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Abs t rac t 

Although empirical machine learning has seen 
many algorithms, one of its most important 
goals has been neglected. Important real-world 
problems often have just a primit ive represen­
tat ion, to which the target concept bears only 
a remote, obscure relationship. This considera­
t ion leads to a class of measures that may be ap­
plied to data to estimate difficulty for standard 
algorithms. As the concept becomes harder, 
current decision tree and decision list methods 
give increasingly poor accuracy, though back-
propagation does better. A new system for 
feature construction scales up best. The fun­
damental l imi tat ion of standard algorithms is 
caused by two problems: greedy search and 
representational inadequacy. Crit ical analysis 
and empirical results show that lookahead alle­
viates the greedy hil l-cl imbing problem at high 
cost, but even this is insufficient. Combining 
lookahead wi th feature construction alleviates 
the "complex global replication" problem with 
hard concepts. For principled algorithm devel­
opment and good progress, researchers need to 
study hard concepts and system behavior using 
them. 

1 I n t r o d u c t i o n 

Even in non-incremental, attribute-based learning from 
examples, many algorithms have been created. To im­
prove their design, researchers often rely on established 
tactics. One is to identify shortcomings of current algo­
rithms, such as the replication problem [Pagallo, 1990]. 
This sometimes leads to a new algorithm, in this case 
FRINGE, which is later found to have l imited value, 
such as applicability to relatively few concepts [Yang et 
al., 1991]. Another tactic is to alter the representation. 
Replacing decision trees wi th decision lists, Clark and 
Niblett [1989] showed that CN2 performed better for 
certain concepts. These and other tactics amount to a 
strategy of parallel hil l-cl imbing in a space of designs. 

•This work was supported in part by NSF grant IRI-92-
04473. 

Bradshaw [1993] argues that science advances more 
quickly when we guide design-space search using a care­
ful functional analysis and suitable decomposition of the 
underlying problem. Although researchers always use 
functionality to guide design, algorithms can be evalu­
ated and developed properly only if we decompose the 
whole problem well. 

In this paper we address an undeveloped or neglected 
dimension of algorithm functionality: concept learning 
from "pr imit ive" attributes, when experts cannot readily 
specify a favorable abstract representation. We contend 
that evaluating learning systems using data bases gen­
erated from well understood domains is weak because 
most of the work is already done. Problems that are 
simplified through expert knowledge of appropriate ab­
stract attributes are easy to solve [Holte, 1993; Rendell 
& Seshu, 1990]. In contrast, primit ive representation 
generally degrades accuracy to the point that current 
algorithms become useless [Rendell & Seshu]. Full as­
sessment of learning algorithms and adequate progress 
on their design require that we address behavior and 
phenomena using harder problems. 

Section 2 presents a view of concept difficulty based 
on qualities of real-world representation and typical al­
gorithms. In Section 3 we survey measures and adopt 
a particular one for the assessment of algorithm perfor­
mance. Section 4 uses the difficulty measure to assess 
typical data bases and several algorithms found in learn­
ing. These results show the incompleteness of studies 
that indicate comparable accuracies using various algo­
rithms [Mooney et al., 1989; Weiss & Kapouleas, 1989]. 
A new algorithm LFC, [Ragavan & Rendell, 1993; Raga­
van et al . , 1993, this volume] scales up particularly well 
with harder concepts. Section 5 analyzes these results 
to explain algorithm behavior and to promote research 
directions. 

2 Representat ion, A l g o r i t h m s , and 
D i f f i cu l t y 

In an attribute-based representation, each training ex­
ample is described by an n-tuple of attr ibute values and 
a class value (positive or negative in the two-class case). 
A concept is an intensional description of the class, for 
which a learning algorithm constructs a hypothesis. 

Numerous extant algorithms perform well on famil-
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jar concepts and data found in machine learning work 
Mooney et al . , 1989; Weiss k Kapouleas, 1989]. For 

Many of the Irvine data bases, even a very simple algo­
r i thm attains accuracies within 5% of the best method 
[Holte, 1993]. The basic reason for the high accura­
cies is that the representation for the underlying concept 
matches the bias of the SBL algorithm. Typical systems 
use the similarity (SBL) bias: neighboring points in in­
stance space are likely in the same class [Rendell, 1986].1 

Standard learning systems are accurate if the concept 
is localized in instance space [Rendell k Cho, 1990], so 
they are good at this function of describing single lo­
cations. An area of uniform class membership values, 
especially a peak or valley in the function, is a contigu­
ous, constant-valued region. A region is describable us­
ing a few disjuncts (to capture irregular shapes), and 
is easy to find wi th simple algorithms that use greedy 
methods (to view one attr ibute at a t ime). Although 
the details depend on the approach [Rendell, 1986], this 
function could be called region description (RD). Con­
cepts learned accurately by an SBL system designed for 
RD are "easy" for the algorithm. 

