
Improv ing the Design of Induc t ion Methods
by Analyz ing A lgo r i t hm Funct ional i ty
and Data-Based Concept Complexi ty*

L a r r y Rendel l Har ish Ragavan
Beckman Institute for Advanced Science and Technology

University of Ill inois at Urbana-Champaign
405 N. Mathews Avenue, Urbana, IL 61801 U.S.A.

Abs t rac t

Although empirical machine learning has seen
many algorithms, one of its most important
goals has been neglected. Important real-world
problems often have just a primit ive represen­
tat ion, to which the target concept bears only
a remote, obscure relationship. This considera­
t ion leads to a class of measures that may be ap­
plied to data to estimate difficulty for standard
algorithms. As the concept becomes harder,
current decision tree and decision list methods
give increasingly poor accuracy, though back-
propagation does better. A new system for
feature construction scales up best. The fun­
damental l imi tat ion of standard algorithms is
caused by two problems: greedy search and
representational inadequacy. Crit ical analysis
and empirical results show that lookahead alle­
viates the greedy hil l-cl imbing problem at high
cost, but even this is insufficient. Combining
lookahead wi th feature construction alleviates
the "complex global replication" problem with
hard concepts. For principled algorithm devel­
opment and good progress, researchers need to
study hard concepts and system behavior using
them.

1 I n t r o d u c t i o n

Even in non-incremental, attribute-based learning from
examples, many algorithms have been created. To im­
prove their design, researchers often rely on established
tactics. One is to identify shortcomings of current algo­
rithms, such as the replication problem [Pagallo, 1990].
This sometimes leads to a new algorithm, in this case
FRINGE, which is later found to have l imited value,
such as applicability to relatively few concepts [Yang et
al., 1991]. Another tactic is to alter the representation.
Replacing decision trees wi th decision lists, Clark and
Niblett [1989] showed that CN2 performed better for
certain concepts. These and other tactics amount to a
strategy of parallel hil l-cl imbing in a space of designs.

•This work was supported in part by NSF grant IRI-92-
04473.

Bradshaw [1993] argues that science advances more
quickly when we guide design-space search using a care­
ful functional analysis and suitable decomposition of the
underlying problem. Although researchers always use
functionality to guide design, algorithms can be evalu­
ated and developed properly only if we decompose the
whole problem well.

In this paper we address an undeveloped or neglected
dimension of algorithm functionality: concept learning
from "pr imit ive" attributes, when experts cannot readily
specify a favorable abstract representation. We contend
that evaluating learning systems using data bases gen­
erated from well understood domains is weak because
most of the work is already done. Problems that are
simplified through expert knowledge of appropriate ab­
stract attributes are easy to solve [Holte, 1993; Rendell
& Seshu, 1990]. In contrast, primit ive representation
generally degrades accuracy to the point that current
algorithms become useless [Rendell & Seshu]. Full as­
sessment of learning algorithms and adequate progress
on their design require that we address behavior and
phenomena using harder problems.

Section 2 presents a view of concept difficulty based
on qualities of real-world representation and typical al­
gorithms. In Section 3 we survey measures and adopt
a particular one for the assessment of algorithm perfor­
mance. Section 4 uses the difficulty measure to assess
typical data bases and several algorithms found in learn­
ing. These results show the incompleteness of studies
that indicate comparable accuracies using various algo­
rithms [Mooney et al., 1989; Weiss & Kapouleas, 1989].
A new algorithm LFC, [Ragavan & Rendell, 1993; Raga­
van et al . , 1993, this volume] scales up particularly well
with harder concepts. Section 5 analyzes these results
to explain algorithm behavior and to promote research
directions.

2 Representat ion, A l g o r i t h m s , and
D i f f i cu l t y

In an attribute-based representation, each training ex­
ample is described by an n-tuple of attr ibute values and
a class value (positive or negative in the two-class case).
A concept is an intensional description of the class, for
which a learning algorithm constructs a hypothesis.

Numerous extant algorithms perform well on famil-

952 Machine Learning

jar concepts and data found in machine learning work
Mooney et al . , 1989; Weiss k Kapouleas, 1989]. For

Many of the Irvine data bases, even a very simple algo­
r i thm attains accuracies within 5% of the best method
[Holte, 1993]. The basic reason for the high accura­
cies is that the representation for the underlying concept
matches the bias of the SBL algorithm. Typical systems
use the similarity (SBL) bias: neighboring points in in­
stance space are likely in the same class [Rendell, 1986].1

Standard learning systems are accurate if the concept
is localized in instance space [Rendell k Cho, 1990], so
they are good at this function of describing single lo­
cations. An area of uniform class membership values,
especially a peak or valley in the function, is a contigu­
ous, constant-valued region. A region is describable us­
ing a few disjuncts (to capture irregular shapes), and
is easy to find wi th simple algorithms that use greedy
methods (to view one attr ibute at a t ime). Although
the details depend on the approach [Rendell, 1986], this
function could be called region description (RD). Con­
cepts learned accurately by an SBL system designed for
RD are "easy" for the algorithm.

