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Abst ract 

Most research in computer vision has been 
directed towards minimalistic approaches, in 
which problems are addressed on how proper­
ties of the environment can be computed from 
as little information as possible. 
Although such approaches may be scientifically 
well motivated they have only resulted in lim­
ited progress towards our understanding of see­
ing systems. Ballard, Bajcsy and others have 
pointed out the importance of vision being an 
active process which is tightly connected to be­
haviors. We support this thought and also pro­
pose that utilizing that the world is rich on in­
formation is essential. 
We develop this idea to show how attention 
and figure-ground segmentation by an active 
observer using multiple cues can be separated 
from analyzing and recognizing what is seen in 
a consistent way. Continuous operation over 
time and early use of three dimensional cues 
are important in this context. We illustrate our 
proposed approach by some experiments on a 
real-time active system. 

1 I n t roduc t i on 
Vision is a sense by which seeing creatures acquire in­
formation about a dynamically changing environment 
and thereby guide many of their behaviors and actions. 
Computer vision research aims at understanding and de­
veloping computer based systems with such capabilities. 
Despite extensive efforts for more than three decades we 
still seem to be very far from such a goal. Although there 
exists ample knowledge of how information about the en­
vironment can be computed from visual cues, we see lit­
tle progress towards what can be called seeing systems. 
Research on active or animate vision [Bajcsy, 1985; Bal­
lard, 1989, 1991] has pointed out that the major reason 
for this is that vision, as we know it from biology, is 

an active process and that traditional computer vision 
approaches take no heed of this fact. 

Ballard [1989, 1991] analyses this discrepancy and its 
consequences. Here we will further Ballard's arguments 
and discuss some additional issues which we believe are 
crucial. We will also report on recent progress towards 
the realization of animate vision systems. Emphasizing 
the strong ties between vision and behaviors Ballard par­
ticularly considers the need for gaze control and what he 
terms "quickly computable features"1. The point that 
we want to stress in this context is that the real world is 
rich on information and that a multitude of such features 
can be computed when needed. We will argue that this 
suggests a paradigm of attentional mechanisms coupled 
to possibly independent mechanisms for deriving scene 
characteristics and information about objects. Notably 
this implies that the environment itself influences what 
should be computed. We will also discuss possible ways 
of performing such computations and describe some il­
lustrating experiments. 

2 The wor ld is i ts own reposi tory 
Minimal information vs. salient characteristics 
Current research in computer vision is largely concerned 
with how information about the world can be derived 
from single cues, like motion, stereo or texture. The 
approaches are generally minimalistic2: problems are 
addressed on how properties of the environment, like 
motion and structure, can be determined from as lit­
tle information as possible. Such considerations may 
be well motivated scientifically and adapt to the stan­
dards in psychophysics. To understand the importance 
of a specific piece of information influences from other 
sources must be eliminated or controlled. Hence, there 
is a wealth of results on e.g. how many points or lines are 
needed to compute scene or object structure from a set 
of image frames. We contend that however important it 
may be to understand such limit cases, it hardly brings 

1He also discusses aspects of memory and learning but 
these items are beyond the scope of the current paper. 

2Ballard [Ballard, 199l] used this term referring to the 
assumed generality of the models. 

UHLIN AND EKLUNDH 27 



us closer to achieving a seeing system. More precisely 
such a system should function in a real environment, 
which inevitably will contain a rich amount of informa­
tion and therefore finding and maintaining a stable per­
ception these features will often be more difficult than 
computing the scene structure from them. 

This is well understood by computer vision re­
searchers, who approach the problem by performing 
grouping operations, including uncertainties and the like. 
However, if this is done on the basis of prespecified fea­
tures, as is customary, the available visual information 
is not used to its advantage. What makes it possible to 
detect an object or observe a feature, and even what con­
stitutes them, depends very much on the situation and 
the surrounding environment. A grey lump of materia 
may be observed as being an object by its color if it rests 
on or moves over a white background. However, if e.g. 
due to the relative displacement or a change of illumina­
tion the background also becomes grey, then this feature 
is no longer appropriate. The optic flow pattern or the 
binocular disparities may on the other hand then be used 
to select out the lump as an "object". The key point is 
that it is the world that determines both what is useful 
for the computations and what constitutes an object. So, 
while the complexity of the real world poses problems for 
some feature detectors, it may well make the job for oth­
ers quite easy. To utilize this, we must be prepared to 
compute a number of different features simultaneously 
and in the particular situation use the ones that stand 
out sufficiently well against their surroundings3. 

