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Abstract

Our aim is to clarify which nonmonotonic con-
sequence relation fwa- it given by a set A
of "supernormal" defaults, i.e. defaults of the

form (true : §)/4.

There are in fact a number of proposals for }-vA
(e.g. the skeptical and the credulous semantics).
In this paper we look at the space of all possible
default semantics and try to characterize the
known ones by their properties, especially the
valid deduction rules.

For instance, it seems reasonable to require that
any useful semantics should coincide with the
original CWA if this is consistent. We might
also want to allow proofs by case analysis. Then
we get the skeptical semantics (assuming some
other very natural deduction rules).

Our results are in fact completeness proofs for
"natural deduction systems" based on different
default semantics.

1 Introduction

In this paper, we consider "supernormal” [Brewka, 199l]
defaults, i.e. defaults of the form (true : §)/&. For & =
-p{Xy,..., X,) these are RKITER'S CWA-defaults which
formalize the common implicit assumption of negations.
But we allow any quantifier-free formula for §, e.g.

flics{X) — bard( X).

The intuitive semantics is that this rule should be as-
sumed for as many X as possible. Although these
defaults are very simple compared to the full default
logic [Reiter, 1980], surprisingly many examples can be
formalized with them. This restriction was suggested
and investigated in [Poole, 1988; Brass and Lipeck, 1989,
Brewka, 1991; Delgrande and Jackson, 1991; Dix, 1992).
The advantages are that the definitions are much sim-
pler, certain abnormalities can be avoided, and there
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are reasonably efficient theorem provers [Przymusin-
ski, 1989; Ginsberg, 1989; Baker and Ginsberg, 1989;
Brass, 1992a; Brass and Lipeck, 1992].

Of course, it is also possible to specify axioms ¢,
i.e. formulae which have to be fully satisfied (and usually
there are many more axioms than defaults). In the flying
ability example, the following axioms could be used:

bird{{wecly).
pengun(polly).

bird( X} «— penguin(X).
—flies(X) — penguin(X).

Given defaults A and axioms &, one can answer
queries ¥, In the classical example the query could be

bird( X} A flies(X)

("which birds can fly?"). Now a correct answer is a sub-
stitution # for the variables of the query, e.g. { Xatweely},
such that the corresponding instance of the query follows
from the axioms and the defaults, i.e.

®ha vh

Of course, the consequence relation }'v& respecting the
defaults A still has to be defined.

In the above example, it seems clear that any rea-
sonable semantics should allow to conclude flies(tweeiy)
and not flies(polly). But as soon as we have conflicts be-
tween defaults, e.g. because of disjunctive or incomplete
information, there are different solutions. Probably ev-
erybody knows the credulous and the skeptical seman-
tics, but there are other possible definitions of f-va (see
section 2). And, of course, we have to ask whether there
are reasonable semantics which we do not know yet.

Therefore we try to approach this problem in a more
abstract way, and look at the space of all possible de-
fault semantics. We can classify them by means of the
valid deduction rules (and other properties, such as the
preservation of consistency). There is a rich literature on
nonmonotonic consequence relations (e.g. [Gabbay, 1985;
Shoham, 1987; Makinson, 1989; Kraus et al, 1990;
Brass, 1990; Dix, 1991; Makinson, 1992]), but our way of
deriving a default semantics from given properties seems
to be novel.

Of course, the soundness of certain deduction rules has
been proved or disproved for the known default seman-
tics. The aim of this paper is to show the completeness



of deduction systems for different default semantics. For
automated theorem provers, the algorithms in the above
cited literature may be better suited. But for proofs "by
hand" the rules discussed here allow a much higher level
with far less steps.

Additionally, our results show that if we require cer-
tain natural properties, the corresponding default se-
mantics is uniquely determined. So the default semantics
that we know are not as casual as it may seem at first.

2 Default Semantics

In this section, we define the notion of a default seman-
tics and give some conhcrete examplea.