In contrast, hard concepts are "spread out;" their
class membership functions have a high degree of vari­
ation [Devroye k Gyorfi, 1985; Rendell k Seshu, 1990].
Function variation is correlated with other phenomena,
such as entropy [Watanabe, 1985] and attribute inter­
action [Devijver k Ki t t ler , 1982], which we collectively
call (concept) scattering. Hard concepts are learned very
poorly by standard algorithms, even when many data are
available [Rendell k Seshu, 1990].

Concept scattering is not just an academic considera­
t ion; it relates directly to representations for real-world
domains. Easier concepts are associated with good ab­
stract representations, harder concepts with primitive
information closer to direct observation. A good repre­
sentation for checkers involves piece advantage and cen­
ter control, whereas primit ive attributes are the contents
of board squares. A high-level representation for sym­
bol recognition includes definitions of lines and circles,
while a low-level representation uses pixel gray-levels.
No satisfactory abstract representation is yet known for
protein structure prediction, but a hard starting point
is the primary sequence of amino acids (each position
being an attr ibute).

In such examples, abstract representations simplify
the relationship (reduce the complexity or variation) be­
tween the concept and its attributes [Drastal et al., 1989;
Rendell k Seshu, 1990]. For example, the likelihood of
winning checkers increases monotonically with piece ad­
vantage and center control [Samuel, 1959]. In contrast,
the likelihood of winning changes drastically with a small
change in the contents of one or two board squares [Ren­
dell, 1985]. Primit ive representation causes concept scat­
tering.

Good abstract representation is based on knowledge.
Concepts that have had the benefit of expert knowledge
to hone good attributes may be learned accurately and
quickly [Rendell k Seshu, 1990; Samuel, 1959]. But even

1This geometric view is clearest if the attributes are nu­
meric, but it can be extended to other types.

moderately complex concepts are difficult if the repre-
sentation is primitive and l i t t le knowledge is available
[Quinlan, 1983; Rendell, 1985]. The relationship of prim­
itive attributes to the target concept is often obscure,
making the problem hard and standard algorithms slow
and inaccurate [Devijver k Kitt ler, 1982; Rendell k Se­
shu, 1990]. For some important real-world problems, the
best known representation is poor, and existing induc­
tion systems perform litt le better than guessing based
on the prior class probability [Seshu et al., 1989; Towell
et al., 1990].

In addition to the region description function RD
when concepts are easy, we need to do something about
poor representation. Since primitive attributes cause a
proliferation of concept regions, another function might
be coalescing abstraction (CA): change of representation
[feature construction; Matheus k Rendell, 1989] to di­
minish the number of regions [variation reduction; Ren­
dell k Seshu, 1990]. CA allows RD to manage its task
[Drastal et al., 1989].

Algorithm limitations for different amounts of abstrac­
tion are largely unexplored, though theory has shown
that as concept complexity increases, more data are re­
quired to maintain accuracy [Devroye k Gyorfi, 1985;
Ehrenfeucht et al., 1988]. To better understand the rela­
tionships between algorithm capability and representa­
tion quality, we can analyze hard concepts, characterize
concept difficulty, locate associated deficiencies of algo­
rithms, then reorient approaches to system design.

3 Captu r ing Concept D i f f i cu l ty

3.1 Measures of D i f f i c u l t y

If we quantify poor representation, we can determine the
capabilities of algorithms in a more principled way. To
approximate concept difficulty, various formalisms have
been used.

Measures can be based on the form of the hypothesis,
as in theoretical research. Although they provide guid­
ing principles, hypothesis-based measures are impracti­
cal for assessing and developing algorithms, since the
form of the concept is often unknown. The quantities
we examine here are based on the data.

One view is that hard concepts have a class-
membership function that is either close to monotonic
or else singly-peaked, whereas hard concepts (functions)
have many peaks and valleys [regions of uniform class
membership; Rendell, 1985; Rendell k Cho, 1990]. A
related view is Quinlan's [1983] description of hard prob­
lems as having large numbers of disjuncts (more peaks
require more distincts to describe). Multiple peaks or
disjuncts generally cause attribute interaction, which can
be simplified in terms of statistical correlation [Devi­
jver k Kitt ler, 1982]. A generalized measure of scat­
tered peaks or disjuncts is function variation [Devroye
k Gyorfi, 1985; Rendell k Seshu, 1990]. More variation
for boolean concepts leads to greater complexity [much
conjunction and disjunction; Ehrenfeucht et al., 1988].
Finally, concept difficulty also may be described using
entropy [Saxena, 1991; Watanabe, 1985], which is com­
monly used to distinguish attribute relevance in splitting

Rendell and Ragavan 953

algorithms [Quinlan, 1983] and transformation schemes
[Devyver & Ki t t ler , ch. 5].

