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Abstract 

On the basis of its optimal asymptotic time 
complexity, AC-4 is often considered the best algorithm 
for establishing arc consistency in constraint 
satisfaction problems (CSPs). In the present work, AC-
3 was found to be much more efficient than AC-4, for 
CSPs with a variety of features. (Variable pairs were in 
lexical order, and in AC-3 they were added to the end of 
the list of pairs.) This is supported by arguments for the 
superiority of AC-3 over most of the range of constraint 
satisfiabilities and for the unlikelihood of conditions 
leading to worst-case performance. The efficiency of 
AC-4 is affected by the order of variable testing in 
Phase 1 ('setting up' phase); performance in this phase 
can thus be enhanced, and this establishes initial 
conditions for Phase 2 that improve its performance. 
But, since AC-3 is improved by the same orderings, it 
still outperforms AC-4 in most cases. 

1 I n t r oduc t i on 

Local consistency techniques can be used with search to 
improve the efficiency of algorithms that solve constraint 
satisfaction problems (CSPs). They have also proven useful 
in standalone implementations, because they can yield 
solution sets or highly reduced problems [DeVille and Van 
Hentenryck, 1991]. The most common techniques establish 
arc consistency, i.e., pairwise consistency for all variables 
in the problem or for a selected subset. This paper is 
concerned with algorithms that establish arc consistency for 
the entire problem. 

AC-3 was introduced by Mackworth [1977] as a 
generalization and simplification of the earlier "filtering" 
algorithm of Ullman [1966] and Waltz [1975], now known 
as AC-2. Mackworth and Freuder [1985] showed that this 
algorithm has a worst case complexity bound that is 
significantly better than that of the simple strategy of 
scanning all pairs until no inconsistencies are found. 
Subsequently, Mohr and Henderson [1986] introduced AC-4 
and showed that it has an even better worst case complexity, 
that is optimal in the general case. 

This historical development has led to the impression that 
at each stage an algorithm was derived that was generally 
superior to previous algorithms in terms of efficiency [e.g., 
Perlin, 1991]. But since the main results are in terms of 
worst case asymptotic behavior, it is not clear that AC-4, 
the best algorithm in this sense, is actually better for a 
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given problem or even better on average. It is possible that, 
for classes of problems, either AC-3 or AC-4 is superior. 
This is suggested by Van Hentenryck's [1989] remark that 
AC-4 is better for some problems, AC-3 for others. 

A related problem concerns the order in which variable 
domains are checked for consistency. It has been found that 
certain ordering heuristics can yield marked improvement in 
the performance of AC-3 [Wallace and Freuder, 1992]. For 
some problems, this might tip the scales in favor of this 
algorithm. On the other hand, it has been claimed (in 
personid communications) that AC-4 is "order-independent". 
If this were true, and if AC-4 was better than AC-3 for a 
given problem, it would not be necessary in this case to 
consider such ordering at all. Here it is shown that both AC-
3 and AC-4 provide opportunities for ordering to be 
effective, so these heuristics are important regardless of the 
algorithm chosen. 

Section 2 describes the algorithms AC-3 and AC-4. 
Section 3 discusses average case performance under certain 
probabilistic assumptions. Section 4 gives results of tests of 
these algorithms on problems that differ with respect to key 
problem parameters, including random problems and reduced 
queens problems. Large problems with parameter values that 
yield very difficult problems were also tested. Section 5 
considers problems that result in worst case performance by 
AC-3 from a theoretical and empirical standpoint. Section 6 
discusses effects of ordering the Phase 1 list of variable pairs 
in AC-4, and presents empirical results for the problems of 
Section 4. Section 7 discusses problem classes in which the 
worst case complexity of arc consistency is less than 

O(ed2). Section 8 presents conclusions. 

2 Description of the Algorithms 

A binary constraint satisfaction problem involves a set of 
n variables, vi, each with a domain of values, di, that it 
can assume. In addition, the problem is subject to some 
number of binary constraints, Cij. each a subset of the 
Cartesian product of two domains, di X dj.. A binary 
constraint specifies which pairs of values can be 
simultaneously assumed by the pair of variables. A CSP is 
associated with a constraint graph, where nodes represent 
variables and arcs or edges represent constraints. 