It is also important to note that this lump of mate­
ria by standing out from its environment becomes an 
object and thereby gets an identity, whether we have a 
memorized category for it or not. We can hence ascribe 
properties to this entity, based on what we can observe, 
rather than on some model-based features given a pri­
ori. Such considerations are certainly well established 
in psychology and are elaborated e.g. by Gibson [1979], 
but computer vision approaches have hitherto not been 
based on them. 

What to compute? At this time it may be enlighten­
ing to discuss what kind of features are of interest. Many 
of the features traditionally computed and used in ma­
chine vision are such that they can be interpreted geo­
metrically and that they have implications on the three 
dimensional structure of objects. Such features are for 
instance edges and corners, which especially can be used 
to characterize man-made objects. Other approaches us­
ing color to recognize known objects, and cues that di­
rectly estimate three dimensional object shape such as 
stereo and shape-from-X methods, apply in more general 

3It is worth stressing that this is true also for "objects" 
like the ground plane or the sky, as long as there is a way 
of characterizing them. We will use the word "object" in a 
somewhat fuzzy sense to denote any configuration of interest 
in the environment. 

contexts, but these techniques have mainly been used for 
scene reconstruction, or specific tasks like obstacle avoid­
ance, or model-based recognition, and hardly ever yet for 
behavioral vision. 

It is clear that such systems based on specialized fea­
tures can be used only in limited environments (that 
is, almost exactly the ones that they were designed for) 
and efforts to generalize such approaches have not yet 
proven to be successful. Although they may provide the 
most straight forward way to achieve results on scene un­
derstanding today, it is hardly appropriate for a system 
that is to function in a more unpredictable environment. 
Moreover, even if there are different views on the appro­
priateness of the reconstructionist approach (see [Tarr 
and Black, 1994]), it is yet to be shown that it can be 
used by a "seeing system". In particular, it postpones 
the solution of the figure-ground problem to later stages. 

The features utilized by an animate vision system 
must not necessarily be very different even though three 
dimensional features are especially attractive for a fix­
ating system. In general the features used are based 
on well-established physical and geometric knowledge. 
However, a few things are worth noting concerning their 
computation. The first is that, if we have already iden­
tified "something" as being of interest, then we have a 
basis for computing global characteristics of it. This can 
provide a guide to grouping e.g. luminance, shape or mo­
tion features in a very specific way. We can observe that 
an object is elongated or mainly yellow and use this as 
its characteristic. Secondly, a system able to exploit the 
richness of the world must have the capability of com­
puting a large set of features and also to choose between 
them. This puts an emphasis on control aspects and 
on integrated use of multiple cues. We will return to 
these issues later, discussing systems aspects. Finally, 
given that a system has these capabilities, we obtain a 
way of deriving or learning invariant or quasi-invariant 
features from, the world, which complements the more 
narrow approach of using a priori known invariants of­
ten used today. 

Attention and expectations What we have dis­
cussed so far in this section can be regarded as an atten-
tional step, where objects or features pop up from the 
environment by being different from nearby structure. 
Such mechanisms have been considered in computer vi­
sion by e.g. Culhane and Tsotsos [1992], who argue for 
the need for attention to overcome the complexity of­
fered by visual tasks in the real world. Here, we want to 
stress that attention offers a way to utilize what can be 
observed from the world and also a mechanism that tells 
us that we see "something" and at what location this 
"something" is at the moment. We will later return to 
how these computations can be performed. Let us now 
just point out that they depend critically upon the use 
of multiple cues. 

