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Abs t rac t 

We study a simple, general framework for 
search called bootstrap search, which is defined 
as global search using only a local search pro­
cedure along with some memory for learning 
intermediate subgoals. We present a simple al­
gorithm for bootstrap search, and provide some 
initial theory on its performance. In our theo­
retical analysis, we develop a random digraph 
problem model and use it to make some perfor­
mance predictions and comparisons. We also 
use it to provide some techniques for approxi­
mating the optimal resource bound on the local 
search to achieve the best global search. We 
validate our theoretical results with empirical 
demonstration on the 15-puzzle. We show how 
to reduce the cost of a global search by 2 orders 
of magnitude using bootstrap search. We also 
demonstrate a natural but not widely recog­
nized connection between search costs and the 
lognormal distribution. 

1 I n t r oduc t i on 

We study a simple, general framework for search called 
bootstrap search, which is defined as global search using 
only local search along with some memory for learning 
intermediate states as subgoals. Although it has not pre­
viously been studied in detail, this simple search frame-
work with subgoal caching is fundamental to a variety 
of learning processes at an abstract level. For example, 
in terms of robot path planning [Latombe, 1991], it is 
a two-level planning scheme with subgoals being land­
marks of either the workspace or configuration space. 
In terms of concept learning [Thornton, 1992], it cor­
responds to global concept approximation using only a 
locally-good extrapolator with subgoals as positive ex­
amples. In terms of case-based planning [Kolodner, 
1993], it is having memory for cases and a local search for 
plan modifications and reuse. In terms of problem solv­
ing, the framework is simply to reduce new problems to 
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previously solved ones using an existing resource-limited 
problem solver. 

In this paper, we present a bootstrap search algorithm, 
and develop some theory on its performance. Our pre­
sentation is in the context of problem solving. More con­
cretely, we use the widely-studied 15-puzzle [Barr and 
Feigenbaurn, 1981], the tile-sliding puzzle with 15 tiles 
on a 4 by 4 tray, as a motivating example. Thus, given 
the availability of a local search procedure (e.g., a search 
algorithm with some maximum time cutoff), we aim to 
study some ways of bootstrapping it into a global search 
using the memory of previously solved problems. Specif­
ically, we characterize the effectiveness of the resulting 
global search and compare the relative capabilities. Fur­
ther, if the local search is parameterized by some re­
source bound, we also provide a way of approximating 
the optimum resource bound so that an optimal local 
search may be used to yield the best global search. 

Our work is similar to adaptive path planning [Chen, 
1995; 1992], which studies the framework of improving 
an existing global path planner using a local path plan­
ner augmented with experience. The difference is that 
bootstrap search does not assume the availability of a 
pre-existing global searcher, which may be difficult to 
code or impractical to run. Hence, bootstrap search can 
be more widely applicable, although it will require more 
training in general to compensate for the lack of a teacher 
to provide solutions when local search fails. 

Our work is superfacially related to hierarchical Q-
learning [Kaelbling, 1993] in that we both use a land­
mark network; however, our emphasis is on deciding 
what goals to remember as subgoals rather than which 
local actions to take. Our work is also related to the 
use of abstraction and macro-operators [Korf, 1985b], 
which can be thought of as local methods. However, our 
emphasis is not on learning new macro-operators, but 
on improving the use of existing ones through new sub-
goals. In this respect, our work is similar to Stepping-
Stone [Ruby and Kibler, 1989], which improves problem 
solving by learning new subgoal sequences. However, as 
in adaptive path planning, SteppingStone also relies on 
the availability of a global planner (brute-force search) to 
derive new subgoal sequences for a local planner (means-
ends analysis) to follow. Moreover, SteppingStone uses 
general subgoals that represent subspaces of states. In 
contrast, we restrict our subgoals to specific states to 
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gain simplicity. This simplicity allows us to develop a 
more rigorous understanding of the learning processes 
within the framework, and hopefully will provide further 
insight into others. Nevertheless, using specified states 
does have a more acute scalability problem because of 
the potentially large number of subgoals required. 

