
B e s t - F i r s t F i x e d - D e p t h G a m e - T r e e S e a r c h i n P r a c t i c e 

Aske Plaat ,1 Jonathan Schaeffer,2 W i m Pi j ls ,1 A r i e de B r u i n 1 

plaat@cs.few.eur.nl, jonathan@cs.ualberta.ca, whlmp@cs.few.eur.nl, arie@cs.few.eur.nl 

1 Erasmus University, 
Dept. of Computer Science, 

Room H4-31, P.O. Box 1738, 
3000 DR Rotterdam, The Netherlands 

2 University of Alberta, 
Dept. of Computing Science, 

615 General Services Building, 
Edmonton, AB, Canada T6G 2H1 

Abs t rac t 

We present a new paradigm for minimax search 
algorithms: MT, a memory-enhanced version of 
Pearl's Test procedure. By changing the way 
MT is called, a number of practical best-first 
search algorithms can be simply constructed. 
Reformulating SSS* as an instance of MT elim
inates all its perceived implementation draw
backs. Most assessments of minimax search 
performance are based on simulations that do 
not address two key ingredients of high perfor
mance game-playing programs: iterative deep
ening and memory usage. Instead, we use 
experimental data gathered from tournament 
checkers, Othello and chess programs. The use 
of iterative deepening and memory makes our 
results differ significantly from the literature. 
One new instance of our framework, MTD(/), 
out-performs our best Alpha-Beta searcher on 
leaf nodes, total nodes and execution time. To 
our knowledge, these are the first reported re
sults that compare both depth-first and best-
first algorithms given the same amount of mem
ory. 

1 I n t roduc t i on 
For over 30 years, Alpha-Beta has been the algorithm of 
choice for searching game trees. Using a simple left-to-
right depth-first traversal, it is able to efficiently search 
trees [Knuth and Moore, 1975; Pearl, 1982]. Several im
portant enhancements were added to the basic Alpha-
Beta framework, including iterative deepening, transpo
sition tables, the history heuristic, and minimal search 
windows [Schaeffer, 1989]. The resulting algorithm is 
so efficient that other promising fixed-depth algorithms 
were largely ignored. In particular, although best-first 
search strategies seemed promising both analytically and 
in simulations, they are not used in practice. 

This paper presents a number of contributions to 
our understanding of depth-first and best-first minimax 
search: 

• MT, a memory enhanced version of Pearl's Test pro
cedure, is introduced. MT yields a binary-valued 
decision. We present a simple framework of MT 

drivers (MTD) that make repeated calls to MT to 
home in on the minimax value. Surprisingly, MTD 
can be used to construct a variety of best-first search 
algorithms (such as SSS* [Stockman, 1979]) using 
depth-first search. 

• SSS* (and its dual DUAL* [Marsland et a/., 1987]) 
has not been used in practice because of several per
ceived drawbacks [Campbell and Marsland, 1983; 
Kaindl et al, 1991; Marsland et a/., 1987; Roizen 
and Pearl, 1983]. When expressed in the MTD 
framework, these problems disappear. Furthermore, 
SSS* becomes easy to implement and integrate into 
a conventional Alpha-Beta game-playing program. 

• Simulations of minimax search algorithms in the 
literature are misleading because they make sim
plifying assumptions (such as assuming no depen
dencies between leaf values, or excluding iterative 
deepening and transposition tables). Our approach 
was to gather experimental data from three real 
game-playing programs (chess, Othello and check
ers), covering the range from high to low branch
ing factors. Our results contradict published sim
ulation results on the relative merit of a variety 
of minimax search algorithms [Kaindl et a/., 1991; 
Marsland et a/., 1987; Reinefeld and Ridinger, 1994]. 

• In previous work, depth-first and best-first mini
max search algorithms were compared using differ
ent amounts of memory. These are the first exper
iments that compare them using identical storage 
requirements. 

• With dynamic move reordering, SSS* is no longer 
guaranteed to expand fewer leaf nodes than Alpha-
Beta (Stockman's proof [Stockman, 1979] does not 
hold in practice). In our experiments, SSS* per
forms as fast as any of our Alpha-Beta implemen
tations, but visits too many interior nodes to be 
practical. 

• A new instance of our framework, MTD(/), out per
forms our best Alpha-Beta searcher on leaf nodes, 
total nodes and execution time. 