Here we advocate an entropy measure called the blur­
ring. The blurring of a concept is the average informa­
t ion in the concept over all relevant attributes, condi-
tioned on each attr ibute in turn. This estimates scat­
tering and interaction because each term in the condi­
tional expression corresponds to a one-dimensional pro­
jection in instance space. One attr ibute alone provides
l i t t le information about the concept class when scatter­
ing and interaction are high. For difficult concepts, any
one-dimensional projection is a "blur" comprising many
highs and lows of concept class-membership (positive
and negative examples). Consequently, such a projection
shows a large degree of uncertainty about the concept.
In general, the greater the difficulty of the concept, the
more blurred these projections become. (Instead of aver­
aging attr ibute contributions, variants of this definition
might be used, as discussed later.)

3.2 M e a s u r e m e n t Issues

A measure to characterize concept difficulty should have
certain qualities: It might correspond to a human per­
spective. The measure should track concept difficulty as
experienced by some standard algorithms. To be useful
in detailed studies, a measure should apply to a wide
variety of domains and capture fine differences in con­
cept difficulty. The measure should be defined for and
computable from both the concept (usually for synthetic
cases) and its training data (for real-world cases, when
the concept is unknown).

According to these desiderata, some of the candidate
measures seem particularly appropriate, and others less
so. The number of peaks in the class-membership func­
tion is useful for controlled experiments wi th synthetic
concepts [Rendell & Cho, 1990], but is coarse, since
peaks vary in extent, height, and shape. Moreover, the
number of peaks is hard to measure in real data. In con­
trast, function variation and concept blurring are fine-
grained, and may be computed indirectly from the con­
cept definition (calculating all values) or estimated di­
rectly from available data when the concept is unknown
(ignoring missing instances).

Like some other measures, blurring captures hu­
man preference for compact spatial representations and
against scattered primit ive representations. As detailed
in Section 4, A also estimates the difficulty experienced

by many learning algorithms, in terms of their accuracy.
Blurring is general (applicable to any type of feature),
and precise (responsive to small variations in feature
quality).

Whether we choose blurring, variation, or any other
datarbased quantity, our current definitions seem to be
l imited in one way or another. Once again we focus
on blurring. First, the exact form of the definition is
questionable. To measure projection blurring accurately,

should use only those attributes relevant for learning
the concept. Averaging may be good if the relevant at­
tributes are known, but more commonly they are un­
known, and too many irrelevant attributes artificially
raises the blurring estimate. Nevertheless, this is not a
serious problem as long as most of the variables are rel­
evant (which is true of our early studies). Our current
goal is to assess existing algorithms, which is somewhat
insensitive to this issue.

Another question is the importance of higher dimen­
sional projections for more complete definitions of blur­
ring. To measure blurring, estimates entropy in one-
dimensional projections. This simplification may have
l imited use, because it does not discriminate higher or­
der interactions and therefore compresses estimates of
difficulty at the higher end of the scale. However, our
experiments suggest that much can be done with the
simple definition, because typical values are relatively
low and current algorithms fail before a concept becomes
very hard.

A final simplification in the present definition of blur­
ring is its omission of instance space dimensionality (oth­
ers have included dimensionality for different uses than
ours) [Devijver & Kit t ler, 1982; Saxena, 1991]. We factor
dimensionality out of the current experiments, by keep­
ing it nearly constant. We explore the effects of concept
scattering on various algorithms, which likely retain their
ranking independent of dimensionality.

Some of the other measures, such as the variation,
avoid the above problems, although they have different
drawbacks. As our understanding of algorithm behav­
ior becomes more refined, blurring or related measures
should be improved.

4 Using the B l u r r i n g Measure

4.1 B l u r r i n g Examp les a n d I n t e r p r e t a t i o n

Like Holte [1993], we found that many databases in the
Irvine repository are easy. If we measure the entropy
for the best attr ibute, we often find values close to zero,
though many of the Irvine databases have values 0.5-
0.6, likely because less relevant attributes mixed wi th one
important one raise the average. values of 0.6 or less
often seem to indicate easy SBL learning; for example
simple algorithms run on Iris versicolor (= 0.56) give
around 100% accuracy.