Of course, the process described could be mediated by 
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various expectations even if the saliency of the compu­
tational features nevertheless is essential. Notably there 
are two cases when expectations play a central role. One, 
mentioned by Ballard, is when we have specific knowl­
edge about a particular object, like the color of "my 
own coffee cup". Another case is when we keep track of 
something that we just noticed. The expectation then 
comes from our observations rather than from memory. 
However, in both cases we can do with very simple com­
putations: we can either establish some coarse global 
feature, e.g. if the object has some dominating color, 
texture or shape feature, or adapt our computations to 
finding some quite characteristic local feature that we 
either know since before or just observed. Again, it is 
the situation at hand that tunes our computations, not 
some prespecified agglomeration of a set of bottom-up 
structures. 

3 The systems approach 

As is obvious from our previous discussion a vision sys­
tem capable of providing robust behaviors in a complex 
and dynamically changing environment must be consid­
ered in its entirety. Such systems oriented approaches 
have recently been suggested by various researchers, see 
e.g. [Crowley and Christensen, 1995], but their impact on 
computer vision research is yet limited. Several impor­
tant questions arise in this context. The most central one 
is of course how we model the seeing agent displaying the 
behaviors guided by its vision. This is a very far-reaching 
question that actually touches upon our understanding 
of intelligence as such. We must therefore narrow the 
scope considerably. With today's knowledge we have 
to limit ourselves to discussing a visual observer who is 
able to look at, identify, and to some extent recognize 
objects and structures, and on the basis of that capable 
of reactive behaviors like obstacle avoidance during nav­
igation, and certain limited active tasks, like searching 
for more or less well-specified known features and cate­
gories. However, even in such a limited scenario two ma­
jor questions arise: which algorithms and features should 
be used for acceptable system performance (i.e. for solv­
ing the tasks) and how can the system choose between 
and integrate the different features? 

Feature selection Deciding which features to incor­
porate and if an algorithm for deriving them is good or 
not should mainly be determined at the systems level. 
It is virtually impossible to evaluate how well a single 
algorithm performs in extracting a feature when it is 
studied in isolation. Of course, it is possible to measure 
performance and accuracy in absolute terms, like metric 
reconstruction errors, but the meaning of such measure­
ments in a particular task is not obvious, neither is it 
clear how we compare them for selecting between algo­
rithms or features. Strictly speaking all efforts in trying 
to answer such questions about an algorithm which is 

functional in isolation will be meaningless for judging 
their usefulness in a complete system. However, if there 
exists a system performing certain tasks, the true im­
pact of incorporating a new feature and a change in the 
respective algorithm may be examined. 

When an algorithm is evaluated in terms of overall sys­
tem performance an important problem arises since we 
at the same time are examining how to control the many 
features. The result of such an evaluation will strongly 
depend on the specific system it is being tested in. Dur­
ing system development this will result in a reevaluation 
of algorithms that have previously been examined. A 
formerly useful feature may well prove to have little or 
no effect, and even be harmful to the performance of 
the system, while what was discarded before may come 
in handy later. An open systems design, say, using a 
layered architecture, is therefore necessary. 

Control Next question is how the system should con­
trol its use of all these features. How can it decide that 
this is currently a better descriptor of what it is looking 
at? How does this depend on the expected action of the 
system? These are questions that will go unanswered 
in this paper, but are essential in the continuation of 
the approach outlined here. Individual features can be 
computed in parallel, but conjunctions of features are 
sometimes derived in a sequential step, if they are com­
plex enough. Such interactions between parallel and se­
quential computations are well-known in the literature 
on human attention, and they should therefore hardly 
be unexpected in computer vision systems. 

Continuous operation A final general point to make 
on the systems approach, obvious from the focus on be­
haviors, is that the time aspect is crucial. A seeing sys­
tem naturally functions over time. Processing is, in prin­
ciple, continuous and the system must respond to events 
and changes in the environment as they occur. This 
puts an emphasis on real-time processing that goes be­
yond the mere goal of fast algorithms. The important 
point is rather that the system continuously receives in­
put which it uses to solve certain tasks, that in turn also 
may vary with time. These thoughts have been elab­
orated by other researchers and we will here just note 
that they necessitate experimentation not only with al­
gorithms but also with real systems. 