In contrast, hard concepts are "spread out;" their 
class membership functions have a high degree of vari­
ation [Devroye k Gyorfi, 1985; Rendell k Seshu, 1990]. 
Function variation is correlated with other phenomena, 
such as entropy [Watanabe, 1985] and attribute inter­
action [Devijver k Ki t t ler , 1982], which we collectively 
call (concept) scattering. Hard concepts are learned very 
poorly by standard algorithms, even when many data are 
available [Rendell k Seshu, 1990]. 

Concept scattering is not just an academic considera­
t ion; it relates directly to representations for real-world 
domains. Easier concepts are associated with good ab­
stract representations, harder concepts with primitive 
information closer to direct observation. A good repre­
sentation for checkers involves piece advantage and cen­
ter control, whereas primit ive attributes are the contents 
of board squares. A high-level representation for sym­
bol recognition includes definitions of lines and circles, 
while a low-level representation uses pixel gray-levels. 
No satisfactory abstract representation is yet known for 
protein structure prediction, but a hard starting point 
is the primary sequence of amino acids (each position 
being an attr ibute). 

In such examples, abstract representations simplify 
the relationship (reduce the complexity or variation) be­
tween the concept and its attributes [Drastal et al., 1989; 
Rendell k Seshu, 1990]. For example, the likelihood of 
winning checkers increases monotonically with piece ad­
vantage and center control [Samuel, 1959]. In contrast, 
the likelihood of winning changes drastically with a small 
change in the contents of one or two board squares [Ren­
dell, 1985]. Primit ive representation causes concept scat­
tering. 

Good abstract representation is based on knowledge. 
Concepts that have had the benefit of expert knowledge 
to hone good attributes may be learned accurately and 
quickly [Rendell k Seshu, 1990; Samuel, 1959]. But even 

1This geometric view is clearest if the attributes are nu­
meric, but it can be extended to other types. 

moderately complex concepts are difficult if the repre-
sentation is primitive and l i t t le knowledge is available 
[Quinlan, 1983; Rendell, 1985]. The relationship of prim­
itive attributes to the target concept is often obscure, 
making the problem hard and standard algorithms slow 
and inaccurate [Devijver k Kitt ler, 1982; Rendell k Se­
shu, 1990]. For some important real-world problems, the 
best known representation is poor, and existing induc­
tion systems perform litt le better than guessing based 
on the prior class probability [Seshu et al., 1989; Towell 
et al., 1990]. 

In addition to the region description function RD 
when concepts are easy, we need to do something about 
poor representation. Since primitive attributes cause a 
proliferation of concept regions, another function might 
be coalescing abstraction (CA): change of representation 
[feature construction; Matheus k Rendell, 1989] to di­
minish the number of regions [variation reduction; Ren­
dell k Seshu, 1990]. CA allows RD to manage its task 
[Drastal et al., 1989]. 

Algorithm limitations for different amounts of abstrac­
tion are largely unexplored, though theory has shown 
that as concept complexity increases, more data are re­
quired to maintain accuracy [Devroye k Gyorfi, 1985; 
Ehrenfeucht et al., 1988]. To better understand the rela­
tionships between algorithm capability and representa­
tion quality, we can analyze hard concepts, characterize 
concept difficulty, locate associated deficiencies of algo­
rithms, then reorient approaches to system design. 

3 Captu r ing Concept D i f f i cu l ty 

3.1 Measures of D i f f i c u l t y 

If we quantify poor representation, we can determine the 
capabilities of algorithms in a more principled way. To 
approximate concept difficulty, various formalisms have 
been used. 

Measures can be based on the form of the hypothesis, 
as in theoretical research. Although they provide guid­
ing principles, hypothesis-based measures are impracti­
cal for assessing and developing algorithms, since the 
form of the concept is often unknown. The quantities 
we examine here are based on the data. 

One view is that hard concepts have a class-
membership function that is either close to monotonic 
or else singly-peaked, whereas hard concepts (functions) 
have many peaks and valleys [regions of uniform class 
membership; Rendell, 1985; Rendell k Cho, 1990]. A 
related view is Quinlan's [1983] description of hard prob­
lems as having large numbers of disjuncts (more peaks 
require more distincts to describe). Multiple peaks or 
disjuncts generally cause attribute interaction, which can 
be simplified in terms of statistical correlation [Devi­
jver k Kitt ler, 1982]. A generalized measure of scat­
tered peaks or disjuncts is function variation [Devroye 
k Gyorfi, 1985; Rendell k Seshu, 1990]. More variation 
for boolean concepts leads to greater complexity [much 
conjunction and disjunction; Ehrenfeucht et al., 1988]. 
Finally, concept difficulty also may be described using 
entropy [Saxena, 1991; Watanabe, 1985], which is com­
monly used to distinguish attribute relevance in splitting 
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algorithms [Quinlan, 1983] and transformation schemes 
[Devyver & Ki t t ler , ch. 5]. 