Some of the Irvine data bases have high values, such
as Pima Diabetes with = 0.88, and (seven attribute)
majori ty voting wi th = 0.93. Other domains having
high include protein structure and bankruptcy [Raga-
van et al., 1993, this volume; also see Rendell, 1985]. For
boolean concepts, the highest blurr ing is for parity. In

954 Machine Learning

the most extreme feature interaction, no single attribute
can individually provide information about the concept,
but collectively the attributes provide ful l information.
While parity and other boolean concepts are artificial,
they can mimic hard concepts in real-world domains. In
particular, degrees of interaction can be simulated us­
ing different orders of parity. Parity attributes provide a
necessary and sufficient (basis) set for boolean concepts
[Seshu, 1989].

As defined, blurring is non-linear; higher values of
compress intuit ive differences. For example = 0.88
for Pima diabetes indicates much greater difficulty than

= 0.56 for Iris. Beyond some threshold (around 0.9),
increasing the blurring slightly requires many more data
and a more complex algorithm to learn, as seen below.

Although we use to measure concept scattering and
attr ibute interaction, the data can be blurred for two
other reasons. One is fundamental representation inad­
equacy, as opposed to representation unfavorable to the
algorithm. Fundamental inadequacy can cause one point
in the instance space to represent different objects and
class values; destroying such a distinction increases en­
tropy. The other cause of blurring (entropy) is noise.
Attr ibute and class noise cause false positives and nega­
tives, which increase scattering.

The blurring captures all three factors that exacer­
bate concept learning, but does not discriminate them.
If causes are unknown, the value of becomes an upper
l imi t for estimating concept scattering. For real-world
domains, the exact sources of entropy are often uncer­
tain, although other measures may conceivably disam­
biguate. In our controlled experiments using synthetic
data, the only cause of blurring is scattering.

We must consider concept scattering and attribute in­
teraction when developing learning algorithms for pr im­
itive representations. If we do not design experiments
to assess induction systems on hard concepts, our design
efforts wi l l be handicapped. Experiments would not di­
agnose system deficiencies [Bradshaw, 1993]. Blurring,
or variation, or some characterization of real-world dif­
ficulty can facilitate and systematize the assessment of
algorithms.

4.2 A l g o r i t h m Per formance

This summary of algorithm accuracy as a function of
blurring omits much of the experimental detail found in
[Ragavan k Rendell, 1993]. We ran several algorithms,
including IDS, C4.5 [Quinlan, 1983], Fringe, GREEDYS
[Pagallo, 1990], DCFringe [Yang et al., 1991], BackProp
[Rumelhart et al. , 1986], MARS, [Friedman, 1991], and
LFC [Ragavan k Rendell; Ragavan et al., 1993], on four
synthetic and four real-world concepts. Figure 1 shows
predictive accuracies obtained using ten-fold crossvali-
dation; differences are mostly significant at the 0.001
level. The curve labeled "Best Standard" is a composite
formed by choosing, row by row, the best accuracy of all
greedy algorithms that output logic or tree hypotheses
(ID3, GREEDYS, DCFringe, etc.). This curve is a mix­
ture of systems, IDS or DCFringe often giving the best
results.

The graph shows that the accuracy of all algorithms
degrades with increasing The nonlinear anomalies
are unsurprising; one reason is that training sample sizes
differ [Ragavan k Rendell, 1993]. Otherwise, differences
other than blurring have a relatively minor effect [Ren­
dell k Cho, 1990]. explains most of the accuracy dif­
ferences: hard concepts are learned poorly by standard
algorithms [see also Rendell k Seshu, 1990].

But the tested algorithms differ markedly. This is con­
trary to the results of Weiss and Kapouleas [1989] and
Mooney et al. [1989], because their studies did not ac­
count for concept difficulty. When we consider concept
scattering and attribute interaction as represented by the
blurring, we see that BackProp scales up better. LFC
[Ragavan k Rendell, 1993; Ragavan et al., 1993] scales
up best. For hard concepts, we find large accuracy dif­
ferences such as 66% versus 90% and 42% versus 70%.

Concept scattering and attribute interaction are the
essence of difficulty in poorly-understood domains. The
ability of algorithms to manage scattered concepts may
be their least understood but most important functional
difference. In the analysis below, we correspond the be­
havior of current algorithms with their design elements
and with requirements for hard concepts.