4 The Visual Front -End 
Current research on early processes in computer vision 
to increasing extent seems to converge on certain ba­
sic principles for early vision which fits well in with our 
previous considerations. Generally speaking most ap­
proaches rely on the computation of directional deriva­
tives of low orders and combinations or functions thereof, 
computations performed at several different scales. The 
manner in which this is done varies: some approaches 
use Gaussian or Gabor filters, others tunable filters of 
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a more general nature, wavelets or more sophisticated 
anisotropic models. It is beyond the scope of this pa­
per to discuss these different techniques in detail, we 
refer the reader to the literature on the topic. How­
ever, we note that such methods in general are indeed 
very appropriate for developing systems of the type we 
are aiming at. By implementing a first layer of retino-
topic processing, a Visual Front-End in the terminology 
as proposed by Koenderink and van Doorn(1987), we ob­
tain a highly efficient implementation at the same time 
as we can base our low level computations on state-of-
the-art techniques. We also get a scalable design, which 
allows the extensions we foresee, without cumbersome 
additions. 

More precisely, by computing a set of low order deriv­
atives at multiple scales in a VFE layer, we obtain out­
put that can be shared by all our subsequent modules 
to derive monocular, binocular and motion cues at later 
stages. Without arguing for or against whether such 
a model provides the most reasonable architecture for a 
computer vision system, we observe that at least it maps 
well onto already existing hardware. Existing pipeline 
and signal processors are well suited for such retino-
topic computations, but less so for the more general and 
less image oriented ensuing computations, which usually 
are performed in coarse grained parallelism. In the end 
and in our general spirit we may want to develop other 
pathways for more direct computations of, say time-to-
collision or certain scene characteristics, but currently 
we favor the VFE structure. The details of the approach 
we have used in our experiments is described elsewhere, 
see e.g. [Garding and Lindeberg, 1995]. 

5 Summary of the basic pr inciples 
Our argument so far, building upon the ideas of Bal­
lard [1991], has been that to obtain a machine based 
seeing system that uses vision to interact with its en­
vironment we should utilize the fact that the world is 
rich on information, rather than minimum information 
approaches. Although the latter provide a theoretical 
foundation they do not address how the information can 
be extracted, neither do they use available information 
fully. Consequences of this argument are that such a 
system should 

• be capable of using and integrating many cues 
• work continuously over time 
• base its decisions and actions on what cues are 

salient at the particular instance and location 
• separate between what attracts the attention to 

something and the analysis of it, as well as keep­
ing track of it. 

These views fit well with what other researchers have 
suggested. Ballard [l99l] in his concluding discussion 
proposes the idea of computing features on demand and 
adaptively. Tsotsos and his co-workers have pin-pointed 

attentional mechanisms as essential also in machine vi­
sion. Moreover, since a system of the type we are dis­
cussing necessarily must be able to control gaze, our 
scheme adapts well to recent theories that recognition 
mainly is view-based, see e.g. [Bultoff and Edelman, 
1992]. Finally, our approach allows early inclusion of 
three dimensional information as favored by Nakayama 
and his co-workers, see e.g. [Nakayama and Silverman, 
1988;Shimojoet al., 1988]. 

We shall now describe an experimental system by 
which we are able to demonstrate some of these ideas, 
which however with current hardware are somewhat dif­
ficult to implement. 

6 An exper imenta l system: the mobi le 
observer 

The design of a fully autonomous mobile observer is a 
major long-term goal of our research. So far fundamen­
tal skills in terms of fixation, target pursuit and tar­
get discrimination, have been implemented. In doing so 
we have followed the philosophy of what has been said 
earlier, both in terms of systems design and real-time 
considerations. At this time we would like to stress that 
since fixation is not itself the final goal, but that it should 
function in cooperation with other parts of a larger sys­
tem. Unlike what is customary in much of other recent 
work, we want processes involved in fixation to provide 
much more than just directing gaze. This system is at 
the moment implemented partly in real-time on an ex­
isting mobile platform, and partly as a post-processing 
stage working on images taken in real-time using the for­
mer processes. 

The system includes the integration of three cues for 
target selection and target discrimination. These are 
used by the moving observer to smoothly pursue mov­
ing or stationary targets binocularly while maintaining 
vergence. Mechanisms for discovering moving targets 
also form integral and vital parts of the system, since 
that provides means of attention, without which clues 
to changing the state of the system do not exist. Hence, 
we have two components, one to maintain attention, and 
another one to find and select new locations to attend 
to. Moreover, these must function in parallel, while oth­
erwise the system would be purely reactive and with­
out choices. We have implemented these two compo­
nents in the form of a pursuit and a motion detection 
mechanism4, thus obtaining what we believe is the most 
basic behavioral level for an active observer. This is 
shown schematically in Figure 1. 

