
Why AC-3 is Almost Always Better than AC-4 for
Establishing Arc Consistency in CSPs*

Richard J. Wallace
Department of Computer Science, University of New Hampshire

Durham, NH 03824, U. S. A.

Abstract

On the basis of its optimal asymptotic time
complexity, AC-4 is often considered the best algorithm
for establishing arc consistency in constraint
satisfaction problems (CSPs). In the present work, AC-
3 was found to be much more efficient than AC-4, for
CSPs with a variety of features. (Variable pairs were in
lexical order, and in AC-3 they were added to the end of
the list of pairs.) This is supported by arguments for the
superiority of AC-3 over most of the range of constraint
satisfiabilities and for the unlikelihood of conditions
leading to worst-case performance. The efficiency of
AC-4 is affected by the order of variable testing in
Phase 1 ('setting up' phase); performance in this phase
can thus be enhanced, and this establishes initial
conditions for Phase 2 that improve its performance.
But, since AC-3 is improved by the same orderings, it
still outperforms AC-4 in most cases.

1 I n t r oduc t i on

Local consistency techniques can be used with search to
improve the efficiency of algorithms that solve constraint
satisfaction problems (CSPs). They have also proven useful
in standalone implementations, because they can yield
solution sets or highly reduced problems [DeVille and Van
Hentenryck, 1991]. The most common techniques establish
arc consistency, i.e., pairwise consistency for all variables
in the problem or for a selected subset. This paper is
concerned with algorithms that establish arc consistency for
the entire problem.

AC-3 was introduced by Mackworth [1977] as a
generalization and simplification of the earlier "filtering"
algorithm of Ullman [1966] and Waltz [1975], now known
as AC-2. Mackworth and Freuder [1985] showed that this
algorithm has a worst case complexity bound that is
significantly better than that of the simple strategy of
scanning all pairs until no inconsistencies are found.
Subsequently, Mohr and Henderson [1986] introduced AC-4
and showed that it has an even better worst case complexity,
that is optimal in the general case.

This historical development has led to the impression that
at each stage an algorithm was derived that was generally
superior to previous algorithms in terms of efficiency [e.g.,
Perlin, 1991]. But since the main results are in terms of
worst case asymptotic behavior, it is not clear that AC-4,
the best algorithm in this sense, is actually better for a

T h i s material is based on work supported by the National
Science Foundation under Grant No. IRI-9207633.

given problem or even better on average. It is possible that,
for classes of problems, either AC-3 or AC-4 is superior.
This is suggested by Van Hentenryck's [1989] remark that
AC-4 is better for some problems, AC-3 for others.

A related problem concerns the order in which variable
domains are checked for consistency. It has been found that
certain ordering heuristics can yield marked improvement in
the performance of AC-3 [Wallace and Freuder, 1992]. For
some problems, this might tip the scales in favor of this
algorithm. On the other hand, it has been claimed (in
personid communications) that AC-4 is "order-independent".
If this were true, and if AC-4 was better than AC-3 for a
given problem, it would not be necessary in this case to
consider such ordering at all. Here it is shown that both AC-
3 and AC-4 provide opportunities for ordering to be
effective, so these heuristics are important regardless of the
algorithm chosen.

Section 2 describes the algorithms AC-3 and AC-4.
Section 3 discusses average case performance under certain
probabilistic assumptions. Section 4 gives results of tests of
these algorithms on problems that differ with respect to key
problem parameters, including random problems and reduced
queens problems. Large problems with parameter values that
yield very difficult problems were also tested. Section 5
considers problems that result in worst case performance by
AC-3 from a theoretical and empirical standpoint. Section 6
discusses effects of ordering the Phase 1 list of variable pairs
in AC-4, and presents empirical results for the problems of
Section 4. Section 7 discusses problem classes in which the
worst case complexity of arc consistency is less than

O(ed2). Section 8 presents conclusions.

2 Description of the Algorithms

A binary constraint satisfaction problem involves a set of
n variables, vi, each with a domain of values, di, that it
can assume. In addition, the problem is subject to some
number of binary constraints, Cij. each a subset of the
Cartesian product of two domains, di X dj.. A binary
constraint specifies which pairs of values can be
simultaneously assumed by the pair of variables. A CSP is
associated with a constraint graph, where nodes represent
variables and arcs or edges represent constraints.