5 A l g o r i t h m Funct ional i ty

5.1 Basic S B L Techniques
Similarity-based methods are sometimes dichotomized
into iterative splitt ing algorithms [divide-and-conquer,
e.g., CART, Breiman et al., 1984; PLS1, Rendell,
1986; IDS, Quinlan, 1983] and set covering algorithms
[separate-and-conquer, e.g., AQ, Michalski, 1983; CN2,
Clark k Niblett, 1989; GREEDYS, Pagallo, 1990]. The
former are often associated with decision tree representa­
tions, while the latter frequently use decision lists. Basic
iterative splitters use one attribute at a time to build a
decision tree. Although a greedy, hill-climbing strategy
is efficient, it produces inaccurate trees when the con­
cept is hard—when class membership is scattered and
attributes interact [Rendell k Cho, 1990].

In hard concepts a number of attributes together de­
termine the class of an example; a single attribute pro­
vides l i t t le or no information about the class. Conse-

Rendell and Ragavan 955

quently, depending upon statistical coincidences in the
data, a decision tree learner can easily make a poor
choice of attributes. Simple boolean parity illustrates
the effects of attr ibute interaction: If the concept is
XOR(x 1 ,X2) the probability of an example from a uni­
form distr ibution being positive is 1/2 both before and
after consideration of the value of x1 or x2 alone. Each
attr ibute by itself is uninformative, but greedy spli t t ing
st i l l chooses one of them for creating a decision node,
making an "uninformed" split. This produces a tree
wi th three decision nodes, as the two conjunction rela­
tions X1X2 and x1X2 need to be captured to discriminate
all the examples correctly. Because every split on aver­
age halves the number of data, the likelihood of building
the correct tree diminishes, unless the training sample is
very large. This problem worsens if the parity (or any
attr ibute interaction) is higher-order.

Moreover, a greedy algorithm is likely to select irrel­
evant attributes: their discriminatory power is as good
as, or better than, relevant but interacting attributes
(statistical anomalies produce a stronger effect than the
zero information in a relationship such as parity). The
result of greedy spli t t ing is a verbose tree. W i th l imited
training data, verbosity perpetuates poor node selection,
now farther down the tree because of reduced statistical
support there. One instance of this data fragmenting is
Pagallo's [1990] fringe replication problem.

Functionally, basic decision tree algorithms perform
well on concepts having l i t t le concept scattering or at­
tr ibute interaction, but otherwise these algorithms are
highly inaccurate (as illustrated in Fig. 1). One way
to attempt improvement of SBL algorithms is to search
their design space.

5.2 Some Ex tens ions a n d O t h e r Designs

Some algorithms extend greedy splitters. FRINGE [Pa-
gallo, 1990], DCFringe [Yang et al . , 1991] and CITRE
[Matheus & Rendell, 1989], use the decision tree pro­
duced by a greedy splitter to construct new features for
improving tree quality. Repeated local patterns in the
decision tree are coalesced to give new features. The new
features are added to the original attributes for compet­
it ive spl i t t ing, to build a new tree. The process contin­
ues iteratively unt i l no new features are found, giving a
tree in which repeated patterns are eliminated. FRINGE
conjoins two adjacent nodes near the positive leaves of
the tree. DCFringe constructs both conjunctions and
disjunctions based on the fringe structure. CITRE con­
joins adjacent fringe, root, or intermediate nodes. But
such greedy feature construction algorithms improve rel­
atively few concepts [Yang et al., 1991].

FRINGE-like algorithms are l imited by the quality of
the original decision tree from which they construct fea­
tures. If the basis for the construction of the original tree
is a greedy splitter, accuracies remain low (Fig. 1). W i th
adequate data in a parity problem, FRINGE would even­
tual ly construct the right features, but this construction
is coincidental. Over many runs, is just as likely to con­
struct irrelevant features because greedy splitters cannot
discriminate properly. W i t h l imited data, even this in­
efficient technique wi l l break down.

Other approaches than FRINGE transform decision
trees for incremental induction. IDL [Van de Velde,
1990] switches nodes in the tree based on frequency of at­
tr ibute occurrence. Indurkhya and Weiss [1990] discuss
a similar attr ibute swapping technique. But these ap­
proaches are also l imited by the quality of the algorithm
that produces the original decision tree.

Other design varieties are also possible. Instead of
extending greedy SBL, one could use a different repre-
sentation. A decision list is a set of rules involving con­
junctions of attributes [Rivest, 1987]. Each conjunction
is a specific rule for attr ibute interaction. However, al­
gorithms such as GREEDYS [Pagallo, 1990] are not de­
signed to find the precise interaction except by assessing
the marginal effect of one attr ibute at a t ime. As cur­
rently designed, these algorithms also suffer greedy l im­
itations. Consequently, they perform poorly for harder
problems, as shown in Figure 1.