Here we advocate an entropy measure called the blur­
ring. The blurring of a concept is the average informa­
t ion in the concept over all relevant attributes, condi-
tioned on each attr ibute in turn. This estimates scat­
tering and interaction because each term in the condi­
tional expression corresponds to a one-dimensional pro­
jection in instance space. One attr ibute alone provides 
l i t t le information about the concept class when scatter­
ing and interaction are high. For difficult concepts, any 
one-dimensional projection is a "blur" comprising many 
highs and lows of concept class-membership (positive 
and negative examples). Consequently, such a projection 
shows a large degree of uncertainty about the concept. 
In general, the greater the difficulty of the concept, the 
more blurred these projections become. (Instead of aver­
aging attr ibute contributions, variants of this definition 
might be used, as discussed later.) 

3.2 M e a s u r e m e n t Issues 

A measure to characterize concept difficulty should have 
certain qualities: It might correspond to a human per­
spective. The measure should track concept difficulty as 
experienced by some standard algorithms. To be useful 
in detailed studies, a measure should apply to a wide 
variety of domains and capture fine differences in con­
cept difficulty. The measure should be defined for and 
computable from both the concept (usually for synthetic 
cases) and its training data (for real-world cases, when 
the concept is unknown). 

According to these desiderata, some of the candidate 
measures seem particularly appropriate, and others less 
so. The number of peaks in the class-membership func­
tion is useful for controlled experiments wi th synthetic 
concepts [Rendell & Cho, 1990], but is coarse, since 
peaks vary in extent, height, and shape. Moreover, the 
number of peaks is hard to measure in real data. In con­
trast, function variation and concept blurring are fine-
grained, and may be computed indirectly from the con­
cept definition (calculating all values) or estimated di­
rectly from available data when the concept is unknown 
(ignoring missing instances). 

Like some other measures, blurring captures hu­
man preference for compact spatial representations and 
against scattered primit ive representations. As detailed 
in Section 4, A also estimates the difficulty experienced 

by many learning algorithms, in terms of their accuracy. 
Blurring is general (applicable to any type of feature), 
and precise (responsive to small variations in feature 
quality). 

Whether we choose blurring, variation, or any other 
datarbased quantity, our current definitions seem to be 
l imited in one way or another. Once again we focus 
on blurring. First, the exact form of the definition is 
questionable. To measure projection blurring accurately, 

should use only those attributes relevant for learning 
the concept. Averaging may be good if the relevant at­
tributes are known, but more commonly they are un­
known, and too many irrelevant attributes artificially 
raises the blurring estimate. Nevertheless, this is not a 
serious problem as long as most of the variables are rel­
evant (which is true of our early studies). Our current 
goal is to assess existing algorithms, which is somewhat 
insensitive to this issue. 

Another question is the importance of higher dimen­
sional projections for more complete definitions of blur­
ring. To measure blurring, estimates entropy in one-
dimensional projections. This simplification may have 
l imited use, because it does not discriminate higher or­
der interactions and therefore compresses estimates of 
difficulty at the higher end of the scale. However, our 
experiments suggest that much can be done with the 
simple definition, because typical values are relatively 
low and current algorithms fail before a concept becomes 
very hard. 

A final simplification in the present definition of blur­
ring is its omission of instance space dimensionality (oth­
ers have included dimensionality for different uses than 
ours) [Devijver & Kit t ler, 1982; Saxena, 1991]. We factor 
dimensionality out of the current experiments, by keep­
ing it nearly constant. We explore the effects of concept 
scattering on various algorithms, which likely retain their 
ranking independent of dimensionality. 

Some of the other measures, such as the variation, 
avoid the above problems, although they have different 
drawbacks. As our understanding of algorithm behav­
ior becomes more refined, blurring or related measures 
should be improved. 

4 Using the B l u r r i n g Measure 

4.1 B l u r r i n g Examp les a n d I n t e r p r e t a t i o n 

Like Holte [1993], we found that many databases in the 
Irvine repository are easy. If we measure the entropy 
for the best attr ibute, we often find values close to zero, 
though many of the Irvine databases have values 0.5-
0.6, likely because less relevant attributes mixed wi th one 
important one raise the average. values of 0.6 or less 
often seem to indicate easy SBL learning; for example 
simple algorithms run on Iris versicolor ( = 0.56) give 
around 100% accuracy. 