We asgume a signature X as given, which declares the
predicates and constants of the application area. As a
useful and common simplification, we exclude funclion
symbols and require that T is finite. Instead of clauses,
we allow arbitrary quantifier-free formulae, because they
may be built by the deduction rules (also conjunctive de-
faults are sometimes useful, and 6, A #; is not equivalent
to Lhe two single defaults).

Definition 2.1 (Default): A default is a quantificr-

free Y-formulfa 6.

Definition 2.2 (Cousequence Relation): A con-
sequence relation is any relation p~ belween sets ¢ of
quantifier-free L-formulae (the axioms) and variable-free
Y-formulae o (the query after replacing the variables by
the answer-constants).

We do not consider answers containing variables. This
1s again a simplification, but it 15 very uatural, at least
if the axiams, the defaults and the query are range-
restricted (see [Brass, 1992b]).

Definition 2.3 {Default Semantics): A defaull se
mantics Is a mapping which assigns to every set A of
defaults a consequence relation pep .

Most default semantics refer to the single instances of
the defaults, not Lo the default rules themselves:

Definition 2.4 (Default Instances):  We write A®
for the set of ground instances of formulae from A

One can view A as a tere shorthand for A®, since in the
following, we will only refer to A* {and call the & € A”
“defanlts”™, too).

The simplest default semantics is the CWA {Reiter,
1978), which assumes a default instance & {e.g., a nega-
tive ground literal) iff it is consistent with the axioms ¢,
Le. its negation does not follow from ¢:

Definition 2.5 (CWA): & bugay ¥ iF
PU{bE A Dl 8} F ¥

It is well known that this definition may lead to eon-
sistencics if there are conflicling defaults. The sinplest
example is ® := {pV ¢} and A := {-p, ~q}.

Therefore, we have to check Lhe consistency of a set of
defaulls at a time:

Definition 2.6 {Extension): £ C A" is a A-extension
of & iff

e & U E is consistent, and
« ®U E U {8} is inconsistent for every § € A* - F.

So an extension is simply a C-maximal set of default
inslances which is consistent with ¢. Note that our ex-
tensions are not closed under logical consequences. But
if one takes Th&@ U E), one gets exactly the original
cxtensions from {Reiter, 1980), as proven in [Dix, 1992).

Of course, there may be more than one extension, but
we need a single 5. There are different solutions to
this problem, e.g. the careful, skeptical, and ecredulous
semantics, and the CWA-semanties also fits nicely in this
scheme (see lemma 2 8):

Definition 2.7 (Different Default Semantics):
o O hiresia; ¥ = € THOUE)
o ¥ bsepia) ¥ <= v EYTH{PUE)

@ tocreaiay ¥ = v EUYTHOUE)

o D hcwaray ¥ i Y€ Th(OUUE)
{where | ) and [} are taken over all extensions E).

Note that the careful semanties 1s not the sume as the
skeptical one: For instance, in the above example, we
have the two extensions {—p} and {—¢}. Then the skep-
tiral semantics will allow us to conclude -p Vv ~g. The
careflul semmantics may only use defaults contained in the
interseclion of the extensions (which 15 empty in this
case). Given a set of negation defaults, the skeptical
semantics turns disjunctions into “exclusive or”, while
the careful semantics interprels them as “inclusive or”
(corresponding ta the GOCWA [Minker, 1982])"

Of rourse, Lhe above list is not complete. For instance,
it 1s common to select one of the extensions by somne
external means (e.g., “implementation defined”, or by
priorities between the defaults, elc.),

We now prove the above characterization of the CWA:

Lemima 2.8: ¢ g a) ¢ & ¢ s ¥

Proof:  The CWA assumes those 8 € A" s.t. @ 4,
e, U {6} is consistent. But every consistent set of de-
faults can be extended to an extension [Brass and Lipeck,
1984}, The other direction is even simpler, o

3 Noomonotonic Consequence
Relations
En this section, we will consider deduction rules for non-

monotonic consequence relations and comment on their
validity fur the defauit semantics of the last section. The

