
O n B o o t s t r a p p i n g L o c a l S e a r c h w i t h T r a i l - M a r k e r s

Pang C. Chen*
Sandia National Laboratories

Albuquerque, NM 87185 USA
pchen@sandia.gov

Abs t rac t

We study a simple, general framework for
search called bootstrap search, which is defined
as global search using only a local search pro­
cedure along with some memory for learning
intermediate subgoals. We present a simple al­
gorithm for bootstrap search, and provide some
initial theory on its performance. In our theo­
retical analysis, we develop a random digraph
problem model and use it to make some perfor­
mance predictions and comparisons. We also
use it to provide some techniques for approxi­
mating the optimal resource bound on the local
search to achieve the best global search. We
validate our theoretical results with empirical
demonstration on the 15-puzzle. We show how
to reduce the cost of a global search by 2 orders
of magnitude using bootstrap search. We also
demonstrate a natural but not widely recog­
nized connection between search costs and the
lognormal distribution.

1 I n t r oduc t i on

We study a simple, general framework for search called
bootstrap search, which is defined as global search using
only local search along with some memory for learning
intermediate states as subgoals. Although it has not pre­
viously been studied in detail, this simple search frame-
work with subgoal caching is fundamental to a variety
of learning processes at an abstract level. For example,
in terms of robot path planning [Latombe, 1991], it is
a two-level planning scheme with subgoals being land­
marks of either the workspace or configuration space.
In terms of concept learning [Thornton, 1992], it cor­
responds to global concept approximation using only a
locally-good extrapolator with subgoals as positive ex­
amples. In terms of case-based planning [Kolodner,
1993], it is having memory for cases and a local search for
plan modifications and reuse. In terms of problem solv­
ing, the framework is simply to reduce new problems to

*This work has been performed at Sandia National Lab­
oratories and supported by the U.S. Department of Energy
under Contract DE-AC04-94AL85000.

previously solved ones using an existing resource-limited
problem solver.

In this paper, we present a bootstrap search algorithm,
and develop some theory on its performance. Our pre­
sentation is in the context of problem solving. More con­
cretely, we use the widely-studied 15-puzzle [Barr and
Feigenbaurn, 1981], the tile-sliding puzzle with 15 tiles
on a 4 by 4 tray, as a motivating example. Thus, given
the availability of a local search procedure (e.g., a search
algorithm with some maximum time cutoff), we aim to
study some ways of bootstrapping it into a global search
using the memory of previously solved problems. Specif­
ically, we characterize the effectiveness of the resulting
global search and compare the relative capabilities. Fur­
ther, if the local search is parameterized by some re­
source bound, we also provide a way of approximating
the optimum resource bound so that an optimal local
search may be used to yield the best global search.

Our work is similar to adaptive path planning [Chen,
1995; 1992], which studies the framework of improving
an existing global path planner using a local path plan­
ner augmented with experience. The difference is that
bootstrap search does not assume the availability of a
pre-existing global searcher, which may be difficult to
code or impractical to run. Hence, bootstrap search can
be more widely applicable, although it will require more
training in general to compensate for the lack of a teacher
to provide solutions when local search fails.

Our work is superfacially related to hierarchical Q-
learning [Kaelbling, 1993] in that we both use a land­
mark network; however, our emphasis is on deciding
what goals to remember as subgoals rather than which
local actions to take. Our work is also related to the
use of abstraction and macro-operators [Korf, 1985b],
which can be thought of as local methods. However, our
emphasis is not on learning new macro-operators, but
on improving the use of existing ones through new sub-
goals. In this respect, our work is similar to Stepping-
Stone [Ruby and Kibler, 1989], which improves problem
solving by learning new subgoal sequences. However, as
in adaptive path planning, SteppingStone also relies on
the availability of a global planner (brute-force search) to
derive new subgoal sequences for a local planner (means-
ends analysis) to follow. Moreover, SteppingStone uses
general subgoals that represent subspaces of states. In
contrast, we restrict our subgoals to specific states to

252 AUTOMATED REASONING

gain simplicity. This simplicity allows us to develop a
more rigorous understanding of the learning processes
within the framework, and hopefully will provide further
insight into others. Nevertheless, using specified states
does have a more acute scalability problem because of
the potentially large number of subgoals required.