Some of the Irvine data bases have high values, such 
as Pima Diabetes with = 0.88, and (seven attribute) 
majori ty voting wi th = 0.93. Other domains having 
high include protein structure and bankruptcy [Raga-
van et al., 1993, this volume; also see Rendell, 1985]. For 
boolean concepts, the highest blurr ing is for parity. In 
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the most extreme feature interaction, no single attribute 
can individually provide information about the concept, 
but collectively the attributes provide ful l information. 
While parity and other boolean concepts are artificial, 
they can mimic hard concepts in real-world domains. In 
particular, degrees of interaction can be simulated us­
ing different orders of parity. Parity attributes provide a 
necessary and sufficient (basis) set for boolean concepts 
[Seshu, 1989]. 

As defined, blurring is non-linear; higher values of 
compress intuit ive differences. For example = 0.88 
for Pima diabetes indicates much greater difficulty than 

= 0.56 for Iris. Beyond some threshold (around 0.9), 
increasing the blurring slightly requires many more data 
and a more complex algorithm to learn, as seen below. 

Although we use to measure concept scattering and 
attr ibute interaction, the data can be blurred for two 
other reasons. One is fundamental representation inad­
equacy, as opposed to representation unfavorable to the 
algorithm. Fundamental inadequacy can cause one point 
in the instance space to represent different objects and 
class values; destroying such a distinction increases en­
tropy. The other cause of blurring (entropy) is noise. 
Attr ibute and class noise cause false positives and nega­
tives, which increase scattering. 

The blurring captures all three factors that exacer­
bate concept learning, but does not discriminate them. 
If causes are unknown, the value of becomes an upper 
l imi t for estimating concept scattering. For real-world 
domains, the exact sources of entropy are often uncer­
tain, although other measures may conceivably disam­
biguate. In our controlled experiments using synthetic 
data, the only cause of blurring is scattering. 

We must consider concept scattering and attribute in­
teraction when developing learning algorithms for pr im­
itive representations. If we do not design experiments 
to assess induction systems on hard concepts, our design 
efforts wi l l be handicapped. Experiments would not di­
agnose system deficiencies [Bradshaw, 1993]. Blurring, 
or variation, or some characterization of real-world dif­
ficulty can facilitate and systematize the assessment of 
algorithms. 

4.2 A l g o r i t h m Per formance 

This summary of algorithm accuracy as a function of 
blurring omits much of the experimental detail found in 
[Ragavan k Rendell, 1993]. We ran several algorithms, 
including IDS, C4.5 [Quinlan, 1983], Fringe, GREEDYS 
[Pagallo, 1990], DCFringe [Yang et al., 1991], BackProp 
[Rumelhart et al. , 1986], MARS, [Friedman, 1991], and 
LFC [Ragavan k Rendell; Ragavan et al., 1993], on four 
synthetic and four real-world concepts. Figure 1 shows 
predictive accuracies obtained using ten-fold crossvali-
dation; differences are mostly significant at the 0.001 
level. The curve labeled "Best Standard" is a composite 
formed by choosing, row by row, the best accuracy of all 
greedy algorithms that output logic or tree hypotheses 
(ID3, GREEDYS, DCFringe, etc.). This curve is a mix­
ture of systems, IDS or DCFringe often giving the best 
results. 

The graph shows that the accuracy of all algorithms 
degrades with increasing The nonlinear anomalies 
are unsurprising; one reason is that training sample sizes 
differ [Ragavan k Rendell, 1993]. Otherwise, differences 
other than blurring have a relatively minor effect [Ren­
dell k Cho, 1990]. explains most of the accuracy dif­
ferences: hard concepts are learned poorly by standard 
algorithms [see also Rendell k Seshu, 1990]. 

But the tested algorithms differ markedly. This is con­
trary to the results of Weiss and Kapouleas [1989] and 
Mooney et al. [1989], because their studies did not ac­
count for concept difficulty. When we consider concept 
scattering and attribute interaction as represented by the 
blurring, we see that BackProp scales up better. LFC 
[Ragavan k Rendell, 1993; Ragavan et al., 1993] scales 
up best. For hard concepts, we find large accuracy dif­
ferences such as 66% versus 90% and 42% versus 70%. 

Concept scattering and attribute interaction are the 
essence of difficulty in poorly-understood domains. The 
ability of algorithms to manage scattered concepts may 
be their least understood but most important functional 
difference. In the analysis below, we correspond the be­
havior of current algorithms with their design elements 
and with requirements for hard concepts. 

5 A l g o r i t h m Funct ional i ty 

5.1 Basic S B L Techniques 
Similarity-based methods are sometimes dichotomized 
into iterative splitt ing algorithms [divide-and-conquer, 
e.g., CART, Breiman et al., 1984; PLS1, Rendell, 
1986; IDS, Quinlan, 1983] and set covering algorithms 
[separate-and-conquer, e.g., AQ, Michalski, 1983; CN2, 
Clark k Niblett, 1989; GREEDYS, Pagallo, 1990]. The 
former are often associated with decision tree representa­
tions, while the latter frequently use decision lists. Basic 
iterative splitters use one attribute at a time to build a 
decision tree. Although a greedy, hill-climbing strategy 
is efficient, it produces inaccurate trees when the con­
cept is hard—when class membership is scattered and 
attributes interact [Rendell k Cho, 1990]. 