AC-3 involves a series of tests between pairs of 
constrained variables, vi and v.. Specifically, values in di 

are checked against the constraint between vi and vj to see 
if they are consistent with at least one value in dj; 

unsupported values are deleted. The AC-3 algorithm is 
shown in Figure 1. Al l ordered pairs of constrained variables 
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a]re first put in Listofpairs. Each pair, (vi, v j), is removed 
and di is tested against dj When values are deleted, it may 
be necessary to add pairs back to Listofpairs to determine if 
these deletions lead to further deletions. 

Initialize Listofpairs to {(v i , vj) there is a constraint 
between vi and v.) . 

While Listofpairs is not empty 
Select and remove (vi, vj) from Listofpairs. 
Test vi against v.-. 
If any values are removed from di, 

add to Listofpairs any pairs (vk, v i), k≠j, such 
that there is a constraint between vK and vi and 
(vk, vi) is not already present in Listofpairs. 

Figure 1. The AC-3 algorithm. 

AC-4 also begins with a sequence of tests between all 
pairs of constrained variables (Figure 2: Phase 1). But in 
this case the purpose of the tests is to determine amount of 
support, i.e., how many values in the domain of vj support 
value a in the domain of vi and which values these are. 
This information is kept in special data structures for use in 
Phase 2 of the algorithm. If in the course of Phase 1, a 
value is found to have no support, this is recorded (in array 
Mark) and the value removed from the domain, as in AC-3. 

Alter one pass through the set of variable pairs, AC-4 
constructs a list of unsupported values (Listofbadvalues) in 
the form of variable-value pairs. Then, for each element on 
the list, (vk, c), the list of values supported by that value 
(collected in Phase 1) is examined. For each of the latter 
values, e.g., value d in the domain of vl, the associated 
counter is decremented (here, counter [(vk , vl) d]). If a 
counter is decremented to zero and the value was previously 
supported, it is put on the list of unsupported values. (Note. 
The present AC-4 [Figure 2] is identical to Mohr and 
Henderson [1986] except that in Phase 2 array Mark is 
checked before a counter is decremented rather than after.) 

3 Average Performance of AC-3 and AC-4 

The following facts have been established regarding the 
time complexity of these algorithms. The worst case 
complexity of AC-3 is bounded above by Q(ed3), where e 
is the number of constraints (edges) and d the maximum 
domain size [Mackworth and Freuder, 1985]. The time 
complexity of AC-4 is always O(ed2) [Mohr and 
Henderson, 1986]. Since the lower bound on the complexity 
of arc consistency is 0(ed2) , AC-4 is always optimal in 
terms of time complexity. 

Another factor suggests that AC-3 would sometimes be 
more efficient than AC-4. In AC-3, each value in di is 
tested in terms of a yes/no query: is it supported by any 
value in dj or not? In AC-4 on the other hand, value testing 
involves questions of magnitude: how many values in dj 
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To give some concrete examples, suppose In this 
case AC-4 performs 5 constraint checks for each value tested 
against this domain. If p = .15, the expected number of 
constraint checks performed by AC-3 for each value is 3.7; 
if p = 0.3, the expected number is 2.8, if p = .45, the 
expected number is 2.1, and if p = .6, the expected number 
is 1.6. If also has 5 values, the expected numbers of 
constraint checks for probabilities just given are 19, 14, 11 
and 8, respectively, in contrast to 25 constraint checks for 
AC-4. Thus, across a wide range of inclusion probabilities, 
AC-3 performs less than half the number of constraint 
checks that AC-4 requires. In these cases, if AC-3 performs 
twice as many variable-pair tests as AC-4 does in Phase 1 it 
wil l still be more efficient. (Note also that on successive 
tests of the same pair, the number of values checked will be 
smaller.) For random problems, especially when variable-
pair tests are ordered by a good heuristic, the number of 
variable pairs that must be retested is usually much less than 
this ([Wallace and Freuder, 19921, and see below). 