2 A l g o r i t h m
The basic assumption in bootstrap search is that there
is an efficient, though only locally effective search pro-
cedure, local, available that can transform (reduce) any
state (problem) u to another v if the pair is 'near' by
some metric. A greedy method is often sufficient to im­
plement local. A problem v is directly solvable by local if
v can be reduced to a goal state. To 'bootstrap' its global
effectiveness, local is allowed to remember in memory U
past problems that it had solved. These memory entries
can be thought of as trail-markers in that each marker
can be traced back to a goal state through calls of local.
Of course, the more effective local is, the less bootstrap­
ping it needs. The main issue of bootstrap search is how
to selectively remember past solved problems so that fu­
ture problems can still be efficiently solved.

To illustrate, consider the two simple but infeasible
algorithms in Figure 1: the first one excludes the boxed
fragment, and the second one includes it. We call the
first .4(0), and the second .4(—1). In the algorithms,
L is a procedure based on local augmented with mem­
ory U. Upon input problem v, C goes through U in some
order, and returns the first solved problem w to which
v can be reduced via local, if w exists; otherwise null
is returned. To keep track of the solution paths, a back
pointer source(v) for each trail-marker v is maintained.

In .4(0), the strategy is to store every solved problem
in the past, excluding repetition. Obviously, this strat­
egy will lead to memory explosion, let alone the utility
problem [Minton, 1988] of eventual slowdown. Thus, one
must stop the training of A(0) eventually and hope that
it has received sufficient training. To curb the memory
growth, A(—1) requires that the newly solved problem
v contribute to the problem solving capability of cur­
rent L. Given a problem x, let R(x) denote the set of
problems reducible to x via local; for a set of problems
X, let R(X) denote the union of R(x) over all x in A'.
Then A(—1) requires that R(v) contain problems not
in R(U). Although this requirement will decrease the
redundancy within U, it nevertheless cannot be imple­
mented in practice. Hence, we can only use A (- l) for

theoretical comparisons.
We can be more sophisticated in our learning by aug­

menting U with a working set of trail-markers W. We
can selectively remember useful markers by storing tem­
porary markers in W and promoting them into perma­
nent storage U only when they become useful. In Fig­
ure 2, we present A(m), the algorithm parameterized by
m, the size of W, using this scheme. The boxed state­
ment does not affect the problem solving capability of £
but should be included when solution quality is an issue.

In A(m), C checks first through U and then through
W for the first solved problem w to which the new prob­
lem v can be reduced via local. If w; exists, it is returned;
otherwise, null is returned. Thus, if w exists, v is solv­
able by C and is inserted into W. Learning occurs when
w E W, i.e., when v E R(W) \ R(U). In this case, w is
'proven' useful and promoted into U. There is a forget­
ting process dictated by the finiteness of m, which de­
termines the amount of reservoir for storing potentially
useful entries. Because v has to be reducible to some
current subgoal before it can be stored, the network of
trail-markers is always connected. However, the training
time required may be more than that of the alternative:
Store new problems as potential subgoals even though
they may not be currently solvable. This alternative,
though, does have its problem of maintaining potentially
disconnected network of subgoals.

In L's search through U and W, there may well
be additional heuristics available for ordering the trail-
markers for a potential match. Also, search time may
be reduced by calling local only when the problem states
are deemed sufficiently close by some heuristic measure.
Further, portions of U may be skipped to foster more
promotions from W and hence faster learning. However,
to keep the algorithm simple and unbiased so that we
may understand it more thoroughly, we employ no addi­
tional heuristics. We implement U with an unbounded
first-in-first-access list and W with a rotating last-in-
first-access list of size m. The stipulation on U allows us
to derive the theoretical predictions later.

3 A Path Planning Example
Before applying our algorithm to the 15-puzzle, we first
illustrate our algorithm with a simple robot path plan-

CHEN 253

ning example. Consider a point robot operating in a
4-room workcell as shown in Figure 3a. The workcell
is discretized at a resolution of 100 x 100; the center of
the dividers is at (0,0); the lengths of both dividers are
80; and the initial robot 'home' position is at (10,10).
Suppose that the only path planner available is local,
which implements the simple 'go-straight' procedure so
that it will succeed if and only if its two given points
(starting and ending robot positions) are visible from
each other. Using local, which is obviously not complete
in this workcell, the robot is to go through a sequence
of goal positions drawn uniformly at random. Thus, we
need to increase the effectiveness of local.