In hard concepts a number of attributes together de­
termine the class of an example; a single attribute pro­
vides l i t t le or no information about the class. Conse-
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quently, depending upon statistical coincidences in the 
data, a decision tree learner can easily make a poor 
choice of attributes. Simple boolean parity illustrates 
the effects of attr ibute interaction: If the concept is 
XOR(x 1 ,X2) the probability of an example from a uni­
form distr ibution being positive is 1/2 both before and 
after consideration of the value of x1 or x2 alone. Each 
attr ibute by itself is uninformative, but greedy spli t t ing 
st i l l chooses one of them for creating a decision node, 
making an "uninformed" split. This produces a tree 
wi th three decision nodes, as the two conjunction rela­
tions X1X2 and x1X2 need to be captured to discriminate 
all the examples correctly. Because every split on aver­
age halves the number of data, the likelihood of building 
the correct tree diminishes, unless the training sample is 
very large. This problem worsens if the parity (or any 
attr ibute interaction) is higher-order. 

Moreover, a greedy algorithm is likely to select irrel­
evant attributes: their discriminatory power is as good 
as, or better than, relevant but interacting attributes 
(statistical anomalies produce a stronger effect than the 
zero information in a relationship such as parity). The 
result of greedy spli t t ing is a verbose tree. W i th l imited 
training data, verbosity perpetuates poor node selection, 
now farther down the tree because of reduced statistical 
support there. One instance of this data fragmenting is 
Pagallo's [1990] fringe replication problem. 

Functionally, basic decision tree algorithms perform 
well on concepts having l i t t le concept scattering or at­
tr ibute interaction, but otherwise these algorithms are 
highly inaccurate (as illustrated in Fig. 1). One way 
to attempt improvement of SBL algorithms is to search 
their design space. 

5.2 Some Ex tens ions a n d O t h e r Designs 

Some algorithms extend greedy splitters. FRINGE [Pa-
gallo, 1990], DCFringe [Yang et al . , 1991] and CITRE 
[Matheus & Rendell, 1989], use the decision tree pro­
duced by a greedy splitter to construct new features for 
improving tree quality. Repeated local patterns in the 
decision tree are coalesced to give new features. The new 
features are added to the original attributes for compet­
it ive spl i t t ing, to build a new tree. The process contin­
ues iteratively unt i l no new features are found, giving a 
tree in which repeated patterns are eliminated. FRINGE 
conjoins two adjacent nodes near the positive leaves of 
the tree. DCFringe constructs both conjunctions and 
disjunctions based on the fringe structure. CITRE con­
joins adjacent fringe, root, or intermediate nodes. But 
such greedy feature construction algorithms improve rel­
atively few concepts [Yang et al., 1991]. 

FRINGE-like algorithms are l imited by the quality of 
the original decision tree from which they construct fea­
tures. If the basis for the construction of the original tree 
is a greedy splitter, accuracies remain low (Fig. 1). W i th 
adequate data in a parity problem, FRINGE would even­
tual ly construct the right features, but this construction 
is coincidental. Over many runs, is just as likely to con­
struct irrelevant features because greedy splitters cannot 
discriminate properly. W i t h l imited data, even this in­
efficient technique wi l l break down. 

Other approaches than FRINGE transform decision 
trees for incremental induction. IDL [Van de Velde, 
1990] switches nodes in the tree based on frequency of at­
tr ibute occurrence. Indurkhya and Weiss [1990] discuss 
a similar attr ibute swapping technique. But these ap­
proaches are also l imited by the quality of the algorithm 
that produces the original decision tree. 

Other design varieties are also possible. Instead of 
extending greedy SBL, one could use a different repre-
sentation. A decision list is a set of rules involving con­
junctions of attributes [Rivest, 1987]. Each conjunction 
is a specific rule for attr ibute interaction. However, al­
gorithms such as GREEDYS [Pagallo, 1990] are not de­
signed to find the precise interaction except by assessing 
the marginal effect of one attr ibute at a t ime. As cur­
rently designed, these algorithms also suffer greedy l im­
itations. Consequently, they perform poorly for harder 
problems, as shown in Figure 1. 

Although search of design space is necessary, fast ad­
vancement involves a good decomposition of function­
ality [Bradshaw, 1993]. Decision lists and greedy algo­
rithms are functional: both are designed for economy. 
But this is just one of many functions. To guide design 
space search, we need to focus on the critical dimensions 
of algorithm functionality. 