2 A l g o r i t h m 
The basic assumption in bootstrap search is that there 
is an efficient, though only locally effective search pro-
cedure, local, available that can transform (reduce) any 
state (problem) u to another v if the pair is 'near' by 
some metric. A greedy method is often sufficient to im­
plement local. A problem v is directly solvable by local if 
v can be reduced to a goal state. To 'bootstrap' its global 
effectiveness, local is allowed to remember in memory U 
past problems that it had solved. These memory entries 
can be thought of as trail-markers in that each marker 
can be traced back to a goal state through calls of local. 
Of course, the more effective local is, the less bootstrap­
ping it needs. The main issue of bootstrap search is how 
to selectively remember past solved problems so that fu­
ture problems can still be efficiently solved. 

To illustrate, consider the two simple but infeasible 
algorithms in Figure 1: the first one excludes the boxed 
fragment, and the second one includes it. We call the 
first .4(0), and the second .4(—1). In the algorithms, 
L is a procedure based on local augmented with mem­
ory U. Upon input problem v, C goes through U in some 
order, and returns the first solved problem w to which 
v can be reduced via local, if w exists; otherwise null 
is returned. To keep track of the solution paths, a back 
pointer source(v) for each trail-marker v is maintained. 

In .4(0), the strategy is to store every solved problem 
in the past, excluding repetition. Obviously, this strat­
egy will lead to memory explosion, let alone the utility 
problem [Minton, 1988] of eventual slowdown. Thus, one 
must stop the training of A(0) eventually and hope that 
it has received sufficient training. To curb the memory 
growth, A(—1) requires that the newly solved problem 
v contribute to the problem solving capability of cur­
rent L. Given a problem x, let R(x) denote the set of 
problems reducible to x via local; for a set of problems 
X, let R(X) denote the union of R(x) over all x in A'. 
Then A(—1) requires that R(v) contain problems not 
in R(U). Although this requirement will decrease the 
redundancy within U, it nevertheless cannot be imple­
mented in practice. Hence, we can only use A ( - l ) for 

theoretical comparisons. 
We can be more sophisticated in our learning by aug­

menting U with a working set of trail-markers W. We 
can selectively remember useful markers by storing tem­
porary markers in W and promoting them into perma­
nent storage U only when they become useful. In Fig­
ure 2, we present A(m), the algorithm parameterized by 
m, the size of W, using this scheme. The boxed state­
ment does not affect the problem solving capability of £ 
but should be included when solution quality is an issue. 

In A(m), C checks first through U and then through 
W for the first solved problem w to which the new prob­
lem v can be reduced via local. If w; exists, it is returned; 
otherwise, null is returned. Thus, if w exists, v is solv­
able by C and is inserted into W. Learning occurs when 
w E W, i.e., when v E R(W) \ R(U). In this case, w is 
'proven' useful and promoted into U. There is a forget­
ting process dictated by the finiteness of m, which de­
termines the amount of reservoir for storing potentially 
useful entries. Because v has to be reducible to some 
current subgoal before it can be stored, the network of 
trail-markers is always connected. However, the training 
time required may be more than that of the alternative: 
Store new problems as potential subgoals even though 
they may not be currently solvable. This alternative, 
though, does have its problem of maintaining potentially 
disconnected network of subgoals. 

In L's search through U and W, there may well 
be additional heuristics available for ordering the trail-
markers for a potential match. Also, search time may 
be reduced by calling local only when the problem states 
are deemed sufficiently close by some heuristic measure. 
Further, portions of U may be skipped to foster more 
promotions from W and hence faster learning. However, 
to keep the algorithm simple and unbiased so that we 
may understand it more thoroughly, we employ no addi­
tional heuristics. We implement U with an unbounded 
first-in-first-access list and W with a rotating last-in-
first-access list of size m. The stipulation on U allows us 
to derive the theoretical predictions later. 

