h i n the K I V system. Section 7 refers to related work
and finally, we conclude w i t h some remarks in section 8.

Stephen and Biundo 33

34 Automated Reasoning

Stephan and Biundo 35

36 Automated Reasoning

They define basic actions as atomic consti tuents of their
p lann ing language tha t are ax iomat ized freely by de­
scr ib ing their precondi t ions and effects, respectively.
Our approach goes beyond this by prov id ing a STRIPS-
l ike way of def in ing basic actions and sett ing up con­
sistent p lann ing scenarios on top of tha t . The logical
fo rma l i sm is extended to reason about these basic ac­
t ions as wel l as about composi te plans bu i l t out of them.
In bo th cases th is includes recursive def ini t ions.

W i t h the work of Pednaul t [Pednaul t , 1986; Pednault ,
1989] the approach we presented in th is paper shares
the idea of describing basic actions in a STRIPS- l ike
manner, t ha t is, by g iv ing add and delete lists for rela­
t ions. Moreover, bo th approaches embed these descrip­
t ions in to a logical fo rma l i sm tha t can be used to rea­
son about plans. We begin w i t h the observation that
the appropr ia te semant ical background for in tegrat ing
this S T R I P S approach in to deduct ive p lann ing are mod­
els based on f in i te ly generated relat ions. Wh i l e A D L
uses a f ixed fo rm of cond i t iona l add and delete lists
our approach allows to p rogram basic operat ions in a
careful ly chosen p rog ramming language tha t covers A D L
schemata in a s t ra igh t fo rward way. In our approach it is
easy to add non-determin ism and also in the determinis­
tic case we can do w i t h o u t aux i l ia ry relat ions which seem
to be necessary in A D L to describe more compl icated
actions. In our set t ing we s tar t out w i t h the definition
of basic actions. The def ining programs always have a
precise meaning in the under ly ing semantical structures.
From these def ini t ions which in add i t ion are independent
of each other we then prove doma in constraints, derived
descript ions, and f rame assertions. These issues are not
addressed in the A D L work. In add i t i on , we have out­
l ined a me thod to generate certain f rame assertions even
for composite plans by a purely tex tua l analysis. A l ­
though many ideas presented above are independent of
the logical basis we want to stress tha t the ab i l i ty to rea­
son about the s t ructure of (possibly) recursive def ini t ions
(programs) is essential in th is context .

As already ment ioned above, our fo rma l i sm is based on
the S T R I P S ideas tha t have been given fo rmal semantics
by Li fschi tz [Li fschi tz, 1986]. We feel t ha t our fo rma l i sm
in some sense "procedural izes" Li fschi tz 's approach and
extends it in some way, e.g. as far as the t reatment of
negative effects etc. is concerned. However, invest igat ing
th is re lat ionship in more deta i l goes beyond the scope of
th is paper. Separate work w i l l be devoted to tha t issue.

8 Conclusion

Comb in i ng characterist ic features of conventional p lan­
n ing w i t h techniques borrowed f r o m p rog ramming logics,
we have in t roduced a new theory of act ion based on a
special var iant of Dynamic Logic. Plans may be con­
structed using r ich contro l structures inc lud ing recur­
s ion, non-determin is t ic branching, and a special choose
construct . In our approach, we s ta r t out by the def ini­
t i on of basic act ions and are then able to prove prop­
erties about the state space generated by these actions.
Th i s includes f rame assertions and doma in constraints.
In th is way, we prevent our p lann ing env i ronment f r o m
runn ing in to inconsistencies. These are possible in other

Stephan and Biundo 37

systems where f rame assertions and domain constraints
are considered to be ax ioms. An efficient t reatment of
the f rame prob lem is prov ided by a method to generate
most f rame assertions non-deduct ively (w i t h the possi­
b i l i t y of a un i f o rm f o rma l proof w i t h i n the system). Our
theory of act ion clearly is not restr icted to blocks-wor ld-
type p lann ing domains. One could equally well define a
theory for an in te l l igent help system context where the
p lann ing domain is a command language env i ronment .
There the ab i l i t y of reasoning about recursive plans is
essential. Imp lemen t i ng our logical f ramework in the
K I V system provides the basis not only for a deductive
p lann ing system, bu t also for a complete deductive p lan­
n ing env i ronment , i.e., a system tha t also assists a user
in developing a consistent ax iomat iza t ion of his p lan­
n ing doma in . Fur thermore, th is no t ion o f envi ronment
can be extended by imp lement ing tact ics for temporal
pro ject ion, plan val idat ion and other reasoning methods.
Fur ther work is devoted to the automated generation of
recursive plans and an extension of the logical f ramework
to para l le l ism.

References

[Bibel et a/., 1989] W. B ibe l , L. Farinas del Oerro,
B. Fronhofer, and A. Herzig. Plan Generat ion by
Linear Proofs: On Semantics. In GWA189: Cur-
man Workshop on A r t i f i c i a l Intel l igence, pages 50-62
Springer L N C S 216, 1989.

[B ibe l , 1986] W. B ibe l . A Deduct ive Solut ion for Plan
generat ion. New Generat ion Comput ing, 4:115-132,
1986.

[B iundo et a l , 1992] S. B i t indo, D. Dengler, and
J. Kohler . Deduct ive P lann ing and Plan Reuse in
a C o m m a n d Language Env i ronment . In Proceedings
of the 10th European Conference on A r t i f i c i a l I n te l l i ­
gence, pages 628-632, 1992.