AC-3 involves a series of tests between pairs of
constrained variables, vi and v.. Specifically, values in di

are checked against the constraint between vi and vj to see
if they are consistent with at least one value in dj;

unsupported values are deleted. The AC-3 algorithm is
shown in Figure 1. Al l ordered pairs of constrained variables

Wallace 239

a]re first put in Listofpairs. Each pair, (vi, v j), is removed
and di is tested against dj When values are deleted, it may
be necessary to add pairs back to Listofpairs to determine if
these deletions lead to further deletions.

Initialize Listofpairs to {(v i , vj) there is a constraint
between vi and v.) .

While Listofpairs is not empty
Select and remove (vi, vj) from Listofpairs.
Test vi against v.-.
If any values are removed from di,

add to Listofpairs any pairs (vk, v i), k≠j, such
that there is a constraint between vK and vi and
(vk, vi) is not already present in Listofpairs.

Figure 1. The AC-3 algorithm.

AC-4 also begins with a sequence of tests between all
pairs of constrained variables (Figure 2: Phase 1). But in
this case the purpose of the tests is to determine amount of
support, i.e., how many values in the domain of vj support
value a in the domain of vi and which values these are.
This information is kept in special data structures for use in
Phase 2 of the algorithm. If in the course of Phase 1, a
value is found to have no support, this is recorded (in array
Mark) and the value removed from the domain, as in AC-3.

Alter one pass through the set of variable pairs, AC-4
constructs a list of unsupported values (Listofbadvalues) in
the form of variable-value pairs. Then, for each element on
the list, (vk, c), the list of values supported by that value
(collected in Phase 1) is examined. For each of the latter
values, e.g., value d in the domain of vl, the associated
counter is decremented (here, counter [(vk , vl) d]). If a
counter is decremented to zero and the value was previously
supported, it is put on the list of unsupported values. (Note.
The present AC-4 [Figure 2] is identical to Mohr and
Henderson [1986] except that in Phase 2 array Mark is
checked before a counter is decremented rather than after.)

3 Average Performance of AC-3 and AC-4

The following facts have been established regarding the
time complexity of these algorithms. The worst case
complexity of AC-3 is bounded above by Q(ed3), where e
is the number of constraints (edges) and d the maximum
domain size [Mackworth and Freuder, 1985]. The time
complexity of AC-4 is always O(ed2) [Mohr and
Henderson, 1986]. Since the lower bound on the complexity
of arc consistency is 0(ed2) , AC-4 is always optimal in
terms of time complexity.

Another factor suggests that AC-3 would sometimes be
more efficient than AC-4. In AC-3, each value in di is
tested in terms of a yes/no query: is it supported by any
value in dj or not? In AC-4 on the other hand, value testing
involves questions of magnitude: how many values in dj

240 Constraint Satisfaction Problems

To give some concrete examples, suppose In this
case AC-4 performs 5 constraint checks for each value tested
against this domain. If p = .15, the expected number of
constraint checks performed by AC-3 for each value is 3.7;
if p = 0.3, the expected number is 2.8, if p = .45, the
expected number is 2.1, and if p = .6, the expected number
is 1.6. If also has 5 values, the expected numbers of
constraint checks for probabilities just given are 19, 14, 11
and 8, respectively, in contrast to 25 constraint checks for
AC-4. Thus, across a wide range of inclusion probabilities,
AC-3 performs less than half the number of constraint
checks that AC-4 requires. In these cases, if AC-3 performs
twice as many variable-pair tests as AC-4 does in Phase 1 it
wil l still be more efficient. (Note also that on successive
tests of the same pair, the number of values checked will be
smaller.) For random problems, especially when variable-
pair tests are ordered by a good heuristic, the number of
variable pairs that must be retested is usually much less than
this ([Wallace and Freuder, 19921, and see below).

4 Experimental Results

Evidence on the frequency with which AC-3 outperforms
AC-4 and the average difference in performance was obtained
from empirical studies. Three kinds of CSP were examined:

(i) random problems in which values for number of
constraints (added to a spanning tree based on randomly
selected constraints), domain size and satisfiability were
chosen from the range of possible values, and then elements
were chosen (at random) from the set of possible elements to
equal the parameter value. In the problems used here, n =
12, so 55 constraints could be added to a spannning tree.
Thus, the number of added constraints could range between 0
and 55. Similarly, the maximum domain size = 12, and the
value for a domain size was chosen between 1 and 12
inclusive. And for two domains with, say, 12 values, a
value for the satisfiability of a constraint between them was
chosen between 1 and 143 inclusive. These are called random
parameter value problems.