3 A Path Planning Example 
Before applying our algorithm to the 15-puzzle, we first 
illustrate our algorithm with a simple robot path plan-
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ning example. Consider a point robot operating in a 
4-room workcell as shown in Figure 3a. The workcell 
is discretized at a resolution of 100 x 100; the center of 
the dividers is at (0,0); the lengths of both dividers are 
80; and the initial robot 'home' position is at (10,10). 
Suppose that the only path planner available is local, 
which implements the simple 'go-straight' procedure so 
that it will succeed if and only if its two given points 
(starting and ending robot positions) are visible from 
each other. Using local, which is obviously not complete 
in this workcell, the robot is to go through a sequence 
of goal positions drawn uniformly at random. Thus, we 
need to increase the effectiveness of local. 

Note that in adaptive path planning [Chen, 1995; 
1992], we have the luxury of having a global searcher 
to provide a solution whenever the current network of 
subgoals is inadequate to produce one. In contrast, we 
do not have such a teacher in bootstrap search. Thus, we 
need to bootstrap ourselves by learning to achieve easy 
goals first and use these easy goals to achieve harder 
goals. Again, the main issue is which goals achieved 
should be remembered. We should also note that find­
ing a path from the current robot position s to the goal 
position t is equivalent to finding a path from 'home' 
to the goal, because s is known to be connectable to 
'home' through the current network of subgoals. Hence, 
we can view the path finding problem in the problem-
reduction framework by identifying the 'home' position 
as the goal state, and the goal position as the problem 
state. Further, we may use whatever network learned to 
accomplish the task of connecting two arbitrary points 
by connecting them both to 'home' first. Thus, different 
goal states may be included in the problem-reduction 
framework by reducing the existing subgoals to the new 
goal state. 

Using our algorithm, it is clearly possible to bootstrap 
local to total completeness because the workcell is con­
nected under local. The deeper questions are how much 
training time and memory will be required. Shown in 
Figure 3b is the graph of the trail-markers learned by 
a random run of .4(0) until it becomes complete. Al­
though in general we cannot know when completeness is 
reached, we can in this case by testing whether each of 
the four corners: .{(1,1), (-1,1), ( - 1 , -1), (1,-1)}, are 
visible from a trail-marker. The figure shows that .4(0) 
required 21 markers, even at the benefit of knowing the 
optimal stopping time. In contrast, Figure 3c shows the 
sparsity of the graph learned by a random run of A(1). 
The number of markers is only one more than the theo-
retical minimum of 4. This 4-fold reduction in memory 
requirement is obtained at a price, though, of a 5-fold 
increase in training time: from 29 goals for .4(0) to 156 
goals for A(l). 

To study the algorithm more, we run A(m) 100 times 
each, for m = 0,1,2,4,8,16. We also consider different 
environment complexities by varying the lengths of the 
workcell dividers d: From d — 80 both, we decrease them 
both to d = 50, and increase them both to d = 90. The 
resulting average training time to completeness T and 
average size of memory at that time S are plotted in 
Figure 4. Clearly, for m > 0, the fast drop of T as m 

increases indicates that having sufficiently large reser­
voir of working memory (e.g., m > 8) is important in 
reducing the training time, but having more than the 
threshold will not yield much further reduction. More­
over, the lack of variation of S as m increases indicates 
that the size of working memory has little effect on the 
size of the final memory learned. 