6.1 Attent ion and Smooth Pursuit 
A key feature of the system lies in its ability to smoothly 
pursue an arbitrary target that is described by its loca­
tion, extent and visual appearance. We would like to 

4 Currently, motion provides the only cue to changing at­
tention, but other cues can easily be incorporated. 
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stress here that no a priori knowledge about the target's 
visual appearance, i.e. texture or shape, is built into the 
system, although we indeed leave open that additional 
constraints or knowledge can be included dynamically as 
information becomes available, and similarly that such 
information can be excluded as it becomes obsolete. The 
features that are seen, are assumed by the pursuit mod­
ule to change smoothly. Non smooth changes will trigger 
attentional mechanisms. 

As the basis for this implementation we have chosen 
a coarse to fine correlation scheme similar to the one 
reported in [Pahlavan et al., 1993]. This technique works 
very well when no occlusions are present. We will here 
present an extension handling occlusions as well. 

In order to take care of occluding objects and dis­
tracting things in the background, motion detection is 
integrated to filter out parts of the scene that can be 
parts of the target, namely those that are moving. We 
will see later in the experiments that this is not enough 
in many cases when there are occluding objects that are 
themselves moving, since they will also be detected as 
moving. Disparity, which is an essential component in 
our binocular system can in these situations aid in depth 
discrimination by also providing a clue to where occlud­
ing objects may lie. 

Issues on Iterative Algorithms and "Anytime Vi­
sion" In the motion literature quite a few iterative al­
gorithms have been presented. In a real-time active sys­
tem it is of importance that the modules that control 
the system respond within a given time, although this 
time demand will vary from task to task, and nO general 
statement can be made about a maximum time without 
knowledge of the task and the type of control involved. 
What can be said, though, is that this time constraint 
applies to all steps in the processing, unless the system 
specifically deals with the modules that involve slower 
computations. More specifically, a module that runs in 
real-time and in turn depends on the input from a slower 
module must explicitly deal with the fact that it is go­
ing to receive old data. For instance, many algorithms 
in the motion segmentation literature involve an initial­
ization step to produce an initial segmentation in the 
beginning of a sequence, a step which is many times 
slower than the ensuing updating of the segmentation as 

the sequence evolves. Unless such algorithms explicitly 
deal with the initial delay of "bootstrap", the effective 
real-time of such algorithms in an active vision system is 
that of the bootstrap time and not the consequent higher 
processing rate. 

We believe in the notion that information should be 
made available as soon as possible, so that the system 
can react to the stimuli in time. Even though an early 
reaction may be wrong, it is often better than no reac­
tion at all. Hence, the "bootstrap" should be made over 
time while the system is functioning, and data be made 
available during this phase so that the system always 
has access to current data, even if in the beginning it is 
not of the best quality. In general any part of an active 
real-time system should have access to data whenever it 
is needed and modules involved in the system should be 
designed to provide this. We refer to this as Anytime 
Vision5. 

6.2 System overview 

The system consists of a visual front-end, three feature 
maps, algorithms for feature selection, target localiza­
tion and target memory. This is shown schematically in 
Figure 1, omitting some connections for readability. An 
attention module is provided that currently control the 
choice of moving target and does so by controlling the 
selection of features. Omitted are connections for tuning 
filters based on target characteristics. 

Memory and feature selection The system keeps a 
memory of where it expects the target to be6 and what 
its motion parameters are. To update the memory the 
system selects what features to extract in terms of dis­
parity, target and background motion. The memory will 
update itself by including pixels to, and excluding from, 
the target, and by updating an affine motion model of 
the pursued target. 

Target localization The target is localized by match­
ing the memory contents with the features coming from 
the feature-maps. The feature-maps are tuned depend­
ing on the current expectations about the target to em­
phasize the expectation. 

Feature-maps (cf. Figures 2 and 6) 

• Motion detection involves computation of a back­
ground affine motion model based on normal flow, 
and subsequent residual calculation. 