(ii) random problems in which each element in the set of
possible (additional) constraints, or possible domain values,
or possible constraint pairs, was chosen with a probability
that was constant for that panuneter. For example, in one set
of ten-variable problems the probability for inclusion of a
constraint was 0.1, for inclusion of a domain value the
probability was 0.5 (maximum domain size = 10) and for
inclusion of a constraint pair the probability was 0.35. This
yields problems with, on average, about 14 constraints, five
values per domain and a relative satisfiability of 0.35 per
constraint. (Null domains and constraints were not allowed.)
These are called random probability of inclusion problems.

(iii) k-queens problems with one domain (row) restricted
to one or a few elements. This yields queens-like problems
that can be reduced by arc consistency methods. Unlike the
random problems, constraint graphs are always complete.

Random parameter value problems are heterogeneous
internally, but average values for domain size and
satisfiability are near the middle of the range. They are
subject to considerable reduction by arc consistency
methods. Probability of inclusion problems are more

homogeneous with respect to their parameter values, with
average values close to those predicted from original
probabilities. The amount of reduction due to violations of
arc consistency is usually less than for random parameter
value problems. Five-queens problems with a domain
restricted to one value show considerable domain reduction;
with 10-queens the reduction is much less.

Ten twelve-variable random parameter value problems
were generated in each of two constraint-ranges: 11-24 and
25-38. Five problems in each range with no solutions were
also collected; lack of solution was detected by arc
consistency algorithms in all cases, by domain 'wipeout'.
Tests of these problems are referred to as Experiment 1 in
the discussion of results.

Ten-variable probability of inclusion problems were
generated with the following probability values: 0.1, 0.225
and 0.35 for constraint inclusion, 0.5 and 0.75 for domain
value inclusion (maximum d = 10), and 0.35 and 0.55 for
constraint pair inclusion. These factors were fully crossed, to
produce twelve sets of problems. Five problems with
solutions were generated in each category. Tests of these
problems are referred to as Experiment 2.

I I - 24 25 - 38 11 - 24 25 - 38
no wipeout wipeout

number of constraints
Performance of arc consistency algorithms on 12-Figure 3

variable random parameter value problems. Number
constraint checks to produce consistency or wipeout

of

Five- and ten-queens problems were tested, with the one
domain restricted to one value or to either two (5-queens) or
four (10-queens) values. The restricted domain was associated
with either the first variable (first row), a middle variable
(third or f i f th row for 5- and 10-queens problems,
respectively), or the last variable. Al l possible values were
tested in the one-value cases, while five combinations of
values were tested in each multi-valued case. These tests are
referred to as Experiment 3.

The relative performance of AC-3 and AC-4 in
Experiments 1-3 was quite consistent (Figures 3-5). AC-3
outperformed AC-4 on every problem tested, and the number
of constraint checks was 2:1 or better in most cases, even
with comparisons limited to Phase 1 of AC-4. (Phase 2 does
not use constraint checks.) AC-3 was, therefore, superior to
AC-4 on problems differing in degree of difficulty, amount
of domain reduction (ranging from no reduction to reduction
to a single solution or to domain wipeout), key parameter
values, and systematic versus random patterns of dependency

Wallace 241

(in the queens and random problems, respectively).
Figures 3 and 4 show the expected effect on AC-4 of

increasing the total number of values that must be checked,
either by adding constraints or by increasing average domain
size. At the same time, the effect of these changes on AC-3
is much smaller. For probability of inclusion problems,
increasing constraint satisfiability (decreasing the tightness)
also led to more constraint checks by AC-4. This was
because there were fewer values deleted in the course of
checking. But, consistent with the analysis in Section 3,
decreasing the tightness led to fewer constraint checks by
AC-3. This overcame the effect of fewer deletions, which is
also a factor in AC-3's performance.

Figure 4. Performance of AC-3 and AC-4 on problems with
different probabilities of inclusion of constraints (pc)} domain

elements (pd) and constraint pairs (pp).