[D i j ks t ra , 1976] E .W. D i j ks t ra . A Discip l ine of Pro­
gramming. Prentice Ha l l , London, 1976.

[Fikes and Ni lsson, 1971] R E . Fikes and N..I Ni lsson.
S T R I P S : A New Approach to the App l i ca t i on of The­
orem Prov ing to Problem Solv ing. A r t i f i c i a l I n te l l i ­
gence, 2:189-208, 1971.

[Genesereth and Ni lsson, 1987] M R . Genesereth and
N.J. Ni lsson. Logical Foundat ions of A r t i f i c i a l I n te l l i ­
gence. Morgan Kau fmann Publishers, Los A l tos , Cal ­
i fo rn ia , 1987.

[Green, 1969] C. Green. App l i ca t i on of Theorem Prov­
ing to Prob lem Solv ing. In Proceedings of the 1st I n ­
te rna t iona l Jo in t Conference on A r t i f i c i a l Intel l igence,
pages 219-239, 1969.

[Guinch ig l ia et a l , 1992] F. Gu inch ig l ia , P. Traverso,
A. C i m a t t i , and L. Spalazzi. Tact ics. Ex tend ing the
Not ion of P lan . In Proc. of the ECA1-92 Workshop
on Beyond Sequential P lann ing, 1992.

[Harel , 1979] D. Harel . F i r s t Order Dynamic Logic.
Springer LNCS 68, New York , 1979.

[Heisel e t a l , 1989] M. Heisel, W. Reif, and W. Stephan.
A Dynamic Logic for P rogram Ver i f icat ion. In

A. Meyer and M. Ta i t s l i n , edi tors, Proceedings of Logic
at Bot ik , pages 134-145. Springer L C N S 363, 1989.

[Heisel et a l , 1990] M. Heisel, W. Reif, and W. Stephan.
Tac t i ca l Theorem Prov ing in Program Ver i f i ca t ion. In
Proceedings of the 10th I n te rna t i ona l Conference on
Automated Deduct ion, pages 117-131. Springer LCNS
449, 1990.

[Heisel e t a l , 1991] M. Heisel, W. Reif, and W. Stephan.
Fo rma l Software Development in the K I V System. In
Au tomat ing Software Design, R. McCar tney and M.R.
Lowry (eds.). A A A I Press, 1991.

[Kautz , 1982] H.A. Kau tz . P lann ing w i t h i n F i rs t -Order
Dynamic Logic. In Proceedings of the C S C S I / S C E I O ,
pages 19-26, 1982.

[Kroger, 1987] F. Kroger. Temporal Logic f o r Programs.
Springer, Ber l i n , Heidelberg, New York , 1987.

[Li fschitz, 1986] V. L i fschi tz . On the Semantics of
S T R I P S . I n M P . Georgeff and A L . Lansky, editors,
Reasoning about Act ions and Plans, pages 1-8. Mor­
gan K a u f m a n n Publ ishers, Los A l tos , 1986.

[Manna and Pnuel i , 1991] Z. M a n n a and A. Pnuel i . The
Temporal Logic of Reactive and Concurrent Systems.
Springer, New York , 1991.

[Manna and Wald inger , 1987] Z. Manna and R.. Wa ld in -
ger How to Clear a Block: Plan Format ion in Situa­
t ional Logic. Journa l of Automated Reasoning, 3:343
377, 1987.

[McCar thy and Hayes, 1969] J. M c C a r t h y and P. Hayes.
Some Phi losophical Problems f r om the Standpoin t of
A r t i f i c ia l Intel l igence. In B. Mel tzer and D. Michie,
editors, Machine Intel l igence Vo l 4, pages 463-502.
Ed inburgh Univers i ty Press, Ed inbu rgh , 1969.

[Pednault , 1986] E. Pednaul t . Fo rmu la t i ng Mu l t iagen t ,
D y n a m i c - W o r l d Problems in the Classical P lann ing
Framework. I n M P . Georgeff and A L . Lansky, edi­
tors, Reasoning about Ac t ions and Plans, pages 47-82.
Morgan K a u f m a n n Publ ishers, Los A l tos , 1986.

[Pednault , 1989] E. Pednaul t . A D L : Exp lo r ing the M i d ­
dle Ground Between S T R I P S and the S i tua t ion Calcu­
lus. In Proceedings of the 1st I n te rna t i ona l Conference
on Pr inc ip les of Knowledge Representat ion and Rea­
soning, pages 324 332. Morgan K a u f m a n n Publishers,
1989.

[Rosenschein, 1981] S. Rosenschein. P lan Synthesis: A
Logic Perspective. In Proceedings of the 7th In ter ­
nat iona l Jo in t Conference on A r t i f i c i a l Intel l igence,
pages 331-337, 1981.

[Salwicki , 1977] A. Sa lwick i . A l g o r i t h m i c Logic. A Too l
for Invest igat ions of Programs. In Logic, Foundations
of Mathemat ics , and Computab i l i ty Theory, But ts and
H in t i kka (eds.), pages 281-295. D. Reidel Publ ish ing
Company, Dordrecht , Ho l l and , 1977.

[Stephan, 1989] W. Stephan. Ax iomat i s ie rung rekur-
siver Prozeduren in der Dynamischen Logik . Hab i l i t a -
t ionsschr i f t , Un ivers i ta t Kar ls ruhe, Kar ls ruhe, 1989.

38 Automated Reasoning