4 Experimental Results 

Evidence on the frequency with which AC-3 outperforms 
AC-4 and the average difference in performance was obtained 
from empirical studies. Three kinds of CSP were examined: 

(i) random problems in which values for number of 
constraints (added to a spanning tree based on randomly 
selected constraints), domain size and satisfiability were 
chosen from the range of possible values, and then elements 
were chosen (at random) from the set of possible elements to 
equal the parameter value. In the problems used here, n = 
12, so 55 constraints could be added to a spannning tree. 
Thus, the number of added constraints could range between 0 
and 55. Similarly, the maximum domain size = 12, and the 
value for a domain size was chosen between 1 and 12 
inclusive. And for two domains with, say, 12 values, a 
value for the satisfiability of a constraint between them was 
chosen between 1 and 143 inclusive. These are called random 
parameter value problems. 

(ii) random problems in which each element in the set of 
possible (additional) constraints, or possible domain values, 
or possible constraint pairs, was chosen with a probability 
that was constant for that panuneter. For example, in one set 
of ten-variable problems the probability for inclusion of a 
constraint was 0.1, for inclusion of a domain value the 
probability was 0.5 (maximum domain size = 10) and for 
inclusion of a constraint pair the probability was 0.35. This 
yields problems with, on average, about 14 constraints, five 
values per domain and a relative satisfiability of 0.35 per 
constraint. (Null domains and constraints were not allowed.) 
These are called random probability of inclusion problems. 

(iii) k-queens problems with one domain (row) restricted 
to one or a few elements. This yields queens-like problems 
that can be reduced by arc consistency methods. Unlike the 
random problems, constraint graphs are always complete. 

Random parameter value problems are heterogeneous 
internally, but average values for domain size and 
satisfiability are near the middle of the range. They are 
subject to considerable reduction by arc consistency 
methods. Probability of inclusion problems are more 

homogeneous with respect to their parameter values, with 
average values close to those predicted from original 
probabilities. The amount of reduction due to violations of 
arc consistency is usually less than for random parameter 
value problems. Five-queens problems with a domain 
restricted to one value show considerable domain reduction; 
with 10-queens the reduction is much less. 

Ten twelve-variable random parameter value problems 
were generated in each of two constraint-ranges: 11-24 and 
25-38. Five problems in each range with no solutions were 
also collected; lack of solution was detected by arc 
consistency algorithms in all cases, by domain 'wipeout'. 
Tests of these problems are referred to as Experiment 1 in 
the discussion of results. 

Ten-variable probability of inclusion problems were 
generated with the following probability values: 0.1, 0.225 
and 0.35 for constraint inclusion, 0.5 and 0.75 for domain 
value inclusion (maximum d = 10), and 0.35 and 0.55 for 
constraint pair inclusion. These factors were fully crossed, to 
produce twelve sets of problems. Five problems with 
solutions were generated in each category. Tests of these 
problems are referred to as Experiment 2. 

I I - 24 25 - 38 11 - 24 25 - 38 
no wipeout wipeout 

number of constraints 
Performance of arc consistency algorithms on 12-Figure 3 

variable random parameter value problems. Number 
constraint checks to produce consistency or wipeout 

of 

Five- and ten-queens problems were tested, with the one 
domain restricted to one value or to either two (5-queens) or 
four (10-queens) values. The restricted domain was associated 
with either the first variable (first row), a middle variable 
(third or f i f th row for 5- and 10-queens problems, 
respectively), or the last variable. Al l possible values were 
tested in the one-value cases, while five combinations of 
values were tested in each multi-valued case. These tests are 
referred to as Experiment 3. 