Similar results were found with queens problems (Figure
5). Since the list was initially in lexical order, these
problems were progressively harder as the restricted domain
was further back in the list. This was true for both
algorithms, but the proportional increase was greater for
AC-4. (The ratio of highest to lowest means was 1.55 and
1.17 for AC-3, for the 5- and 10-queens problems,
respectively, and 1.75 and 1.29 for AC-4.) It seems that as a
general rule AC-3 is less affected by problem features that
produce more work for arc consistency algorithms.

In each experiment, differences in mean values were
evaluated statistically by repeated measures analyses of
variance, with algorithms as the repeated factor. (Separate
analyses were done for problems with and without solutions
in Experiment 1 and for 5- and 10-queens problems in
Experiment 3.) For each test except that for the random
parameter problems without solutions, the algorithms factor
was statistically significant at the 0.001 level. In the latter
case, this factor was significant at the 0.01 level. In
Experiment 2, the interaction of the algorithms factor with
each of the three problem parameters that were varied was
statistically significant at the 0.001 level, reflecting the
greater effect on AC-4. The factors based on probability of
constraint inclusion and domain element inclusion were
themselves significant at the 0.001 level, while the factor
based on constraint value-pair inclusion was not statistically

significant. In addition, the interaction between the former
two probability factors and the third-order interaction of
these factors with the algorithms factor were significant at
the 0.001 level. In Experiment 3, the factor based on
location of domain restriction was significant at the 0.001
level in analyses based on the 5- or 10-queens problem, and
the interaction between this factor and the algorithm factor
was significant at the 0.01 level in both cases.

Domain Restricted
Figure 5. Performance of arc consistency algorithms on queens
problems where one domain is restricted to one value.

For these problems. Phase 2 of AC-4 was done very
quickly. In Experiment 1, the average number of badlist
accesses was about 50, including 15 list additions, and there
were about 300 Sjc (support list) accesses. In Experiment 2,
there were few operations of any kind except for problems
with small domains (p = 0.5) and small satisfiabilities (p
= 0.35); even here, means for badlist accesses only varied
from 15 to 40, with a mean of 2 to 16 additions, and means
for Sjc accesses varied between 61 and 238. For problems
with the largest domains and satisfiabilities, there was no
domain reduction, so no work was required in Phase 2. For
queens problems with singleton domains, there were 10 or
12 badlist accesses for 5-queens and 18 for 10-queens, while
the average number of Sjc accesses was 22 and 382,
respectively. For 2- and 4-valued domains, the number of
operations of each type was reduced by a factor of five for 5-
queens problems, while no work was required for 10-queens
problems since there was no domain reduction.

Two further experiments were run to determine whether
AC-3 would maintain its superiority with larger problems.
In the first experiment, ten random parameter value
problems were generated with 24, 48 or 72 variables. There
was no restriction on number of constraints, and in all cases
the maximum \d\ was 12. After each problem was
generated, a solution was added by selecting a value from
each domain at random and, if necessary, replacing a value
pair in a constraint with the pair that was consistent with
this solution. Arc consistency reduced most of these
problems to the added solution, with some exceptions
among 24-variable problems. In the second experiment
probability of inclusion methods were used to generate 99-
variable CSPs. The domain size was always four and the
probability of value pair inclusion was 0.75, so they
resembled four-color problems with respect to their
parameter values. A range of densities was chosen that

242 Constraint Satisfaction Problems

included a peak in the performance curve, based on forward
checking with dynamic ordering. This peak was near the
"critical connectivity value" [Williams and Hogg, 1992]. It
wits, therefore, possible to compare AC-3 and AC-4 on
inherently difficult its well as easy problems generated with
the same methods. In general, these problems did not admit
much domain reduction. For this reason, similar problems
with relative satisfiability equal to 0.5 were tested, in which
peak difficulty was associated with a density of 0.005. These
admitted more reduction, but the results for arc consistency
were similar to the results for the first set of problems.

Figure 6. Performance of arc consistency algorithms on
random parameter value problems of varying size.