So far there are no surprises. However, as we com­
pare the performance curves of A for different environ­
ments, we see an interesting phenomenon: A can ac­
tually require more training time in a seemingly eas­
ier environment. From the plot of T(m,d), we see that 
T(0,50) < T(0,80) < T(0,90), confirming the intuition 
that the shorter the dividers, the easier the environment 
is to learn. However, for m > 0, the plot actually shows 
on the contrary that T(m, 80) < T(m, 90) < T(m,50), 
suggesting that having local more powerful (wider doors 
implying more local successes) do not necessarily accel­
erate learning, but in fact can hamper learning. The 
reason for this behavior is due to the greedy nature of A 
in minimizing 5. The algorithm will promote a working 
marker to permanent storage only when it demonstrates 
usefulness. Therefore, when operating in an easy envi­
ronment with d — 50, the algorithm can initially learn 
very quickly markers that will cover most of the workcell, 
leaving only a small region that is now unfortunately dif­
ficult to learn because goals in that small region will be 
needed to promote any working marker that is visible 
from it. For d = 80, the chance of such initial 'over-
learning' is smaller because the doors are narrower. For 
d = 90, the chance of over-learning is even smaller; but 
because the doors are now much narrower, learning is 
significantly slowed. Therefore, as we increase the power 
of local (doorways widen), we will see the increase of 
both the chance of learning and the interplaying chance 
of over-learning. 
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4 Theo ry 
In this section, we make some precise and strong state­
ments about the performance of our algorithm through 
mathematical analysis; details of the proofs are provided 
in the appendix. We first give a sharp bound on the 
performance of A(0) in Theorem 1 by showing that the 
'average' failure probability of C using its first k trail-
markers decreases exponentially in k. Next, using .4(0) 
as a reference, we show that the performance of .4(1) 
is better than that of A ( - l ) , which is better than that 
of .4(0). The comparison is based on the 'average' fail­
ure probability (or 'average utility' in reverse order) of 
C using the first k markers of each algorithm for each 
k. Finally, we present an upper bound on the 'average' 
search cost of A(m) for all m in Theorem 3. From this 
theorem, a technique for finding the best resource bound 
c on local(c) is developed in Section 5. 

As in the framework of PAC-learning [Natarajan, 
1991], we assume that the problems are randomly drawn 
from a fixed distribution — in fact, we shall assume a 
uniform distribution for simplicity. To facilitate our dis­
cussion, we use subscript n on a program variable to 
denote its value at the n th loop, and parameter m to 
indicate its correspondence to A(m). Additionally, for 
ib > 0, let uk be the kth entry to be inserted into mem­
ory U. Thus, R(Un{m)) denotes the set of problems re­
ducible to any of the previously solved and stored prob­
lems in U after A(m) is trained with n problems. The 
following random variables (with parameter m omitted 
for notational simplicity) are important in characterizing 
the learning process. 

Definition 1 Let local(c) be a local search procedure 
with maximum search cost c. A random uniform digraph 
of problems with edge probability function F(c) is a set 
of uniformly distributed problems in which every problem 

using local(c) is independently solvable and reducible to 
every other problem with probability F(c). 

Thus, the probability that local will yield a solu­
tion with search cost no greater than c is F(c). 
Theorem 1 The average failure probabilities of A(0) 
when applied on a random uniform digraph of problems 
of size N decreases almost geometrically in that for all k, 

With the performance of .4(0) as a reference, the fol­
lowing theorem shows that the utility of memory U(l) is 
higher than that of U(-1), which is in turn higher than 
that of U(0). In other words, .4(1) is better than A ( - l ) 
which is better than .4(0) in that A(1) will tend to re-
member a more 'compact' set of intermediate solutions 
than A ( - l ) , similarly for .4(0). 
Theorem 2 The average failure probabilities of A{\), 
A(0) and A(—1) when applied on a random uniform di­
graph of problems satisfy 

(2) 
for all k. Consequently, the average failure probabilities 
of the first k memory entries of the algorithms satisfy 

(3) 
Although the preceding theorem is a strong state­

ment about the relative performance of A(1), A(0), and 
A ( - l ) , nothing similar is known about A(m) for m 2. 
We conjecture that y is also better than 
A(0) in that . The following theo­
rem, however, does address the search cost of A(m) for 
general m. 
Theorem 3 For arbitrary m, suppose that we apply 
A(m) with local(c) on a random uniform digraph of prob­
lems, and that local(c) has conditional expected search 
cost upon success. Then the expected search cost of 
A(m) per problem is 