The relative performance of AC-3 and AC-4 in 
Experiments 1-3 was quite consistent (Figures 3-5). AC-3 
outperformed AC-4 on every problem tested, and the number 
of constraint checks was 2:1 or better in most cases, even 
with comparisons limited to Phase 1 of AC-4. (Phase 2 does 
not use constraint checks.) AC-3 was, therefore, superior to 
AC-4 on problems differing in degree of difficulty, amount 
of domain reduction (ranging from no reduction to reduction 
to a single solution or to domain wipeout), key parameter 
values, and systematic versus random patterns of dependency 
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(in the queens and random problems, respectively). 
Figures 3 and 4 show the expected effect on AC-4 of 

increasing the total number of values that must be checked, 
either by adding constraints or by increasing average domain 
size. At the same time, the effect of these changes on AC-3 
is much smaller. For probability of inclusion problems, 
increasing constraint satisfiability (decreasing the tightness) 
also led to more constraint checks by AC-4. This was 
because there were fewer values deleted in the course of 
checking. But, consistent with the analysis in Section 3, 
decreasing the tightness led to fewer constraint checks by 
AC-3. This overcame the effect of fewer deletions, which is 
also a factor in AC-3's performance. 

Figure 4. Performance of AC-3 and AC-4 on problems with 
different probabilities of inclusion of constraints (pc)} domain 

elements (pd) and constraint pairs (pp). 

Similar results were found with queens problems (Figure 
5). Since the list was initially in lexical order, these 
problems were progressively harder as the restricted domain 
was further back in the list. This was true for both 
algorithms, but the proportional increase was greater for 
AC-4. (The ratio of highest to lowest means was 1.55 and 
1.17 for AC-3, for the 5- and 10-queens problems, 
respectively, and 1.75 and 1.29 for AC-4.) It seems that as a 
general rule AC-3 is less affected by problem features that 
produce more work for arc consistency algorithms. 

In each experiment, differences in mean values were 
evaluated statistically by repeated measures analyses of 
variance, with algorithms as the repeated factor. (Separate 
analyses were done for problems with and without solutions 
in Experiment 1 and for 5- and 10-queens problems in 
Experiment 3.) For each test except that for the random 
parameter problems without solutions, the algorithms factor 
was statistically significant at the 0.001 level. In the latter 
case, this factor was significant at the 0.01 level. In 
Experiment 2, the interaction of the algorithms factor with 
each of the three problem parameters that were varied was 
statistically significant at the 0.001 level, reflecting the 
greater effect on AC-4. The factors based on probability of 
constraint inclusion and domain element inclusion were 
themselves significant at the 0.001 level, while the factor 
based on constraint value-pair inclusion was not statistically 

significant. In addition, the interaction between the former 
two probability factors and the third-order interaction of 
these factors with the algorithms factor were significant at 
the 0.001 level. In Experiment 3, the factor based on 
location of domain restriction was significant at the 0.001 
level in analyses based on the 5- or 10-queens problem, and 
the interaction between this factor and the algorithm factor 
was significant at the 0.01 level in both cases. 

Domain Restricted 
Figure 5. Performance of arc consistency algorithms on queens 
problems where one domain is restricted to one value. 

For these problems. Phase 2 of AC-4 was done very 
quickly. In Experiment 1, the average number of badlist 
accesses was about 50, including 15 list additions, and there 
were about 300 Sjc (support list) accesses. In Experiment 2, 
there were few operations of any kind except for problems 
with small domains (p = 0.5) and small satisfiabilities (p 
= 0.35); even here, means for badlist accesses only varied 
from 15 to 40, with a mean of 2 to 16 additions, and means 
for Sjc accesses varied between 61 and 238. For problems 
with the largest domains and satisfiabilities, there was no 
domain reduction, so no work was required in Phase 2. For 
queens problems with singleton domains, there were 10 or 
12 badlist accesses for 5-queens and 18 for 10-queens, while 
the average number of Sjc accesses was 22 and 382, 
respectively. For 2- and 4-valued domains, the number of 
operations of each type was reduced by a factor of five for 5-
queens problems, while no work was required for 10-queens 
problems since there was no domain reduction. 