Results for the first experiment on larger problems are
shown in Figure 6. Rather than decreasing as problems get
larger, if anything, the degree of improvement with AC-3
increases. It should also be mentioned that, in testing AC-4,
four 72-variable problems had to be run on a larger machine
because of space requirements. In addition, as problem size
increased, the amount of work required in Phase 2 became
appreciable, ranging from a me;in of 134 badlist accesses and
869 Sjc accesses for 24-variable problems to 406 badlist
accesses and 3934 Sjc accesses for 72-variable problems. But
performance was still dominated by Phase 1.

Problem density
Figure 7. Performance of arc consistency algorithms and forward
checking on large random problems over a range of densities
that includes the critical connectivity associated with very hard
problems.

For 99-variable problems, AC-3 was markedly better than
AC-4 at all problem densities, including those associated
with hard problems. This suggests that the inherent
difficulty of a problem bears no relation to worst case

behavior of AC-3. And it confirms the conclusion of the
previous experiment that AC-3 retains its superiority to
AC-4 in the average case its problem size is 'scaled up'.

5 Worst Case Conditions for AC-3

Mack worth and Freuder [1985] discuss the theoretical
worst case condition for AC-3, in which each domain, di , is
tested and reduced 0(d) times, requiring the degreei-1
implicated pairs of variables to be put back on the list on
each occasion. They show that the total number of list
additions in this case is d(2e - n), which, when multiplied
by d2, gives an upper bound for worst case complexity.
Their argument can be extended: if the total reduction is
O(d) in each of O(n) domains, and if, for each of these
domains, a reduction of 0(1) occurs at the end of every set
of O(degreei) tests against its constraining variables, then
AC-3 will exhibit worst case behavior.

Problems that result in worst case performance can be
described in terms of sequential dependencies holding
between values in different domains. For example, if value
a in domain di of vi is supported by b in d;, and b;
depends in turn on c and d in dk, then there is a sequential
dependency from a to {c,d} via b. This can be shown
by a restriction diagram [Wallace and Freuder, 1992]:

In a full diagram each column represents all values that can
be eliminated at the beginning of testing or after all possible
values have been eliminated in the previous column. There
can, therefore, be up to 2e entries in a column.

Sequential dependencies can take many forms. At one
extreme (if any reduction is possible), there may be no
indirect dependencies, and the restriction diagram has one
column. The other extreme is a single dependency chain of
length nd-1, whose restriction diagram has nd columns.

Obviously, if sequential dependencies allow enough
domains to be reduced by 0(d) in one stage (one column of
the restriction diagram), then worst case behavior cannot
occur. This can happen if one value supports 0(d) values in
another domain or if there is an effective branching factor in
successive columns of the restriction diagram, e.g., value a
in di is the sole support of values in two domains, each of
which is the sole support of values in two domains, etc.
Conversely, worst case conditions can only occur if the
dependency relations are essentially 1:1 and the total length
of the chains is O(nd).

If two dependency chains overlap with respect to the
variables involved in a particular segment, there wil l be an
ordering that allows deletions along both chains at the same
time. If a sufficient number of chains are concurrent, then
worst case conditions wil l be order- dependent: otherwise
worst case conditions are order-independent.

Wallace 243

For problems whose constraint graphs are trees,
dependency chains cannot be longer than n-1, since a chain
must end if a leaf-node is encountered. For, if the value
deleted from the domain of that node were to support a value
in the domain of a neighboring node, the latter value would
have prevented deletion in the first place. This means that,
for worst case tree-structured problems, the dependency
chains must overlap; hence, worst case conditions for such
problems are always order-dependent. There is, in fact, an
ordering for AC-3 that guarantees optimal performance: for
any node considered as the root of the tree, begin with the
leaves and move toward the root, in each case testing parent
against child and never testing a node farther from the root
after testing one nearer. After the root has been checked
against its children, proceed toward the leaves testing
children against parents. With this ordering, if values are
deleted when is tested against other pairs

will still be on the list. Hence, the complexity is O(ed2).
(This is essentially the double directed arc consistency
procedure described by Dechter and Pearl [1988].)