Although search of design space is necessary, fast ad­
vancement involves a good decomposition of function­
ality [Bradshaw, 1993]. Decision lists and greedy algo­
rithms are functional: both are designed for economy.
But this is just one of many functions. To guide design
space search, we need to focus on the critical dimensions
of algorithm functionality.

In terms of Section 3, greedy algorithms are good at
the region description function RD as long as the blur­
ring is low and attribute interaction is weak. But for
hard concepts, finding the regions of unform class mem­
bership is not so simple, because peaks and valleys are
blurred in greedy projections. To help find regions, the
learning approach needs to discover the specifics of at­
tribute interaction by countering blurring.

5.3 F i n d i n g I n t e r a c t i o n s us ing Lookahead

Backpropagation and statistical techniques designed to
handle attr ibute interaction have had good results across
a variety of domains [Rumelhart et al. , 1986; Fried­
man, 1991]. Another way to manage interaction is to
look ahead in a decision tree, effectively using all mul t i ­
dimensional projections of the training sample on the at­
tributes. An SBL split t ing algorithm could look ahead to
observe the effects of current attr ibute selection further
down in the hypothesis construction. The best sequence
is found after evaluating all expansions of a decision tree.
This avoids problems of attr ibute interaction by evaluat­
ing combinations of features. Norton [1989] found that
his exhaustive lookahead algorithm IDX gave fairly good
improvement.

Exhaustive lookahead, however, is expensive. We
found that the lookahead program with in Buntine's and
Caruana's [1993] IND takes hours to run for moderately
difficult financial concepts [Ragavan et al., 1993, this vol­
ume]. Even with the fastest available architectures, di­
mensionality growth in the training data can swamp the
system, because the search space grows doubly exponen­
tially as the lookahead increases.

Greedy tree building is too l imited and exhaustive
lookahead is too expensive. So a cure for attr ibute inter­
action may lie in dynamic lookahead. For fixed dimen­
sionality instance space, naive lookahead would evaluate

956 Machine Learning

the same number of features at every node, indepen­
dent of concept complexity. Instead, Ragavan's looka-
head feature construction LFC uses a combination of
several techniques to guide lookahead search. The al­
gori thm applies both analytic and heuristic methods to
decide dynamically which paths to attempt and how far
to pursue the search. Results showed reasonable speeds.

However, even lookahead is not enough to maximize
performance. We found that accuracy improves further
when feature construction caches the information [Raga-
van & Rendell, 1993]. (Figure 1 summarizes some accu­
racy results.) Feature construction also benefits compre-
hensibility and abstraction.

In terms of Section 3, SBL wi th lookahead performs
the region description function RD well, even when con­
cepts are scattered and attributes interact. To imple­
ment the coalescing abstraction function CA, an algo­
r i thm can create compact hypotheses by finding suitable
new features.

5.4 Compress i ng Hypo theses us ing N e w
Features

Even wi th lookahead to specify attr ibute relationships,
an independent problem remains. The replication prob­
lem [Pagallo, 1990] is just one type of verbosity. In
hard concepts, local (fringe) replications are relatively
few [Yang et al. , 1991], yet "complex global replication"
seems prevalent. Global replication is the disguised oc­
currence of similar attr ibute combinations in different
parts of the tree. Many hard concepts require repeated
decision patterns which are distributed throughout the
tree and not readily recognizable, rather than being con­
fined to the fringes and clearly demarcated.

For example, given all the lookahead it needs, a greedy
learner for two-parity (XOR) builds a tree having three
layers and seven nodes. This verbosity has splits on one
attr ibute occurring on two subtrees of the root. W i th
l imited training data, or with fixed training sample size
but higher-degree attr ibute interaction, the data are ex­
ponentially decimated as the tree is grown.

To alleviate this rapid data fragmenting, separate-and-
conquer methods have been developed that increase the
available data for further hypothesis growth. Decision
list algorithms such as CN2 [Clark & Niblett, 1989] and
GREEDYS [Pagallo, 1990] construct a new feature at
every node, and retain the examples not covered by the
feature for further list construction. As features are
formed by conjoining data attr ibute literals to give spe­
cialized terms, this technique increases the available data
for making further statistical inferences to construct sub­
sequent features.

But this approach also creates some problems. One
is that specializing on each disjunct of the concept at
every step can cause the hypothesis to grow rapidly for
concepts having numerous disjuncts scattered over the
instance space. This was the case with a bankruptcy
concept, where GREEDYS gave an accuracy of 58%,
compared wi th LFC's 90% [Ragavan et al. , 1993].