Two further experiments were run to determine whether 
AC-3 would maintain its superiority with larger problems. 
In the first experiment, ten random parameter value 
problems were generated with 24, 48 or 72 variables. There 
was no restriction on number of constraints, and in all cases 
the maximum \d\ was 12. After each problem was 
generated, a solution was added by selecting a value from 
each domain at random and, if necessary, replacing a value 
pair in a constraint with the pair that was consistent with 
this solution. Arc consistency reduced most of these 
problems to the added solution, with some exceptions 
among 24-variable problems. In the second experiment 
probability of inclusion methods were used to generate 99-
variable CSPs. The domain size was always four and the 
probability of value pair inclusion was 0.75, so they 
resembled four-color problems with respect to their 
parameter values. A range of densities was chosen that 
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included a peak in the performance curve, based on forward 
checking with dynamic ordering. This peak was near the 
"critical connectivity value" [Williams and Hogg, 1992]. It 
wits, therefore, possible to compare AC-3 and AC-4 on 
inherently difficult its well as easy problems generated with 
the same methods. In general, these problems did not admit 
much domain reduction. For this reason, similar problems 
with relative satisfiability equal to 0.5 were tested, in which 
peak difficulty was associated with a density of 0.005. These 
admitted more reduction, but the results for arc consistency 
were similar to the results for the first set of problems. 

Figure 6. Performance of arc consistency algorithms on 
random parameter value problems of varying size. 

Results for the first experiment on larger problems are 
shown in Figure 6. Rather than decreasing as problems get 
larger, if anything, the degree of improvement with AC-3 
increases. It should also be mentioned that, in testing AC-4, 
four 72-variable problems had to be run on a larger machine 
because of space requirements. In addition, as problem size 
increased, the amount of work required in Phase 2 became 
appreciable, ranging from a me;in of 134 badlist accesses and 
869 Sjc accesses for 24-variable problems to 406 badlist 
accesses and 3934 Sjc accesses for 72-variable problems. But 
performance was still dominated by Phase 1. 

Problem density 
Figure 7. Performance of arc consistency algorithms and forward 
checking on large random problems over a range of densities 
that includes the critical connectivity associated with very hard 
problems. 

For 99-variable problems, AC-3 was markedly better than 
AC-4 at all problem densities, including those associated 
with hard problems. This suggests that the inherent 
difficulty of a problem bears no relation to worst case 

behavior of AC-3. And it confirms the conclusion of the 
previous experiment that AC-3 retains its superiority to 
AC-4 in the average case its problem size is 'scaled up'. 

5 Worst Case Conditions for AC-3 

Mack worth and Freuder [1985] discuss the theoretical 
worst case condition for AC-3, in which each domain, di , is 
tested and reduced 0(d) times, requiring the degreei-1 
implicated pairs of variables to be put back on the list on 
each occasion. They show that the total number of list 
additions in this case is d(2e - n), which, when multiplied 
by d2, gives an upper bound for worst case complexity. 
Their argument can be extended: if the total reduction is 
O(d) in each of O(n) domains, and if, for each of these 
domains, a reduction of 0(1) occurs at the end of every set 
of O(degreei) tests against its constraining variables, then 
AC-3 will exhibit worst case behavior. 

Problems that result in worst case performance can be 
described in terms of sequential dependencies holding 
between values in different domains. For example, if value 
a in domain di of vi is supported by b in d;, and b; 
depends in turn on c and d in dk, then there is a sequential 
dependency from a to {c,d} via b. This can be shown 
by a restriction diagram [Wallace and Freuder, 1992]: 

In a full diagram each column represents all values that can 
be eliminated at the beginning of testing or after all possible 
values have been eliminated in the previous column. There 
can, therefore, be up to 2e entries in a column. 

Sequential dependencies can take many forms. At one 
extreme (if any reduction is possible), there may be no 
indirect dependencies, and the restriction diagram has one 
column. The other extreme is a single dependency chain of 
length nd-1, whose restriction diagram has nd columns. 

Obviously, if sequential dependencies allow enough 
domains to be reduced by 0(d) in one stage (one column of 
the restriction diagram), then worst case behavior cannot 
occur. This can happen if one value supports 0(d) values in 
another domain or if there is an effective branching factor in 
successive columns of the restriction diagram, e.g., value a 
in di is the sole support of values in two domains, each of 
which is the sole support of values in two domains, etc. 
Conversely, worst case conditions can only occur if the 
dependency relations are essentially 1:1 and the total length 
of the chains is O(nd). 