5 App l i ca t ion to the 15-Puzzle 
To demonstrate, we apply our algorithm and theory to 
the 15-puzzle. Here, the object is to be able to solve 
all 16!/2 solvable configurations, though not necessarily 
in the shortest number of moves. There are of course 
many different ways of solving the puzzle [Korf, 1985b; 
Poiitowski, 1986; Ratner and Pohl, 1986; Ruby and Ki-
bler, 1989]. Since bootstrap search is a weak method, we 
do not expect it to perform better than other methods 
that take advantage of additional knowledge. Rather, we 
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use the puzzle to demonstrate the generic applicability 
of bootstrap search when nothing else is available. 

Thus, suppose that we have available only a subrou­
tine local(c), which implements iterative-deepening with 
Manhatten distance heuristic [Korf, 1985a] and maxi­
mum search cost c, measuring the number of nodes gen­
erated. We ask the question, "Is it possible to bootstrap 
local(c) (with unlimited amount of training) so that the 
average search cost is less than that of simply applying 
local ?" We also ask, "Is it possible to only bootstrap 
local(c) to a certain degree of capability and back it up 
with local , so that the average total search cost is 
less than that of simply applying local ?" As we shall 
see, the answer to both questions is yes with roughly two 
orders of magnitude improvement. However, c must be 
sufficiently large for both cases, and cannot be too large 
(depending on the desired capability) for the second case. 
To reach this conclusion, we first need to justify the ran­
dom digraph model and study F(c). 

Obviously, the digraph of the solvable states of the 15-
puzzle induced by local(c) is not random. However, the 
number of states N = 161/2 is extremely large and the 
digraph is almost regular. Hence, it is plausible to model 
the digraph of the 15-puzzle by the random digraph with 
F(c) being the fraction of states solvable by local(c). To 
study this fraction, we apply local(109) to 10000 ran­
domly generated solvable states, and record the fraction 
of successes with search cost less than or equal to c, 
against case increases to 109. Since brute-force search 
costs tend to be exponential, we use log scale on c. We 
plot log c against the fraction of success under local(c) 
to obtain the cumulative distribution function and the 

is the Normal probability function. 
Having approximated F(c), we next describe our boot­

strap search experiment and verify our theoretical pre-
dictions before answering the questions posed in the be­
ginning of this section. For each x = 5,6,7,8, we com­
pare .4(1) and .4(20) by running them on 10000 random 

problems. For reference, we also run .4(0), but with a 
pre-chosen bound b on the memory storage: b = 20 for 
both x = 7,8; 6 = 50 for x = 6; 6 = 200 for x = 5. 
These bounds are chosen so that storage requirements 
are comparable to that of .4(1) and A(20). For each x, 
we denote the data corresponding to .4(0), .4(1), .4(20) 
as type (0,x), (l,x), (20,x), respectively. For all three 
algorithms, we use the last 1000 random problems to 
measure their properties at the end of the 9000 training 
problems. 

One property is the utility of the permanent trail-
markers learned. We tabulate the number of problems 
that require k memory accesses, and estimate A(k) by the 
fraction of problems unsolvable with the first k markers. 
To allow a closer look at the failure probabilities for large 
k, we plot the negative log of the failure frequencies in 
Figure 6, with reference line k log(l — P(x)) anticipated 
by Theorem 1. For each algorithm, the data for k up 
to the size of the permanent memory is plotted. Several 
observations can be made from this figure. First, the ref­
erence lines do not approximate the (0, x) data very well, 
but do support all data from below. The bad approxima­
tion may be explained by the fact that the state space of 
the 15-puzzle is really not a random graph, but only an 
approximately regular graph. However, the appearance 
of the reference lines supporting the data from below 
provide evidence that the algorithms do perform more 
successfully than predicted under the idealized random-
graph model. Another observation is that as x decreases, 
.4(1) becomes less trained than A(20). Simultaneously, 
the relative size of U(1) to that of U(20) also decreases, 
as indicated by the largest k attained for each data set. 
Obviously, as the power of local decreases (x decreases), 
the more working markers is needed for faster bootstrap­
ping. With just one working marker, A(1) cannot learn 
as quickly as .4(20) with the same number of training 
problems. Finally, we can clearly see the higher memory 
utility of A(1) compared to that of A(0), as predicted by 
Theorem 2. The data of type (l,x) is generally higher 
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Figure 7: Cost ratios of A(m) backed up by local(oo) to 
local(oo) alone. 