'JURGEN DIxX pointed oul that ¢ = {pv g, v — pAgl,
A = {—p, —g, o1} shows thatl somctimes even the careful se-
mantics turns “v" into e¢xclusive or { —r is assumed and allows
o conclude —p v —g). This is anuther indication that there
may be many more useful default semantics than we currently
know. (WGCWA protects disjunctions, but violates EQ [see
later} and cannot be directly generalized Lo arbitrary A.)
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rules REF, RW, AND, EQ, OR are taken from [Kraus et
al., 1990}

First, we should expect that s allows at least to
conclude the (instances of) preconditions, so that no in-
formation is lost:

Definition 3.1 (REF):
vEP = ¢y v

Fa ts reflexive df

In this and all of the following definitions we of course re-
quire that the implication holds for all sets of quantifier-
free formulae @ and all variable-free formulae ¢ (g
ranges over all quantifier-free formulae, and & over the
elements of A®).

All of the default semantics from section 2 have the
property REF and it is hard to think of any reason why
it should be violaled (at leasl if ¢ is consistent).

Next, we should require that p~4 behaves “logical” in
the following sense:

Definition 3.2 (RW): |, allows right weakening iff
Shav, {¥jFY = Shavy.

This rule is sound for all of the above default semantics.
A stronger requirement would be to allow arbitrary
logical consequences of what we have already derived:

¢+"‘A wh Ly Q}""d wnv {wl'---‘lf’n}}‘lf’
== d’}'\-‘a lﬁ.

This follows from RW Logether with the following rule:

Definition 3.3 {AND):
tion iff

b-a is closed under corjunce

P hoay, ®hathh = ®©hath Avn.

All of the proposed semantics except the credulous one
are closed under conjunction. Given ¢ := {pv g}, A =
{~p, —g¢}. we can credulously conclude —p and ¢ (from
£y := {-p}) and —~q and p {from ks = {-g]); but we
cannot conclude p A —p, i.e. false

The fellowing is a weaker property, which is satisfied
ajso by the credulous semantics:

Definition 3.4 (CLC):
logical consequences iff

S o, PEY2 = @ pa ¥y A

ra allows conjunction with

The credulous scimantics satisfies also the following re-
striction of AND to non-conflicting defaults:

Definition 3.5 {DDA): pa is closed nunder conjunction
for non-conflicting defaulis iff
Shaby, ..., 0hab, P4 V... Vab,
== Dop by A Abp

Of course, a default sernantics should only look at the
logical contents of @, not at the way the axioms are
written down:
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Definition 3.6 (EQ): f~a Is compatible with left

logical equivalence iff
O F Py, Q2 Py, ) fra ¥ = P2 pea v

The following property allows a case analysis for disjunc-
tive preconditions:

Definition 3.7 (OR):
the preconditions iff

dU{pi} rav, PU{prlba v
= PU{eI Vo) ba v

ha supports disjunctions in

The careful scinantics does not have this property, as can
be seen in the standard example with A := {-p, ~q}):
Here {p} b caresay =PV —¢ and {q} Prarepa) PV g
both hold, but {pV ¢} b carer(ay =p V ¢ does not.

A weaker property, which is satisfied by the careful
semantics, is the following:

Definition 3.8 (DOR): |4 supports disjunctions in
the preconditions for deriving defaults iff

PU{er] Fa b dU{p2) a & = PU{p1 V2] o b

Of course, there are many more sach rules, e.g. cumula-
tion. But we do not need them in the resnlts of section 4.

What is missing are properties allowing Lo conclude
certain defaults. Up to now, the logical implication F
would be perfect - it satisfies all the rules. But, of
course, it is not a reasonable default semmantics.

Naturally, we should only require that a default is as-
sumed if Lhis 15 really obvious. The results would be void
if we use the defaull semantics itself in its own charac-
terization.

We belicve that the original CWA is the only sensi-
ble semantics iof it is consistent. Obviously, we cannot
assume more defaults, hecause this would hinmediately
ruin the consistency (even if we would assume no other
default). But there is also no reason why we should not
adopt a default contained in the consistent CWA. And
intuitively, a default should be assumed if there 1s no
evidence to the conirary.