If two dependency chains overlap with respect to the 
variables involved in a particular segment, there wil l be an 
ordering that allows deletions along both chains at the same 
time. If a sufficient number of chains are concurrent, then 
worst case conditions wil l be order- dependent: otherwise 
worst case conditions are order-independent. 

Wallace 243 



For problems whose constraint graphs are trees, 
dependency chains cannot be longer than n-1, since a chain 
must end if a leaf-node is encountered. For, if the value 
deleted from the domain of that node were to support a value 
in the domain of a neighboring node, the latter value would 
have prevented deletion in the first place. This means that, 
for worst case tree-structured problems, the dependency 
chains must overlap; hence, worst case conditions for such 
problems are always order-dependent. There is, in fact, an 
ordering for AC-3 that guarantees optimal performance: for 
any node considered as the root of the tree, begin with the 
leaves and move toward the root, in each case testing parent 
against child and never testing a node farther from the root 
after testing one nearer. After the root has been checked 
against its children, proceed toward the leaves testing 
children against parents. With this ordering, if values are 
deleted when is tested against other pairs 

will still be on the list. Hence, the complexity is O(ed2). 
(This is essentially the double directed arc consistency 
procedure described by Dechter and Pearl [1988].) 

If the constraint graph has cycles, worst ease conditions 
can be order-independent. But even in these cases the 
performance of AC-3 may not be markedly worse than AC-4 
unless domains are very large. This is because the 
proportionality factor associated with performance 
for AC-3 is always while for AC-4 the 
proportionality factor associated with O(ed2) performance 
can equal the maximum value of 2. Two independent factors 
improve AC-3's performance: (i) in worst case conditions 
domain sizes diminish with every set of tests, so the 
term in the expression for worst case performance, 

must continually decrease, (ii) for a 
constraint between and values in wil l be tested 
against all values in only if there is no support or the 
sole support is the last value tested (using a standard test 
order). But this is incompatible with worst case conditions, 
since more than 0( 1) values in could be deleted. 

Note. Proportionality factor is AC-3 ccks for list 
additions divided by 

Order-independent worst case CSPs were constructed with 
a single cycle of nodes and one long dependency chain 

(beginning with the last voidable pair in the lexical order) 
with elements. Table 1 gives results for different e 
and AC-3 is linear in e, and for these problems 
constraint checks were 50 % greater with AC-3 for each 
cycle length. Appreciable differences in favor of AC-4 were 
only found when domains had 20 or 40 elements initially. 
For all problems the proportionality factor for AC-3 was 1/6 
- 1/5. Interestingly, when = 10, changing one constraint 
pair at random reduced the effort required by AC-3 to about 
that for AC-4, and with two such changes AC-3 was better. 
When one or two random changes reduced the 
number of constraints made by AC-3 to about 20,000. 

6 Effect of Ordering List of Variable Pairs 

In the experiments discussed in Section 4, the list of 
variable pairs was ordered lexically, and in AC-3 the list was 
thereafter treated as a queue. This appears to be the common 
procedure [Mackworth, 1977; Nadel, 1989]. However, it has 
been found that, for AC-3, ordering the list in terms of basic 
parameter values can have a marked effect on efficiency 
[Wallace and Freuder, 1992]. In this work it was shown that 
maintaining the list in order, by increasing size of the 
domain checked for support, is a very effective heuristic for 
reducing the number of constraint checks needed to achieve 
arc consistency. This heuristic is readily combined with an 
O(n) pigeonhole sort, leading to an overall efficiency that is 
superior to lexical/queue ordering. It has been asserted (in 
personal communications) that AC-4 is "order-independent". 
But, since Phase 1 of AC-4 is similar to the initial pass 
through the list of pairs in AC-3, it seemed likely that 
ordering heuristics found effective with the latter algorithm 
would also work with the former. In particular, order should 
matter because the same domain is often tested more than 
once; if values can be deleted sooner from this domain there 
will be a savings in the number of constraint checks. This is 
especially important in view of the fact that, in the 
experiments above, most of the work was done in Phase 1. 

Figure 8. Effect of ordering in Phase 1 of AC-4 for random 
parameter value problems with solutions. AC-3 with DOMJUP 
ordering is also shown. 