Note that in adaptive path planning [Chen, 1995;
1992], we have the luxury of having a global searcher
to provide a solution whenever the current network of
subgoals is inadequate to produce one. In contrast, we
do not have such a teacher in bootstrap search. Thus, we
need to bootstrap ourselves by learning to achieve easy
goals first and use these easy goals to achieve harder
goals. Again, the main issue is which goals achieved
should be remembered. We should also note that find­
ing a path from the current robot position s to the goal
position t is equivalent to finding a path from 'home'
to the goal, because s is known to be connectable to
'home' through the current network of subgoals. Hence,
we can view the path finding problem in the problem-
reduction framework by identifying the 'home' position
as the goal state, and the goal position as the problem
state. Further, we may use whatever network learned to
accomplish the task of connecting two arbitrary points
by connecting them both to 'home' first. Thus, different
goal states may be included in the problem-reduction
framework by reducing the existing subgoals to the new
goal state.

Using our algorithm, it is clearly possible to bootstrap
local to total completeness because the workcell is con­
nected under local. The deeper questions are how much
training time and memory will be required. Shown in
Figure 3b is the graph of the trail-markers learned by
a random run of .4(0) until it becomes complete. Al­
though in general we cannot know when completeness is
reached, we can in this case by testing whether each of
the four corners: .{(1,1), (-1,1), (- 1 , -1), (1,-1)}, are
visible from a trail-marker. The figure shows that .4(0)
required 21 markers, even at the benefit of knowing the
optimal stopping time. In contrast, Figure 3c shows the
sparsity of the graph learned by a random run of A(1).
The number of markers is only one more than the theo-
retical minimum of 4. This 4-fold reduction in memory
requirement is obtained at a price, though, of a 5-fold
increase in training time: from 29 goals for .4(0) to 156
goals for A(l).

To study the algorithm more, we run A(m) 100 times
each, for m = 0,1,2,4,8,16. We also consider different
environment complexities by varying the lengths of the
workcell dividers d: From d — 80 both, we decrease them
both to d = 50, and increase them both to d = 90. The
resulting average training time to completeness T and
average size of memory at that time S are plotted in
Figure 4. Clearly, for m > 0, the fast drop of T as m

increases indicates that having sufficiently large reser­
voir of working memory (e.g., m > 8) is important in
reducing the training time, but having more than the
threshold will not yield much further reduction. More­
over, the lack of variation of S as m increases indicates
that the size of working memory has little effect on the
size of the final memory learned.

So far there are no surprises. However, as we com­
pare the performance curves of A for different environ­
ments, we see an interesting phenomenon: A can ac­
tually require more training time in a seemingly eas­
ier environment. From the plot of T(m,d), we see that
T(0,50) < T(0,80) < T(0,90), confirming the intuition
that the shorter the dividers, the easier the environment
is to learn. However, for m > 0, the plot actually shows
on the contrary that T(m, 80) < T(m, 90) < T(m,50),
suggesting that having local more powerful (wider doors
implying more local successes) do not necessarily accel­
erate learning, but in fact can hamper learning. The
reason for this behavior is due to the greedy nature of A
in minimizing 5. The algorithm will promote a working
marker to permanent storage only when it demonstrates
usefulness. Therefore, when operating in an easy envi­
ronment with d — 50, the algorithm can initially learn
very quickly markers that will cover most of the workcell,
leaving only a small region that is now unfortunately dif­
ficult to learn because goals in that small region will be
needed to promote any working marker that is visible
from it. For d = 80, the chance of such initial 'over-
learning' is smaller because the doors are narrower. For
d = 90, the chance of over-learning is even smaller; but
because the doors are now much narrower, learning is
significantly slowed. Therefore, as we increase the power
of local (doorways widen), we will see the increase of
both the chance of learning and the interplaying chance
of over-learning.