than that of type (0,x). Although we do not see such 
generality between data of types (1, x) and (20, x), we do 
also see that data of type (20, x) is generally higher than 
that of type of (0, x). These data support our conjecture 
that ,(0) for arbitrary m. 

Finally, we measure the average search cost of each 
algorithm backed up by local and compare that with 
the theoretical predictions of Theorem 3. By straight-
forward computation, we have 

for the ratio of the average search cost of A(m) backed 
up by local to that of loca la lone . We plot the 
theoretical upper bound for a = 0.1,0.01,0.001,0, and 
the observed data points in Figure 7. The data points 
with observed failure probability a > 0 are listed in the 
adjacent table. Careful checking shows that the observed 
data points are indeed consistently lower than the pre­
dicted upper bound. Taking the failure probabilities into 
consideration, we see that A(20) with local(106) is the 
best of the 12 algorithms compared, yielding the lowest 
search cost ratio of 0.0159. 

Now suppose that the upper bounds are indeed true. 
Then from H(x, 0), we see that after A(m) becomes fully 
trained (i.e., without the need of local as a backup), 
it can search with average cost less than that of local 
as long as x > 3, or c > 1000. However, from H(x, a) for 
a > 0, we see that if A(m) is not fully trained, then the 
range of x for which A(m) (with local as a backup) 
can search with average cost less than of local(oo) alone 
necessarily has an upper bound. For example, if a = 
0.1, then x must be greater than 3.8 and less than 8.2. 
This 'over-learning' phenomenon of powerful local search 
becoming detrimental can be explained: If a > 0, then 
there may be problems more difficult than A(m) can 
handle; in this case, fruitless search will be incurred by 
A(m), causing local alone to be better. 

6 Conclusion 
We have presented an algorithm for bootstrap search, 
and provided some initial theory on their performance. 
Our theoretical analysis is based on a problem model of a 
random digraph. Using this model, we have made some 
strong performance predictions and comparisons of the 
algorithm. Further, we have illustrated some techniques 
for locating the optimal 'power' of the local search to be 
bootstrapped so as to yield the best global search. We 
have empirically evaluated our algorithm by applying it 
to both the 15-puzzle and a simple robot path planning 
problem. In both domains, we have 1) explained the 
observed performance behavior in terms of the theory 
developed; 2) explored the importance of having suffi­
ciently large set of working trail-markers; and 3) identi­
fied a common detrimental phenomenon of over-learning 
when local search becomes too powerful. Incidentally, we 
have also contributed some new results on solving the 15-
puzzle. In particular, we have made a natural but not 
widely recognized connection between search costs and 
the lognormal distribution. 

Our work is by no means complete. Theoretically, we 
have not addressed the issue of training time, nor the 
issue of solution quality. Within the random digraph 
model, there are conjectures yet to be settled. Out­
side the random digraph model, there are plenty of other 
problem models that may yield further insights into the 
area of bootstrap search. In particular, the path plan­
ning problem addressed in this paper should provide mo­
tivation for a different model suitable for analysis. There 
may also be some other bootstrapping algorithms wait­
ing to be discovered. With its broad applicability in 
search and learning, further research is definitely needed. 
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