Phase 2, is less affected by ordering than Phase 1 because 
in the second phase there are no irrelevant tests. The only 
important exception is domain wipeout; early detection can 
obviously improve efficiency. Otherwise, the number of 
badlist and support list accesses is always the same for an 
initial set of badlist values, support lists and counters. 
(Unlike Mohr and Henderson [1986], the present 
implementation allows effects on counter decrements, 
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because these are preceded by tests of array Mark; in limited 
tests such effects were very small.) 

However, the number of operations can be significantly 
reduced in Phase 2 if the tallies are smaller at the beginning 
of this phase. This wil l occur if values are eliminated early 
in Phase 1, when they have not contributed very much to 
the tallies. Included in the first three experiments, therefore, 
were tests with an ordering heuristic based on increasing size 
of the supporting domain. This heuristic is called DOMJUP, 
reflecting the convention that the domain of vi is tested 

against the domain of v.. 
In Experiments 1 and 3, use of the DOMJUP heuristic 

produced a marked decrease in the number of constraint 
checks required in Phase 1 (Figure 8. Similar results were 
obtained for random parameter value problems with no 
solutions and queens problems.) However, this did not make 
ACM as good as AC-3, since the hitter's performance is also 
improved by the heuristic (For random parameter value and 
10-queens problems, DOMJUP produced a greater 
proportional decrease in constraint checks for AC-3 than 
AC-4.) In both experiments, the Heuristics factor in the 
analysis of variance was significant at the 0.001 level. In the 
queens problems, the interaction of the Heuristics factor and 
the factor related to the domain restricted was also significant 
at the 0.001 level. This is because DOMJUP put domains 
most likely to be reduced at the front of the list in all cases. 

In Experiment 2, where degree of domain reduction was 
much less, the improvement in constraint checks due to 
DOMJUP was slight, although it was still better on average 
even when only a few values could be deleted. But in this 
case the Heuristics factor was not statistically significant. 

Figure 8 also shows that improved performance in Phase 
1 of AC-4 led to improvement in Phase 2, measured by S j c 

list accesses. As indicated above, this is because values that 
are deleted quickly are removed before they can be included in 
support lists for other values. Thus, even when order of 
testing bad values has little or no effect on the efficiency of 
Phase 2, this phase can be strongly affected by a 'ripple 
effect' from the ordering used in Phase 1. 

7 Problems with Reduced Complexity 

Recently it has been shown that there are certain classes of 
CSPs for which worst case complexity of arc consistency 
algorithms is O(ed). In some cases this is because domain 
support can be determined in one operation, for example, if 
the constraints are functional relations (actually bisections) 
[Deville and Van Hentenryck, 1991]. In other cases this is 
because, (i) the values in a domain can be partitioned into 
equivalence classes, so relations can be factored into a set of 
relations based on these classes, (ii) there are bounds on the 
number of links between these classes fPerlin, 1991]. For 
bijectional constraints, the factors that make AC-4 less 
efficient in general are not present; in particular, the 
argument in Section 3 is not relevant. In this case, 
optimality considerations indicate that AC-4 should be used. 
On the other hand, ordering the list during Phase 1 can still 
improve efficiency. For factorable relations (condition (i) 
above), differences in efficiency should be reduced but not 

eliminated, so AC-3 may still be superior. If condition (ii) 
also holds, optimality considerations may again be the most 
important factor, although the relative superiority of the two 
algorithms remains an open question. 

8 Conclusions 

Although there is a small set of problems for which AC-3 
is basically less efficient than AC-4, in practice the fonner 
algorithm is almost always more efficient for CSPs based 
on generalized relations. Worst case conditions aside, 
conditions which make arc consistency algorithms less 
efficient (greater number of constraints, larger domains) have 
a proportionally greater effect on AC-4 than on AC-3. When 
constraints have greater satisfiability, AC-4 is also less 
efficient while AC-3 is actually improved. If, in special 
cases, AC-4 is the preferred algorithm, then ordering the 
sequence of variable pair tests in Phase 1 can still improve 
the efficiency of this procedure, as it does for AC-3. 
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