Defipition 3.9 {CWA):
with the CWA if

¢ I"'cwa{d] 6, ¢ b(’cu-alb} fa!S(' = ¢ }"'A 8.

bea s weakly compatible

This property is satisfied by all the default semantics of
section 2, which 1s an additional argument for its ade-
quacy.

If we want to use it in deductions, we need a global
consistency prool for the CWA | which might be quile
difficult. The following property avoids this and looks
only at the defaull we want te conclude and at possibly
conflicting defaults:

Definition 3.10 (UCD): |a satisfies uncritical de-
faults iff @ |~4 & for every § € A* and consistent ¢ such
that there are no b, ... 6, € A", n > 0 with

e dU{s, ..., 0,]} Is consistent, and

o Uy, . . b6} F 6.



This property is satisfied by all the known defaull se-
mantics. And it is very natural, because one typically
explains the applicability of a default by an argument
like “well, there is no way to conclude -6, so we can as-
sume 8”. The property UCD formalizes this {especially
the “no way” has to take into account other defaulis).
But the property UCD is strictly stronger than the
CWA property, so it is automatically more questionable.

Lemma 3.11: If |~5 has the property UCD, then jt
has also the property CWA.

Proof: The original CWA is consistent if and only if
there are no defaults &;,..., 84, € A*, m > 2, such that
GtV Vb, and @Y 6 fori=1,.. ., m (this
is a simple generalization of a result from [Shepherdson,
1984]). Then obviously only the case n = 0 in defini-
tion 3.10 is interesting and it collapses to the definition
of the CWA. O

The property UCD in fact requires that at least all the
defaults contained in the inlersection of the extensions
can be concluded by the default semantics:

Lemma 3.12: If 6 € A" can be concluded by the
property UCD, then it is contained in every extension.

Proof:  Suppose it would not be contaned in an ex-
tension E. Then choose {#;,...,8,} = F (I s finite
because of our constraints on 5, but this lemma holds
alse in the general case, one only has to apply the com-
pactness theorem). By definition @U E 15 consistent and
d U E U {8} is inconsistent, i.e. U EF 8. O

Therefore characterizations of the careful semantics us-
ing UCD are not very interesting (we will give one using
CWA and DOR).

Finally, the foliowiag rule formalizes the idea that de-
faults are assumed in the absence of information to the
contrary:

Definition 3.13 (IMD): b4 is inverse monotonte for
defaults iff

QU)o b => Slab

This is a very strong properly, sibce it ignores con-
flicts with additionally assumable defaults. The original
CWA and the credulous semantics have this property,
the skeptical and the careflul semantics violate it {con-
sider ¢ := {pV g}, ¢ :=p, and A := {-p. ~q}}.

Table 1 summarizes which deduction rules are valid for
which default semantics. We see that the interesling
properties for classifying default semantics are AND, OR
and IMD. All other deduction rules hold for all of the
four semantics (but they are needed in the completeness
proofs of the next scclion).

cred

n
]
-]

carel skept

REF
RW
AND
CLC
DA
EQ
OR
DOR
CWA
uCD
IMD

o0 e | #0606 o0
" EEEEREEEE
.

Table 1: Validity of deduction rules

4 Characterizations

This section contains our main results which characterize
the default semantics by their properiies.

These characterizations are of the formn “the seman-
tics X 1s the weakest one satisfying the properties Y7,
We call a defaull semantics weaker than another one iff
all the conclusions valid with respect to Lthe former are
also valid with respect to the latber:

Definition 4.1 {Weaker Than): b4 Is (non-stricily)
weaker than ' iff

Phav = ¢, 0.

For instance, the semantics studied here form a chain
m the sequence ]Ncat'ej(&)n }"'akepl‘(d]- l"’cred(d}n }Vcwa(d)
(from weakest to strongest).

The weakest default semantica satisfying certain de-
duction rules is that one which allows to conclude exactly
the derivable formulae. Therefore a characterization of
this form simply states the soundness and completeness
of the deduction rules.