254 AUTOMATED REASONING

4 Theo ry
In this section, we make some precise and strong state­
ments about the performance of our algorithm through
mathematical analysis; details of the proofs are provided
in the appendix. We first give a sharp bound on the
performance of A(0) in Theorem 1 by showing that the
'average' failure probability of C using its first k trail-
markers decreases exponentially in k. Next, using .4(0)
as a reference, we show that the performance of .4(1)
is better than that of A (- l) , which is better than that
of .4(0). The comparison is based on the 'average' fail­
ure probability (or 'average utility' in reverse order) of
C using the first k markers of each algorithm for each
k. Finally, we present an upper bound on the 'average'
search cost of A(m) for all m in Theorem 3. From this
theorem, a technique for finding the best resource bound
c on local(c) is developed in Section 5.

As in the framework of PAC-learning [Natarajan,
1991], we assume that the problems are randomly drawn
from a fixed distribution — in fact, we shall assume a
uniform distribution for simplicity. To facilitate our dis­
cussion, we use subscript n on a program variable to
denote its value at the n th loop, and parameter m to
indicate its correspondence to A(m). Additionally, for
ib > 0, let uk be the kth entry to be inserted into mem­
ory U. Thus, R(Un{m)) denotes the set of problems re­
ducible to any of the previously solved and stored prob­
lems in U after A(m) is trained with n problems. The
following random variables (with parameter m omitted
for notational simplicity) are important in characterizing
the learning process.

Definition 1 Let local(c) be a local search procedure
with maximum search cost c. A random uniform digraph
of problems with edge probability function F(c) is a set
of uniformly distributed problems in which every problem

using local(c) is independently solvable and reducible to
every other problem with probability F(c).

Thus, the probability that local will yield a solu­
tion with search cost no greater than c is F(c).
Theorem 1 The average failure probabilities of A(0)
when applied on a random uniform digraph of problems
of size N decreases almost geometrically in that for all k,

With the performance of .4(0) as a reference, the fol­
lowing theorem shows that the utility of memory U(l) is
higher than that of U(-1), which is in turn higher than
that of U(0). In other words, .4(1) is better than A (- l)
which is better than .4(0) in that A(1) will tend to re-
member a more 'compact' set of intermediate solutions
than A (- l) , similarly for .4(0).
Theorem 2 The average failure probabilities of A{\),
A(0) and A(—1) when applied on a random uniform di­
graph of problems satisfy

(2)
for all k. Consequently, the average failure probabilities
of the first k memory entries of the algorithms satisfy

(3)
Although the preceding theorem is a strong state­

ment about the relative performance of A(1), A(0), and
A (- l) , nothing similar is known about A(m) for m 2.
We conjecture that y is also better than
A(0) in that . The following theo­
rem, however, does address the search cost of A(m) for
general m.
Theorem 3 For arbitrary m, suppose that we apply
A(m) with local(c) on a random uniform digraph of prob­
lems, and that local(c) has conditional expected search
cost upon success. Then the expected search cost of
A(m) per problem is

5 App l i ca t ion to the 15-Puzzle
To demonstrate, we apply our algorithm and theory to
the 15-puzzle. Here, the object is to be able to solve
all 16!/2 solvable configurations, though not necessarily
in the shortest number of moves. There are of course
many different ways of solving the puzzle [Korf, 1985b;
Poiitowski, 1986; Ratner and Pohl, 1986; Ruby and Ki-
bler, 1989]. Since bootstrap search is a weak method, we
do not expect it to perform better than other methods
that take advantage of additional knowledge. Rather, we

CHEN 255

use the puzzle to demonstrate the generic applicability
of bootstrap search when nothing else is available.

Thus, suppose that we have available only a subrou­
tine local(c), which implements iterative-deepening with
Manhatten distance heuristic [Korf, 1985a] and maxi­
mum search cost c, measuring the number of nodes gen­
erated. We ask the question, "Is it possible to bootstrap
local(c) (with unlimited amount of training) so that the
average search cost is less than that of simply applying
local ?" We also ask, "Is it possible to only bootstrap
local(c) to a certain degree of capability and back it up
with local , so that the average total search cost is
less than that of simply applying local ?" As we shall
see, the answer to both questions is yes with roughly two
orders of magnitude improvement. However, c must be
sufficiently large for both cases, and cannot be too large
(depending on the desired capability) for the second case.
To reach this conclusion, we first need to justify the ran­
dom digraph model and study F(c).