If the constraint graph has cycles, worst ease conditions
can be order-independent. But even in these cases the
performance of AC-3 may not be markedly worse than AC-4
unless domains are very large. This is because the
proportionality factor associated with performance
for AC-3 is always while for AC-4 the
proportionality factor associated with O(ed2) performance
can equal the maximum value of 2. Two independent factors
improve AC-3's performance: (i) in worst case conditions
domain sizes diminish with every set of tests, so the
term in the expression for worst case performance,

must continually decrease, (ii) for a
constraint between and values in wil l be tested
against all values in only if there is no support or the
sole support is the last value tested (using a standard test
order). But this is incompatible with worst case conditions,
since more than 0(1) values in could be deleted.

Note. Proportionality factor is AC-3 ccks for list
additions divided by

Order-independent worst case CSPs were constructed with
a single cycle of nodes and one long dependency chain

(beginning with the last voidable pair in the lexical order)
with elements. Table 1 gives results for different e
and AC-3 is linear in e, and for these problems
constraint checks were 50 % greater with AC-3 for each
cycle length. Appreciable differences in favor of AC-4 were
only found when domains had 20 or 40 elements initially.
For all problems the proportionality factor for AC-3 was 1/6
- 1/5. Interestingly, when = 10, changing one constraint
pair at random reduced the effort required by AC-3 to about
that for AC-4, and with two such changes AC-3 was better.
When one or two random changes reduced the
number of constraints made by AC-3 to about 20,000.

6 Effect of Ordering List of Variable Pairs

In the experiments discussed in Section 4, the list of
variable pairs was ordered lexically, and in AC-3 the list was
thereafter treated as a queue. This appears to be the common
procedure [Mackworth, 1977; Nadel, 1989]. However, it has
been found that, for AC-3, ordering the list in terms of basic
parameter values can have a marked effect on efficiency
[Wallace and Freuder, 1992]. In this work it was shown that
maintaining the list in order, by increasing size of the
domain checked for support, is a very effective heuristic for
reducing the number of constraint checks needed to achieve
arc consistency. This heuristic is readily combined with an
O(n) pigeonhole sort, leading to an overall efficiency that is
superior to lexical/queue ordering. It has been asserted (in
personal communications) that AC-4 is "order-independent".
But, since Phase 1 of AC-4 is similar to the initial pass
through the list of pairs in AC-3, it seemed likely that
ordering heuristics found effective with the latter algorithm
would also work with the former. In particular, order should
matter because the same domain is often tested more than
once; if values can be deleted sooner from this domain there
will be a savings in the number of constraint checks. This is
especially important in view of the fact that, in the
experiments above, most of the work was done in Phase 1.

Figure 8. Effect of ordering in Phase 1 of AC-4 for random
parameter value problems with solutions. AC-3 with DOMJUP
ordering is also shown.

Phase 2, is less affected by ordering than Phase 1 because
in the second phase there are no irrelevant tests. The only
important exception is domain wipeout; early detection can
obviously improve efficiency. Otherwise, the number of
badlist and support list accesses is always the same for an
initial set of badlist values, support lists and counters.
(Unlike Mohr and Henderson [1986], the present
implementation allows effects on counter decrements,

244 Constraint Satisfaction Problems

because these are preceded by tests of array Mark; in limited
tests such effects were very small.)

However, the number of operations can be significantly
reduced in Phase 2 if the tallies are smaller at the beginning
of this phase. This wil l occur if values are eliminated early
in Phase 1, when they have not contributed very much to
the tallies. Included in the first three experiments, therefore,
were tests with an ordering heuristic based on increasing size
of the supporting domain. This heuristic is called DOMJUP,
reflecting the convention that the domain of vi is tested

against the domain of v..
In Experiments 1 and 3, use of the DOMJUP heuristic

produced a marked decrease in the number of constraint
checks required in Phase 1 (Figure 8. Similar results were
obtained for random parameter value problems with no
solutions and queens problems.) However, this did not make
ACM as good as AC-3, since the hitter's performance is also
improved by the heuristic (For random parameter value and
10-queens problems, DOMJUP produced a greater
proportional decrease in constraint checks for AC-3 than
AC-4.) In both experiments, the Heuristics factor in the
analysis of variance was significant at the 0.001 level. In the
queens problems, the interaction of the Heuristics factor and
the factor related to the domain restricted was also significant
at the 0.001 level. This is because DOMJUP put domains
most likely to be reduced at the front of the list in all cases.

In Experiment 2, where degree of domain reduction was
much less, the improvement in constraint checks due to
DOMJUP was slight, although it was still better on average
even when only a few values could be deleted. But in this
case the Heuristics factor was not statistically significant.