Theorem 4.2:  pvyipne(a) is the weakest consequence
refation satisfying REF, RW, AND, EQ, OR, and CWA.

Proof: The soundness of these rules is trivial or already
proven in the literature. So we only have to prove the
completeness, i.e. that there is no weaker serantics.

Let p~a be any other consequence relation with these
properties, and let @ b ygepay ¥ We have to show that
& s . The prool is by induction on the nurber of
extensions of ¢ (there are only finitely many because of
our restrictions on L),

If there is only one extension £, then the CWA s
consistent, so we get all & € £ by the property CWA.
Since ¢ U F F 3, by HERBRAND's theoremn @* U E + ¢,
and it is easy Lo derive ¥ with REF, RW and AND.

Now assume that there are at least two extensions
and Iet. ¥ be one of them. Let 8;,...,8, € A* be those
defaults which are not contained in £, but in some other
extension. Then we consider ¢; == ¢ U {§} and ¢’ :=

Obviously, an extension of one of the &, is also an
extension of ®. So it cannot have more extensions and it

Brass 581



follows that @i Puiepsia) ¥. On the other hand, ®; has
at leasl one fewer extension, namely E. Therefore we can
apply the inductive hypothesis and conclude ®; 4 .

The only remaining case is ®'. It has the extension W
and only that (all defaults not contained in £ are ex-
plicitly excluded}. So we get ¢ f~a ¥ (as in the basc
step).

Now we apply iteratively the property OR to “disjoin”
®y,...,¥,, ¥, This resulls in the formula

BV - VB V(=8 A Aby)

which is a tautology, and therefore can be removed by
the property EQ. So we finitely get & ~a . o

We can use also the property UCD instead of CWA:

Corollary 4.3:  |,iepi(a) 18 the weakest consequence
relation satisfying REF, RW, AND, EQ, OR, and UCD.

Proof: This follows directly from Lheorem 4.2 he-
causc on the one hand, UCD implies CWA (lemma 3.11),
and on the other hand, pe,iepicay has this property
(lemma 3.12). o

A characlerization of the careful semaniics uses the
weaker property DOR instead of OR:

Theorem 4.4: v oepa) I5 the weakest ronsequence re-
lation satisfying REF, RW, AND, EQ, DOR, and CWA.

Proof: The proofl 1s very similar to that of theorem 4.2,
But instead of directly trying to conclude 4, we derive
the defaults &,,....8, € A* which are contained in the
inlersection of the extensions and were used to derive .
For themn, we can use DDOR instead of OR. The rest di-
rectly foliows from REF, RW, and ANI). (-

As explained above, a characterization of the careful se-
nantics through the property UCI) is nearly trivial:

Corollary 4.5: [~ aref(a) 18 the weakest consequence
relation satisfying REF, RW, AND, and UCD.

The credulous and the CWA semantics allow the use of
the rule TMD:

Theorem 4.6: pepred 4y 15 the weakest consequence
relation satisfying REF, RW, CLC, DA, CWA, and IMD.
This result holds also with CWA replaced by UCD

Proof: Lel & b .aa, ¥. So there is an extension £
of @ with @ U E F o, 1e there are &y, .., b, € £ aud
Pl aem €Y with oy A - A Abp A Ab, F .
We have to show that ¢ s ¥ for any consequence
relation p-s with the given properties.

Let 87, ., 8, be those defaults not contained in £, but
in some other extension. Let @' := ¢ U {-b],. .., ~8l}.
As above, we find thal @ has only one extension,
nainely E. So the CWA-property or the UCD-property
allow to conclude ¢' fa b fori=1...  n.

But then we get @ jpvp 6 for i = 1,... 0 hy the
rule IMID). Since the §; are contained in the same ex-
tension, there is no conflict between them and rule DA
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results in @ poa & A---Ad,. Now we use CLC to derive
D ha @i A AR Ad A Ab, and finitely RW o
get < f\'a v.') a

If we require the stronger property AND instead of CLC
and DA, we get the CWA:

Theorem 4.7: |~ yaca) is the weakest consequence re-
iation satisfying REF, RW, AND, CWA, and IMD. This
result holds also with CWA replaced by UCD.