Obviously, the digraph of the solvable states of the 15-
puzzle induced by local(c) is not random. However, the
number of states N = 161/2 is extremely large and the
digraph is almost regular. Hence, it is plausible to model
the digraph of the 15-puzzle by the random digraph with
F(c) being the fraction of states solvable by local(c). To
study this fraction, we apply local(109) to 10000 ran­
domly generated solvable states, and record the fraction
of successes with search cost less than or equal to c,
against case increases to 109. Since brute-force search
costs tend to be exponential, we use log scale on c. We
plot log c against the fraction of success under local(c)
to obtain the cumulative distribution function and the

is the Normal probability function.
Having approximated F(c), we next describe our boot­

strap search experiment and verify our theoretical pre-
dictions before answering the questions posed in the be­
ginning of this section. For each x = 5,6,7,8, we com­
pare .4(1) and .4(20) by running them on 10000 random

problems. For reference, we also run .4(0), but with a
pre-chosen bound b on the memory storage: b = 20 for
both x = 7,8; 6 = 50 for x = 6; 6 = 200 for x = 5.
These bounds are chosen so that storage requirements
are comparable to that of .4(1) and A(20). For each x,
we denote the data corresponding to .4(0), .4(1), .4(20)
as type (0,x), (l,x), (20,x), respectively. For all three
algorithms, we use the last 1000 random problems to
measure their properties at the end of the 9000 training
problems.

One property is the utility of the permanent trail-
markers learned. We tabulate the number of problems
that require k memory accesses, and estimate A(k) by the
fraction of problems unsolvable with the first k markers.
To allow a closer look at the failure probabilities for large
k, we plot the negative log of the failure frequencies in
Figure 6, with reference line k log(l — P(x)) anticipated
by Theorem 1. For each algorithm, the data for k up
to the size of the permanent memory is plotted. Several
observations can be made from this figure. First, the ref­
erence lines do not approximate the (0, x) data very well,
but do support all data from below. The bad approxima­
tion may be explained by the fact that the state space of
the 15-puzzle is really not a random graph, but only an
approximately regular graph. However, the appearance
of the reference lines supporting the data from below
provide evidence that the algorithms do perform more
successfully than predicted under the idealized random-
graph model. Another observation is that as x decreases,
.4(1) becomes less trained than A(20). Simultaneously,
the relative size of U(1) to that of U(20) also decreases,
as indicated by the largest k attained for each data set.
Obviously, as the power of local decreases (x decreases),
the more working markers is needed for faster bootstrap­
ping. With just one working marker, A(1) cannot learn
as quickly as .4(20) with the same number of training
problems. Finally, we can clearly see the higher memory
utility of A(1) compared to that of A(0), as predicted by
Theorem 2. The data of type (l,x) is generally higher

256 AUTOMATED REASONING

Figure 7: Cost ratios of A(m) backed up by local(oo) to
local(oo) alone.

than that of type (0,x). Although we do not see such
generality between data of types (1, x) and (20, x), we do
also see that data of type (20, x) is generally higher than
that of type of (0, x). These data support our conjecture
that ,(0) for arbitrary m.

Finally, we measure the average search cost of each
algorithm backed up by local and compare that with
the theoretical predictions of Theorem 3. By straight-
forward computation, we have

for the ratio of the average search cost of A(m) backed
up by local to that of loca la lone . We plot the
theoretical upper bound for a = 0.1,0.01,0.001,0, and
the observed data points in Figure 7. The data points
with observed failure probability a > 0 are listed in the
adjacent table. Careful checking shows that the observed
data points are indeed consistently lower than the pre­
dicted upper bound. Taking the failure probabilities into
consideration, we see that A(20) with local(106) is the
best of the 12 algorithms compared, yielding the lowest
search cost ratio of 0.0159.

Now suppose that the upper bounds are indeed true.
Then from H(x, 0), we see that after A(m) becomes fully
trained (i.e., without the need of local as a backup),
it can search with average cost less than that of local
as long as x > 3, or c > 1000. However, from H(x, a) for
a > 0, we see that if A(m) is not fully trained, then the
range of x for which A(m) (with local as a backup)
can search with average cost less than of local(oo) alone
necessarily has an upper bound. For example, if a =
0.1, then x must be greater than 3.8 and less than 8.2.
This 'over-learning' phenomenon of powerful local search
becoming detrimental can be explained: If a > 0, then
there may be problems more difficult than A(m) can
handle; in this case, fruitless search will be incurred by
A(m), causing local alone to be better.