LFC handles global replication differently. Complex
concepts typically contain impl ic i t patterns caused by
prominent relationships among the original data at­

tributes. The algorithm caches search information by
constructing useful new features (e.g., sequences of de­
cisions down a path of a tree is a conjunction of at­
tributes). In the XOR example, LFC constructs new
features such as f1 = x1 A x2 and f2 = x1 Ax2, to build a
concise and accurate tree, f1 and f2 represent abstrac­
tions "closer" to the parity concept than x1 or x2- New
features describe relationships intermediate between the
original attributes and the concept. LFC tackles the fea­
ture interaction problem directly, constructing features
while building the decision tree. The new features com­
press the hypothesis.

Compared wi th CN2, GREEDYS, and GS [Murphy k
Pazzani, 1991], LFC differs primari ly because it tackles
both the attr ibute interaction problem (using directed
lookahead) and the global replication problem (through
feature construction). Norton's [1989] IDX also reacts
to the required degree of conjunction, though it uses ex­
haustive lookahead and does not cache features. The
"lookback" techniques of Indurkhya and Weiss [1990]
and Van de Velde [1990] do not construct new features
and so are l imited to the expressive power of the original
attributes at each node.

LFC's combination of dynamic lookahead and feature
construction consistently and considerably outperformed
all other algorithms we ran, especially on hard concepts
[Ragavan & Rendell, 1993] because the design addressed
both attr ibute interaction and representation verbosity.
These design requirements resulted from an analysis of
the nature of hard concepts. When concepts are scat­
tered and their attributes interact, the region descrip­
t ion function RD leads to lookahead (or its equivalent).
When concepts are scattered and their attributes inter­
act, the coalescing abstraction function CA leads to con­
struction of new features (found during lookahead) that
compress the representation by reducing global replica­
tion through economic abstraction.

6 Conclusion
These results show the importance of careful analysis.
Currently many learning systems perform very poorly,
displaying accuracies (Fig. 1) tens of percentage points
worse than LFC [Ragavan and Rendell, 1993; Ragavan
et al., 1993, this volume]. This new feature construction
system was designed for hard real-world problems char­
acterized by attr ibute interaction and concept scatter­
ing. To continue to improve algorithm design, we need
to pay close attention to the nature of real-world prob­
lems. Concept difficulty measures such as variation and
entropy can help pinpoint algorithm behavior and aid
system development.

References

[Bradshaw, 1993] G.L. Bradshaw. Heuristics and strategies
of invention: Lessons from the invention of the airplane.
UIUC Report, submitted to Cognitive Science.

[Breiman et al., 1984] L. Breiman, J.H. Friedman, RA.
Olshen, and C.J. Stone. Classification and Regression
Trees; Wadsworth, Belmont, CA, 1984.

Rendell and Ragavan 957

[Buntine St Caruana, 1993] W.L. Buntine and R. Caruana.
Introduction to IND Version 2.1 and Recursive Partition­
ing. NASA Ames Research Center Report FIA-93-03, 1993.

(Clark St Niblett, 1989] P. Clark and T. Niblett. The CN2
induction algorithm. Machine Learning 3, 1989, 261-284.

[Devijver & Kittler, 1982] P A . Devijver and J. Kittler. Pat­
tern Recognition; A Statistical Approach. Prentice Hall,
Englewood Cliffs, NJ, 1982.

[Deyroye St Gyorfi, 1985] L. Devroye and L. Gyorfi. Non-
pmrmmetric Density Estimation: The L1 View. Wiley,
New York, NY, 1985.

[Drastal et al., 1989] G. Drastal, G. Csako, and S. Raats.
Induction in an abstraction space: A form of constructive
induction. In Proc. Eleventh Int l . Joint Conf. on AI,
1989, 708-712.

(Ehrenfeucht et al., 1988] A. Ehrenfeucht, D. Haussler, M.
Kearns, and L. Valiant. A general lower bound on the
number of examples needed for learning. In Proc. Compu-
tational Learning Theory, 1988, 139-154.

[Friedman, 1991] J.H. Friedman. Multi-variate adaptive
regression splines. Annals of Statistics, 19, 1991, 1-141.

[Holte, 1993] R.C. Holte. Very simple classification rules per­
form well on most datasets. Machine Learning (in press).

[Indurkhya St Weiss, 1990] N. Indurkhya and S.M. Weiss.
Iterative Rule Induction Procedures. Laboratory for Com­
puter Science Research Report LCSR-TR-145, Rutgers
University, New Brunswick, NJ, 1990.

[Matheus St Rendell, 1989] C.J. Matheus and L A . Rendell.
Constructive induction on decision trees. In Proc. Eleventh
In t l . Joint Conf. on A I , 1989, 645-650.

[Michalski, 1983] R.S. Michalski. A theory and methodology
of inductive learning. In R.S. Michalski et al. (Ed.),
Machine Learning: An Art i f icial Intelligence Approach.
Tioga, 1983.