Proof: Let @ po yqa) ¥, 50 there are 6,,..., 8, € A*
and @1,...,0m € " with @ ¥ -4 (i = 1,...,n) and
@1 A A Ab A NS, F b Because of lemma 2.8,
there are extensions E; containing 6; (i = 1,...,n).

We again have to show & 5 ¢ for any consequence
relation satisfying the properties of the theorem. As in
the proof of theorem 4.6, we get & oy & (i = 1,...,n)
by means of CWA {or UCD) and IMD. Property REF
allows to conclude ¢ pa ¥ (i = 1,...,m), so AND
results in @ pa 1 A Apm Ad A oA, and RW
does the rest. (]

So the properties REF, RW, AND, CWA, and IMD are
only satisfied by p~ wara; Or a stronger semantics. But
}*‘cwa(m already destroys the consistency, so in effect we
cannot require all these properties together.

5 Conclusions

In this paper we considered different semantics for super-
normal defaults and their properties as nonmonotonic
consequence relations. Our main results are complete-
ness proofs for certain deduction systems. On the one
hand, this should help to better understand and motivate
these semantics, and on the other hand, the deduction
systems have some practical use for proofs "by hand".

Of course, we are still at the beginning of a general
theory of default semantics. Many interesting extensions
remain to be explored.

For instance, defaults with priorities are practically
very important. If we use a prioritized CWA as basis, the
characterizations of the skeptical and the careful seman-
tics can be generalized [Brass, 1992b]. But the extension
of the CWA to partially ordered defaults is not as clear
as it might seem at first: We noted in [Brass, 1992a] that
the constructive semantics proposed in [Brewka, 199I] is
in fact different from any "preferential model" approach.
So there are at least two incompatible notions of "ex-
tension" in this setting, and we should study properties
formalizing the prioritization.

Of course, one should also try to generalize our results
to full default logic.

Another direction for future work is to find previously
unknown semantics by requiring certain properties. For
instance, the rationality or rational monotonicity

Phad, Plas v = PU{p}a ¥

is not satisfied by the skeptical and the careful semantics.
So what happens if we require this rule in addition?



Note that here reference is made to g, SO we cannot
simply take the set of derivable formulae as the stan-
dard semantics. Other properties require that something
should not be derivable (e.g., false), or give more indefi-
nite information about the derivable formulae (e.g., the
expansion property [Brass, 1990]). With such properties
it might be possible to show that there is only a unique
default semantics satisfying them - or none at all.

Acknowledgments

| would like to thank UDO LIPECK for suggesting the
development of a system for natural deduction with de-
faults. He supervised my doctoral thesis which contains
similar results to the ones presented here (among other
things).

| would also like to thank JURGEN Dix, whose com-
ments were most helpful.

References

[Baker and Ginsberg, 1989] Andrew B. Baker and
Matthew L. Ginsberg. A theorem prover for prior-
itized circumscription. In Proc. 11th International
Joint Conf. on Artificial Intelligence (IJCAI), pages
4C3-467, 1989.

[Brass and Lipeck, 1989] Stefan Br ass and Udo W.
Lipeck. Specifying closed world assumptions for logic
databases. In Janos Demetrovics and Bernhard Thai-
heim, editors, 2nd Symposium on Mathematical Fun-
damentals of Database Systems (MFDBS'89), number
364 in LNCS, pages G8-84. Springer-Verlag, 1989.

Brass an d Lipeck, 1992] Stefan B rass and Udo W.
Lipeck. Generalized bottom-up query evaluation. In
Advances in Database Technology — EDBT'92, 3rd
International Conference, number 580 in LNCS, pages
88-103. Springer-Verlag, 1992.

[Brass, 1990] Stefan Brass. Beginnings of a theory of
general database completions. In Serge Abiteboul and
Paris C. Kanellakis, editors, Third International Con-
ference on Database Theory (ICDT'90), number 470
in LNCS, pages 349 363. Springer-Verlag, 1990.