6 Conclusion
We have presented an algorithm for bootstrap search,
and provided some initial theory on their performance.
Our theoretical analysis is based on a problem model of a
random digraph. Using this model, we have made some
strong performance predictions and comparisons of the
algorithm. Further, we have illustrated some techniques
for locating the optimal 'power' of the local search to be
bootstrapped so as to yield the best global search. We
have empirically evaluated our algorithm by applying it
to both the 15-puzzle and a simple robot path planning
problem. In both domains, we have 1) explained the
observed performance behavior in terms of the theory
developed; 2) explored the importance of having suffi­
ciently large set of working trail-markers; and 3) identi­
fied a common detrimental phenomenon of over-learning
when local search becomes too powerful. Incidentally, we
have also contributed some new results on solving the 15-
puzzle. In particular, we have made a natural but not
widely recognized connection between search costs and
the lognormal distribution.

Our work is by no means complete. Theoretically, we
have not addressed the issue of training time, nor the
issue of solution quality. Within the random digraph
model, there are conjectures yet to be settled. Out­
side the random digraph model, there are plenty of other
problem models that may yield further insights into the
area of bootstrap search. In particular, the path plan­
ning problem addressed in this paper should provide mo­
tivation for a different model suitable for analysis. There
may also be some other bootstrapping algorithms wait­
ing to be discovered. With its broad applicability in
search and learning, further research is definitely needed.

References
[Aitchison and Brown, 1957] J. Aitchison and J. Brown.

The Lognormal Distribution. Cambridge University
Press, 1957.

[Barr and Feigenbaum, 1981] A. Barr and E. Feigen-
baum. The Handbook of Artificial Intelligence, v. 1,
William Kaufmann, Inc., 1981.

[Chen, 1992] P. Chen. Improving Path Planning with
Learning. Machine Learning: Proc. of the Ninth
Int. Conf, pp. 55-61, 1992.

[Chen, 1995] P. Chen. Adaptive Path Planning: Algo­
rithm and Analysis. IEEE Int. Conf. on Robotics and
Automation, 1995.

[Kaelbling, 1993] L. Kaelbling. Learning to Achieve
Goals. Proc. of the 13th IJCAI, pp. 1094-1098, 1993.

[Kolodner, 1993] J. Kolodner. Case-Based Reasoning,
Morgan Kaufmann Publishers, 1993.

[Korf, 1985a] R. Korf. Depth-First Iterative-Deepening:
An Optimal Admissible Tree Search. Artificial Intel­
ligence, 27, pp. 97-109, 1985.

[Korf, 1985b] R. Korf. Learning to Solve Problems
by Searching for Macro-Operators, Pitman Advanced
Publishing Program, 1985.

[Latombe, 1991] J.-C. Latombe. Robot Motion Plan­
ning, Kluwer Academic Publishers, 1991.

[Marshall and Olkin, 1979] A. Marshall and I. Olkin.
Inequalities: Theory of Majorization and Its Appli­
cations, Academic Press, 1979.

[Minton, 1988] S. Minton. Learning Search Control
Knowledge: An Explanation-based Approach, Kluwer
Academic Publishers, 1988.

[Natarajan, 1991] B. Natarajan. Machine Learning: A
Theoretical Approach, Morgan Kaufmann, 1991.

[Politowski, 1986] G. Politowski. On construction of
Heuristic Functions, PhD thesis, UC Santa Cruz,
1986.

[Ratner and Pohl, 1986] D. Ratner and I. Pohl. Joint
and LPA*: Combination of Approximation and
Search. Proc. of the AAAI, pp. 173-177, 1986.

[Ruby and Kibler, 1989] D. Ruby and D. Kibler. Learn­
ing Subgoal Sequences for Planning. Proc. of the
Eleventh IJCAI, pp. 609-614, 1989.

[Thornton, 1992] C. Thornton. Techniques in Computa­
tional Learning, Chapman & Hall Computing, 1992.

258 AUTOMATED REASONING