[Mooney et al., 1989] R. Mooney, J. Shavlik, G. Towell, and
A. Gove. An experimental comparison of symbolic and con-
nectionist learning algorithms. In Proc. Eleventh Int l .
Joint Conf. on A I , 1989, 775-780.

[Murphy St Pazzzani, 1991] P. Murphy and M. Passani. Con-
structive induction of M-of-N concepts. In Proc. Eighth
In t l . Machine Learning Workshop, 1991, 183-187.

(Norton, 1989] S. Norton. Generating better decision trees.
In Proc. Eleventh Int l . Joint Conf. on AI, 1989, 800-805.

[Pagallo, 1990] G. Pagallo. Learning DNF by decision trees.
Ph.D. Dissertation, University of California at Santa Crus,
1990.

[Quinlan, 1983] J.R. Quinlan. Learning efficient
classification procedures and their application to chess end
games. In R.S. Michalski et al. (Ed.), Machine Learning:
An Art i f ic ial Intelligence Approach. Tioga, 1983.

(Ragavan & Rendell, 1993] H. Ragavan and L.A. Rendell.
Lookahead feature construction for learning hard concepts.
In Proc. Tenth Int l . Machine Learning Conf., 1993.

(Ragavan et al., 1993] H. Ragavan, L.A. Rendell, M. Shaw,
and A. Tessmer. Complex concept acquisition through

directed search and feature caching. In Proc. Thirteenth
Int l . Joint Conf. on AI, 1993 (this volume).

[Rendell, 1985] L A . Rendell. Substantial constructive induc­
tion using layered information compression: Tractable
feature formation in search. In Proc. Ninth Int l . Joint
Conf. on A I , 1985, 650-658.

(Rendell, 1986] L.A. Rendell. A general framework for
induction and a study of selective induction. Machine
Learning 1, 1986, 177-226.

(Rendell St Cho, 1990] L.A. Rendell and H.H. Cho. Empiri­
cal concept learning as a function of concept character,
Machine Learning 5, 1990, 267-298.

[Rendell St Seshu, 1990] L.A. Rendell and S.M. Seshu.
Learning hard concepts through constructive induction:
Framework and Rationale. Computational Intelligence $,
1990, 247-270.

[Rivest, 1987] R. Rivest. Learning decision lists. Machine
Learning 2, 1987, 229-246.

[Rumelhart et al., 1986] D.E. Rumelhart, G.E. Hinton, and
R. Williams. Learning internal representations by error
propagation. Parallel Distributed Processing: Explora­
tions in the Micro structures of Cognition 1, MIT Press,
1986, 318-362.

[Samuel, 1959] A.L. Samuel. Some studies in machine learn­
ing using the game of checkers. In IBM Journal of
Research and Development. 3, 1959. Reprinted in E.A.
Feigenbaum (Ed.), Computers and Thought. McGraw-
Hil l , 1963.

[Saxena, 1991] S. Saxena. On the effect of instance represen­
tation on generalisation. In Proc. Eighth Int l . Machine
Learning Workshop, 1991, 198-202.

[Seshu, 1989] R.M. Seshu. Solving the parity problem. In
Proc. of the European Working Session on Learning,
Morgan Kaufman, 1989, 283-271.

[Seshu et al., 1989] R.M. Seshu, L.A. Rendell, and D.K.
Tcheng. Managing constructive induction using subcom­
ponent assessment and multiple-objective optimization. In
Proc. Fif th Int l . Conf. on AI Applications, 1989, 191-
197.

[Towell et al., 1990] G. Towell, J. Shavlik, and M.
Noordwier. Refinement of approximate domain theories by
knowledge-based neural networks. In Proc. Eighth Nt l .
Conf. on A I , 1990, 861-866.

[Van de Velde, 1990] W. Van de Velde. Incremental induc­
tion of topologically minimal trees. In Proc. Seventh Int l .
Machine Learning Conf., 1990, 66-74.

[Watanabe, 1985] S. Watanabe. Pattern Recognition:
Human and Mechanical. Wiley, New York, NY, 1985.

[Weiss St Kapouleas, 1989] S.M. Weiss and I. Kapouleas. An
empirical comparison of pattern recognition, neural nets,
and machine learning classification methods. In Proc.
Eleventh In t l . Joint Conf. on A I , 1989, 781-787:

[Yang et al., 1991] D-S. Yang., L.A. Rendell, and G. Blix. A
scheme for feature construction and a comparison of empir­
ical methods. In Proc. Twelfth In t l . Joint Conf. on A I ,
1991, 899-704.

958 Machine Learning