In terms of Section 3, greedy algorithms are good at 
the region description function RD as long as the blur­
ring is low and attribute interaction is weak. But for 
hard concepts, finding the regions of unform class mem­
bership is not so simple, because peaks and valleys are 
blurred in greedy projections. To help find regions, the 
learning approach needs to discover the specifics of at­
tribute interaction by countering blurring. 

5.3 F i n d i n g I n t e r a c t i o n s us ing Lookahead 

Backpropagation and statistical techniques designed to 
handle attr ibute interaction have had good results across 
a variety of domains [Rumelhart et al. , 1986; Fried­
man, 1991]. Another way to manage interaction is to 
look ahead in a decision tree, effectively using all mul t i ­
dimensional projections of the training sample on the at­
tributes. An SBL split t ing algorithm could look ahead to 
observe the effects of current attr ibute selection further 
down in the hypothesis construction. The best sequence 
is found after evaluating all expansions of a decision tree. 
This avoids problems of attr ibute interaction by evaluat­
ing combinations of features. Norton [1989] found that 
his exhaustive lookahead algorithm IDX gave fairly good 
improvement. 

Exhaustive lookahead, however, is expensive. We 
found that the lookahead program with in Buntine's and 
Caruana's [1993] IND takes hours to run for moderately 
difficult financial concepts [Ragavan et al., 1993, this vol­
ume]. Even with the fastest available architectures, di­
mensionality growth in the training data can swamp the 
system, because the search space grows doubly exponen­
tially as the lookahead increases. 

Greedy tree building is too l imited and exhaustive 
lookahead is too expensive. So a cure for attr ibute inter­
action may lie in dynamic lookahead. For fixed dimen­
sionality instance space, naive lookahead would evaluate 
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the same number of features at every node, indepen­
dent of concept complexity. Instead, Ragavan's looka-
head feature construction LFC uses a combination of 
several techniques to guide lookahead search. The al­
gori thm applies both analytic and heuristic methods to 
decide dynamically which paths to attempt and how far 
to pursue the search. Results showed reasonable speeds. 

However, even lookahead is not enough to maximize 
performance. We found that accuracy improves further 
when feature construction caches the information [Raga-
van & Rendell, 1993]. (Figure 1 summarizes some accu­
racy results.) Feature construction also benefits compre-
hensibility and abstraction. 

In terms of Section 3, SBL wi th lookahead performs 
the region description function RD well, even when con­
cepts are scattered and attributes interact. To imple­
ment the coalescing abstraction function CA, an algo­
r i thm can create compact hypotheses by finding suitable 
new features. 

5.4 Compress i ng Hypo theses us ing N e w 
Features 

Even wi th lookahead to specify attr ibute relationships, 
an independent problem remains. The replication prob­
lem [Pagallo, 1990] is just one type of verbosity. In 
hard concepts, local (fringe) replications are relatively 
few [Yang et al. , 1991], yet "complex global replication" 
seems prevalent. Global replication is the disguised oc­
currence of similar attr ibute combinations in different 
parts of the tree. Many hard concepts require repeated 
decision patterns which are distributed throughout the 
tree and not readily recognizable, rather than being con­
fined to the fringes and clearly demarcated. 

For example, given all the lookahead it needs, a greedy 
learner for two-parity (XOR) builds a tree having three 
layers and seven nodes. This verbosity has splits on one 
attr ibute occurring on two subtrees of the root. W i th 
l imited training data, or with fixed training sample size 
but higher-degree attr ibute interaction, the data are ex­
ponentially decimated as the tree is grown. 

To alleviate this rapid data fragmenting, separate-and-
conquer methods have been developed that increase the 
available data for further hypothesis growth. Decision 
list algorithms such as CN2 [Clark & Niblett, 1989] and 
GREEDYS [Pagallo, 1990] construct a new feature at 
every node, and retain the examples not covered by the 
feature for further list construction. As features are 
formed by conjoining data attr ibute literals to give spe­
cialized terms, this technique increases the available data 
for making further statistical inferences to construct sub­
sequent features. 

But this approach also creates some problems. One 
is that specializing on each disjunct of the concept at 
every step can cause the hypothesis to grow rapidly for 
concepts having numerous disjuncts scattered over the 
instance space. This was the case with a bankruptcy 
concept, where GREEDYS gave an accuracy of 58%, 
compared wi th LFC's 90% [Ragavan et al. , 1993]. 