• Target segmentation involves computation of a 
target affine motion model based on normal flow, 
and subsequent residual calculation. 

5This is a term used in personal communication with Kris-
tian Simsarian and we make no claim to be originators. 

6 Note that this also includes its position in depth using 
disparity information 
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• Disparity segmentation involves disparity calcu­
lation and an equal depth estimation to segment 
back/target/front. 

7 Exper iments and Results 
In this section we will show how the system performance. 
During the experiments the images used were recorded 
during real-time pursuit performed by the already exist­
ing pursuit mechanism on the Head-Eye system. There­
fore the experiments are performed on quite realistic 
data since all the noise due to inaccurate control of the 
head, motion blur, out of focus blur and vergence er­
rors are present. All in all the image sequences are cap­
tured in 25 Hz, during camera motion which is purely 
image driven with no human interference (except that 
there are humans walking in front of the cameras, being 
pursued). The experiments were carried out with the 
head-eye-system constructed by Pahlavan. This head-
eye-system has now been mounted on a mobile platform, 
see Figure 3. The real-time computations performed in 
the experiments are described in detail in [Uhlin et al., 
1995]. 

7.1 An example wi th real-time pursuit 
The experiment we use to illustrate our principles runs 
as follows. The system, which is moving about, detects 
that some target is independently moving in the scene. 
It then directs its (binocular) gaze towards the object. 
Observe that what constitutes the object is defined by 
the motion. The target hence has an identity and it is 
possible also to locate it in three-space by selecting the 
corresponding binocular disparities. The importance of 
this is illustrated when occlusions occur. 

To show also how the system performs in the presence 
of other moving targets, we have performed experiments 

when another object not only moves in the scene, but 
also partially occludes the pursued target as it moves 
across the scene, see Figure 4. 

When an occluding object is present, and it also is 
moving, it will be included by motion detection as a 
possible target location. If this object in some way dom­
inates, it may well take over the attention of the system 
if it relies only on motion, To show that, we have re­
moved the disparity detection of areas in front of the 
target with the result shown in Figure 5. The attention 
is shifted to the person moving in front, although the at­
tention was initially on the person moving behind. Even 
though this may be an unwanted behavior of the system, 
it anyway shows that the system can stably change its 
attention. 

To conclude, we see that without the disparity cue, 
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Figure 5: Target pixels as extracted by the system from the 
sequence shown in Figure 4, but without the disparity cue. 
The attention shifts to the other moving person. Every 12thl 

frame is shown here. 

the system is easily distracted by moving occluding tar­
gets, while with the disparity cue, successful pursuit is 
achieved even in the presence of such distractors. 

The feature-maps that are used by the system to de­
termine where and how the target is moving is shown in 
Figure 6. 

Figure 6: Motion detection returns areas that possibly belong 
to a moving target. Shown in the top row are the areas which 
the motion detection marks as possible target pixels. Target 
segmentation returns areas that are believed to belong to the 
pursued target. Shown in the middle are the areas which are 
consitent with the target image velocity model. Disparity 
segmentation returns areas belong to areas, "behind", "on", 
and "in front" of the target. Shown in the bottom row are 
the areas which the disparity segmentation marks as lying in 
front of the target. These are the masks used to produce the 
final target masks. 

The change in the parameters of the target affine mo­
tion model is shown in Figure 4 as a rectangle which is al­
lowed to distort accordingly. The small rectangle shows 
a fixed point on the background as calculated during 

background cancellation in motion detection. The white 
cross shows the result of coarse-to-fine correlation when 
performed with the target masks produced by the sys­
tem. The large black rectangle shows a window that is 
automatically placed around the centroid of the target 
pixels which are flagged as belonging to the target in 
each frame. Only pixels inside this rectangle are kept, to 
the next frame, experiments. 

8 Conclusion 
We have argued that to develop machine based seeing 
systems one needs to utilize that the world is rich on 
information rather than relying on common minimum 
information. We have from this viewpoint deduced a 
number of desirable properties such systems should have 
and shown that these agree with other current trends in 
computer vision. One particular consequence is that the 
systems aspects become essential. We have also experi­
mentally shown some examples of the implications of our 
suggested approach. 
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