Figure 8 also shows that improved performance in Phase
1 of AC-4 led to improvement in Phase 2, measured by S j c

list accesses. As indicated above, this is because values that
are deleted quickly are removed before they can be included in
support lists for other values. Thus, even when order of
testing bad values has little or no effect on the efficiency of
Phase 2, this phase can be strongly affected by a 'ripple
effect' from the ordering used in Phase 1.

7 Problems with Reduced Complexity

Recently it has been shown that there are certain classes of
CSPs for which worst case complexity of arc consistency
algorithms is O(ed). In some cases this is because domain
support can be determined in one operation, for example, if
the constraints are functional relations (actually bisections)
[Deville and Van Hentenryck, 1991]. In other cases this is
because, (i) the values in a domain can be partitioned into
equivalence classes, so relations can be factored into a set of
relations based on these classes, (ii) there are bounds on the
number of links between these classes fPerlin, 1991]. For
bijectional constraints, the factors that make AC-4 less
efficient in general are not present; in particular, the
argument in Section 3 is not relevant. In this case,
optimality considerations indicate that AC-4 should be used.
On the other hand, ordering the list during Phase 1 can still
improve efficiency. For factorable relations (condition (i)
above), differences in efficiency should be reduced but not

eliminated, so AC-3 may still be superior. If condition (ii)
also holds, optimality considerations may again be the most
important factor, although the relative superiority of the two
algorithms remains an open question.

8 Conclusions

Although there is a small set of problems for which AC-3
is basically less efficient than AC-4, in practice the fonner
algorithm is almost always more efficient for CSPs based
on generalized relations. Worst case conditions aside,
conditions which make arc consistency algorithms less
efficient (greater number of constraints, larger domains) have
a proportionally greater effect on AC-4 than on AC-3. When
constraints have greater satisfiability, AC-4 is also less
efficient while AC-3 is actually improved. If, in special
cases, AC-4 is the preferred algorithm, then ordering the
sequence of variable pair tests in Phase 1 can still improve
the efficiency of this procedure, as it does for AC-3.

References
[Dechter and Pearl, 1988] Dechter, R. and Pearl, J.,

Network-based heuristics for constraint-satisfaction
problems, Artif. Intell.34 (1988) 1-38.

[Deville and Van Hentenryck, 1991] Deville, Y. and Van
Hentenryck, P., An efficient arc consistency algorithm for a
class of CSP problems, in: Proceedings IJCA1-91, Sydney
(1991)325-330.

[Mackworth, 1977]. A. Mackworth, Consistency in
networks of relations, Artif. Jntell. 8 (1977) 99-118.

[Mackworth and Freuder, 1985]. A. Mackworth and E.
Freuder, The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems,
Artif. Intell. 25 (1985)65-74.

[Mohr and Henderson, 1986] Mohr, R. and T. C.
Henderson, Arc and path consistency revisited, Artif. Intell.
28(1986)225-233.

fNadel, 1989] Nadel, B., Constraint satisfaction
algorithms. Computational Intelligence 5 (1989) 188-224.

[Perlin, 1991] Perlin, M., Arc consistency for factorable
relations, in: Proc. IEEE Int. Conf. on Tools for A/, San
Jose, C A (1991)340-345.

fUUman, 1966] Ullman, J. R. Associating parts of
patterns, Inform. Contr. 9 (1966) 583-601.

[Van Hentenryck, 1989] Van Hentenryck, P., Constraint
Satisfaction in Logic Programming, Cambridge, MA: MIT
Press, 1989.

[Wallace and Freuder, 1992] Wallace, R. J. and E. Freuder,
Ordering heuristics for arc consistency algorithms, Proc.
Ninth Canad. Conf. on A/, Vancouver (1992) 163-169.

[Waltz, 1975] Waltz, D. L., Understanding line drawings
of scenes with shadows, in: The Psychology of Computer
Vision, P. H. Winston, Ed. New York, NY: McGraw-Hill
Book Company, 1975.

[Williams and Hogg, 1992] Williams, C. P. and T. Hogg,
Using deep structure to locate hard problems, in:
Proceedings AAA1-92 San Jose, CA (1992) 472-477.

Wallace 245