LFC handles global replication differently. Complex 
concepts typically contain impl ic i t patterns caused by 
prominent relationships among the original data at­

tributes. The algorithm caches search information by 
constructing useful new features (e.g., sequences of de­
cisions down a path of a tree is a conjunction of at­
tributes). In the XOR example, LFC constructs new 
features such as f1 = x1 A x2 and f2 = x1 Ax2, to build a 
concise and accurate tree, f1 and f2 represent abstrac­
tions "closer" to the parity concept than x1 or x2- New 
features describe relationships intermediate between the 
original attributes and the concept. LFC tackles the fea­
ture interaction problem directly, constructing features 
while building the decision tree. The new features com­
press the hypothesis. 

Compared wi th CN2, GREEDYS, and GS [Murphy k 
Pazzani, 1991], LFC differs primari ly because it tackles 
both the attr ibute interaction problem (using directed 
lookahead) and the global replication problem (through 
feature construction). Norton's [1989] IDX also reacts 
to the required degree of conjunction, though it uses ex­
haustive lookahead and does not cache features. The 
"lookback" techniques of Indurkhya and Weiss [1990] 
and Van de Velde [1990] do not construct new features 
and so are l imited to the expressive power of the original 
attributes at each node. 

LFC's combination of dynamic lookahead and feature 
construction consistently and considerably outperformed 
all other algorithms we ran, especially on hard concepts 
[Ragavan & Rendell, 1993] because the design addressed 
both attr ibute interaction and representation verbosity. 
These design requirements resulted from an analysis of 
the nature of hard concepts. When concepts are scat­
tered and their attributes interact, the region descrip­
t ion function RD leads to lookahead (or its equivalent). 
When concepts are scattered and their attributes inter­
act, the coalescing abstraction function CA leads to con­
struction of new features (found during lookahead) that 
compress the representation by reducing global replica­
tion through economic abstraction. 

6 Conclusion 
These results show the importance of careful analysis. 
Currently many learning systems perform very poorly, 
displaying accuracies (Fig. 1) tens of percentage points 
worse than LFC [Ragavan and Rendell, 1993; Ragavan 
et al., 1993, this volume]. This new feature construction 
system was designed for hard real-world problems char­
acterized by attr ibute interaction and concept scatter­
ing. To continue to improve algorithm design, we need 
to pay close attention to the nature of real-world prob­
lems. Concept difficulty measures such as variation and 
entropy can help pinpoint algorithm behavior and aid 
system development. 

References 

[Bradshaw, 1993] G.L. Bradshaw. Heuristics and strategies 
of invention: Lessons from the invention of the airplane. 
UIUC Report, submitted to Cognitive Science. 

[Breiman et al., 1984] L. Breiman, J.H. Friedman, RA. 
Olshen, and C.J. Stone. Classification and Regression 
Trees; Wadsworth, Belmont, CA, 1984. 

Rendell and Ragavan 957 



[Buntine St Caruana, 1993] W.L. Buntine and R. Caruana. 
Introduction to IND Version 2.1 and Recursive Partition­
ing. NASA Ames Research Center Report FIA-93-03, 1993. 

(Clark St Niblett, 1989] P. Clark and T. Niblett. The CN2 
induction algorithm. Machine Learning 3, 1989, 261-284. 

[Devijver & Kittler, 1982] P A . Devijver and J. Kittler. Pat­
tern Recognition; A Statistical Approach. Prentice Hall, 
Englewood Cliffs, NJ, 1982. 

[Deyroye St Gyorfi, 1985] L. Devroye and L. Gyorfi. Non-
pmrmmetric Density Estimation: The L1 View. Wiley, 
New York, NY, 1985. 

[Drastal et al., 1989] G. Drastal, G. Csako, and S. Raats. 
Induction in an abstraction space: A form of constructive 
induction. In Proc. Eleventh Int l . Joint Conf. on AI, 
1989, 708-712. 

(Ehrenfeucht et al., 1988] A. Ehrenfeucht, D. Haussler, M. 
Kearns, and L. Valiant. A general lower bound on the 
number of examples needed for learning. In Proc. Compu-
tational Learning Theory, 1988, 139-154. 

[Friedman, 1991] J.H. Friedman. Multi-variate adaptive 
regression splines. Annals of Statistics, 19, 1991, 1-141. 

[Holte, 1993] R.C. Holte. Very simple classification rules per­
form well on most datasets. Machine Learning (in press). 

[Indurkhya St Weiss, 1990] N. Indurkhya and S.M. Weiss. 
Iterative Rule Induction Procedures. Laboratory for Com­
puter Science Research Report LCSR-TR-145, Rutgers 
University, New Brunswick, NJ, 1990. 

[Matheus St Rendell, 1989] C.J. Matheus and L A . Rendell. 
Constructive induction on decision trees. In Proc. Eleventh 
In t l . Joint Conf. on A I , 1989, 645-650. 

[Michalski, 1983] R.S. Michalski. A theory and methodology 
of inductive learning. In R.S. Michalski et al. (Ed.), 
Machine Learning: An Art i f icial Intelligence Approach. 
Tioga, 1983. 