[Brass, 1992a] Stefan Brass. Deduction with supernor-
mal defaults. In Gerd Brewka, Klaus P. Jantke, and
Peter H. Schmitt, editors, Nonmonotonic and Induc-
tive Logics, 2nd International Workshop (NIL '91),
number 659 in LNAI, pages 153 174. Springer-Verlag,
1992.

[Brass, 1992b] Stefan Brass. Defaults in Deduktiven
Datenbanken. Doctoral thesis, Universitat Hannover,
1992. In German. English version in preparation.

[Brewka, 1991] Gerhard Brewka. Nonmonotonic Rea-
soning: Logical Foundations of Commonsense. Cam-
bridge University Press, Cambridge, 1991.

[Delgrande and Jackson, 1991] James P. Delgrande and
W. Ken Jackson. Default logic revisited. In James
Allen, Richard Fikes, and Erik Sandewall, editors,
Principles of Knowledge Representation and Reason-
ing, Proc. of the Second Int. Conf (KR'91), pages
118-127. Morgan Kaufmann, 1991.

[Dix, 1991] Jurgen Dix. Classifying semantics of logic
programs. In Proc. of the 1st Int. Conf. on Logic Pro-
gramming and Non-Monotonic Reasoning. MIT Press,
1991.

[Dix, 1992] Jurgen Dix. Default theories of Poole-type
and a method for constructing cumulative versions of
default logic. In Bernd Neumann, editor, Proc. of
the 10th European Conf on Artificial Intelligence
(ECAI 92), pages 289 293. John Wiley & Sons, 1992.

[Gabbay, 1985] Dov M. Gabbay. Theoretical founda-
tions for non-monotonic reasoning in expert systems.
In Krzysztof R. Apt, editor, Logics and Models of
Concurrent Systems, pages 439-457. Springer-Verlag,
1985.

[Ginsberg, 1989] Matthew L. Ginsberg. A circumscrip-
tive theorem prover. Artificial Intelligence, 39:209
230, 1989.

[Kraus et al., 1990] Sarit Kraus, Daniel Lehmann, and
Menachem Magidor. Nonmonotonic reasoning, pref-
erential models and cumulative logics. Artificial Intel-
ligence, 44:167-207, 1990.

[Makinson, 1989] David Makinson. General theory of
cumulative inference. In Non-Monotonic Reasoning
(2nd International Workshop), number 346 in LNAI,
pages 1-18. Springer-Verlag, 1989.

[Makinson, 1992] David Makinson. General patterns in
nonmonotonic reasoning. In Dov M. Gabbay, editor,
Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 2. Oxford University Press,
1992.

[Minker, 1982] Jack Minker. On indefinite databases
and the closed world assumption. In D. W. Love-
land, editor, 6th Conference on Automated Deduction,
number 138 in LNCS, pages 292-308. Springer-Verlag,
1982.

[Poole, 1988] David Poole. A logical framework for de-
fault reasoning. Artificial Intelligence, 36:27-47, 1988.

[Przymusinski, 1989] Teodor C. Przymusinski. An algo-
rithm to compute circumscription. Artificial Intelli-
gence, 38:49-73, 1989.

[Reiter, 1978] Raymond Reiter. On closed world data
bases. In Herve Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 55 76, New York, 1978.
Plenum.

[Reiter, 1980] Raymond Reiter. A logic for default rea-
soning. Artificial Intelligence, 13:81 132, 1980.

[Shepherdson, 1984] John C. Shepherdson. Negation as
failure: A comparison of Clark's completed data base
and Reiter's closed world assumption. The Journal of
Logic Programming, 1:51 79, 1984.

[Shoham, 1987] Yoav Shoham. Nonmonotonic logics:
Meaning and utility. In Proc. 10th International Joint
Conference on Artificial Intelligence (1JCA1), pages
388 393, Milan, 1987.

Our papers are available from the anonymous ftp-server

(130.75.26.1).

Brass 583