[Mooney et al., 1989] R. Mooney, J. Shavlik, G. Towell, and 
A. Gove. An experimental comparison of symbolic and con-
nectionist learning algorithms. In Proc. Eleventh Int l . 
Joint Conf. on A I , 1989, 775-780. 

[Murphy St Pazzzani, 1991] P. Murphy and M. Passani. Con-
structive induction of M-of-N concepts. In Proc. Eighth 
In t l . Machine Learning Workshop, 1991, 183-187. 

(Norton, 1989] S. Norton. Generating better decision trees. 
In Proc. Eleventh Int l . Joint Conf. on AI, 1989, 800-805. 

[Pagallo, 1990] G. Pagallo. Learning DNF by decision trees. 
Ph.D. Dissertation, University of California at Santa Crus, 
1990. 

[Quinlan, 1983] J.R. Quinlan. Learning efficient 
classification procedures and their application to chess end 
games. In R.S. Michalski et al. (Ed.), Machine Learning: 
An Art i f ic ial Intelligence Approach. Tioga, 1983. 

(Ragavan & Rendell, 1993] H. Ragavan and L.A. Rendell. 
Lookahead feature construction for learning hard concepts. 
In Proc. Tenth Int l . Machine Learning Conf., 1993. 

(Ragavan et al., 1993] H. Ragavan, L.A. Rendell, M. Shaw, 
and A. Tessmer. Complex concept acquisition through 

directed search and feature caching. In Proc. Thirteenth 
Int l . Joint Conf. on AI, 1993 (this volume). 

[Rendell, 1985] L A . Rendell. Substantial constructive induc­
tion using layered information compression: Tractable 
feature formation in search. In Proc. Ninth Int l . Joint 
Conf. on A I , 1985, 650-658. 

(Rendell, 1986] L.A. Rendell. A general framework for 
induction and a study of selective induction. Machine 
Learning 1, 1986, 177-226. 

(Rendell St Cho, 1990] L.A. Rendell and H.H. Cho. Empiri­
cal concept learning as a function of concept character, 
Machine Learning 5, 1990, 267-298. 

[Rendell St Seshu, 1990] L.A. Rendell and S.M. Seshu. 
Learning hard concepts through constructive induction: 
Framework and Rationale. Computational Intelligence $, 
1990, 247-270. 

[Rivest, 1987] R. Rivest. Learning decision lists. Machine 
Learning 2, 1987, 229-246. 

[Rumelhart et al., 1986] D.E. Rumelhart, G.E. Hinton, and 
R. Williams. Learning internal representations by error 
propagation. Parallel Distributed Processing: Explora­
tions in the Micro structures of Cognition 1, MIT Press, 
1986, 318-362. 

[Samuel, 1959] A.L. Samuel. Some studies in machine learn­
ing using the game of checkers. In IBM Journal of 
Research and Development. 3, 1959. Reprinted in E.A. 
Feigenbaum (Ed.), Computers and Thought. McGraw-
Hil l , 1963. 

[Saxena, 1991] S. Saxena. On the effect of instance represen­
tation on generalisation. In Proc. Eighth Int l . Machine 
Learning Workshop, 1991, 198-202. 

[Seshu, 1989] R.M. Seshu. Solving the parity problem. In 
Proc. of the European Working Session on Learning, 
Morgan Kaufman, 1989, 283-271. 

[Seshu et al., 1989] R.M. Seshu, L.A. Rendell, and D.K. 
Tcheng. Managing constructive induction using subcom­
ponent assessment and multiple-objective optimization. In 
Proc. Fif th Int l . Conf. on AI Applications, 1989, 191-
197. 

[Towell et al., 1990] G. Towell, J. Shavlik, and M. 
Noordwier. Refinement of approximate domain theories by 
knowledge-based neural networks. In Proc. Eighth Nt l . 
Conf. on A I , 1990, 861-866. 

[Van de Velde, 1990] W. Van de Velde. Incremental induc­
tion of topologically minimal trees. In Proc. Seventh Int l . 
Machine Learning Conf., 1990, 66-74. 

[Watanabe, 1985] S. Watanabe. Pattern Recognition: 
Human and Mechanical. Wiley, New York, NY, 1985. 

[Weiss St Kapouleas, 1989] S.M. Weiss and I. Kapouleas. An 
empirical comparison of pattern recognition, neural nets, 
and machine learning classification methods. In Proc. 
Eleventh In t l . Joint Conf. on A I , 1989, 781-787: 

[Yang et al., 1991] D-S. Yang., L.A. Rendell, and G. Blix. A 
scheme for feature construction and a comparison of empir­
ical methods. In Proc. Twelfth In t l . Joint Conf. on A I , 
1991, 899-704. 

958 Machine Learning 