2 Memory-enhanced Test 
Pearl introduced the concept of a proof procedure for 
game trees in his Scout algorithm [Pearl, 1982] (also 

PLAAT, ETAL 273 



tion of the condition n = leaf. For a depth d fixed-depth 
search, a leaf is any node that is d moves from the root 
of the tree. The search returns an upper or lower bound 
on the search value at each node, denoted by f+ and 
F- respectively. Before searching a node, the transpo
sition table information is retrieved and, if it has been 
previously searched deep enough, the search is cutoff. 
At the completion of a node, the bound on the value is 
stored in the table. The bounds stored with each node 
are denoted using Pascal's dot notation. 

In answering the binary-valued question, MT returns 
a bound on the minimax value. If MT's return-value 
g > 7 then it is a lower bound, while if g < 7, it is an 
upper bound. Usually we want to know more than just a 
bound. Using repeated calls to MT, the search can home 
in on the minimax value /. To achieve this, MT must be 
called from a driver routine. One idea for such a driver 
would be to start at an upper bound for the search value, 
/+ = + 00. Subsequent calls to MT can lower this bound 
until the minimax value is reached. Figure 2 shows the 
pseudo-code for such a driver, called MTD(+oo). The 
variable g is at all times an upper bound f+ on the 
minimax value of the root of the game tree [Plaat et 
0/., 1994c]. Surprisingly, MTD(+oo) expands the same 
leaf nodes in the same order as SSS*, provided that the 
transposition table is big enough and no information is 
lost through table collisions (see section 3). 

Storage is critical to the performance of a multi-pass 
MT algorithm. Without it, the program would revisit 
interior nodes without the benefit of information gained 
from the previous search and expand them. Instead, MT 
can retrieve an upper and/or lower bound for a node, 
using a relatively cheap table lookup. The storage table 

274 AUTOMATED REASONING 



provides two benefits: (1) preventing unnecessary node 
re-expansion, and (2) facilitating best-first node selec
tion (see sections 3 and 4). Both are necessary for the 
efficiency of the algorithm. 

One could ask the question whether a simple one-pass 
Alpha-Beta search with a wide search window would 
not be as efficient. Various papers point out that a 
tighter Alpha-Beta window causes more cutoffs than a 
wider window, all other things being equal (for example, 
[Campbell and Marsland, 1983; Marsland et a/., 1987; 
Plaat et a/., 1994c]). Since MT does not re-expand 
nodes from a previous pass, it cannot have fewer cutoffs 
than wide-windowed Alpha-Beta for new nodes. (Nodes 
expanded in a previous pass are not re-expanded but 
looked-up in memory.) This implies that any sequence 
of MT calls will be more efficient (it will never evaluate 
more leaf nodes and usually significantly less) than a call 
to Alpha-Beta with window (—oo, +oo), for non-iterative 
deepening searches. 

3 Four Misconcept ions concerning SSS* 
MTD(+oo) causes MT to expand the same leaf nodes in 
the same order as SSS* (see [Plaat et al., 1994c] for a 
substantiation of this claim). The surprising result that 
a depth-first search procedure can be used to examine 
nodes in a best-first manner can be explained as follows. 
The value of g - e (where g = f+) causes MT to explore 
only nodes that can lower the upper bound at the root; 
this is the best-first expansion order of SSS*. Only chil
dren that can influence the value of a node are traversed: 
the highest-valued child of a max node, and the lowest of 
a min node. Expanding brothers of these so-called criti
cal children gives a best-first expansion. It is instructive 
to mentally execute the MTD(+oo) algorithm of figure 1 
on an example tree such as the one in [Stockman, 1979], 
as is done in [Plaat et a/., 1994b]. 

An important issue concerning the efficiency of MT-
based algorithms is memory usage. SSS* can be regarded 
as manipulating one max solution tree in place. A max 
solution tree has only one successor at each min node 
and all successors at max nodes, while the converse is 
true for min solution trees [Pijls and De Bruin, 1990; 
Stockman, 1979]. Whenever the upper bound is lowered, 
a new (better) subtree has been expanded. MTD(+oo) 
has to keep only this best max solution tree in memory. 
Given a branching factor of w and a tree of depth d, the 
space complexity of a driver causing MT to construct 
and refine one max solution tree is therefore of the order 
0(w[d/2]^ and a driver manipulating one min solution 
tree is of order 0(w[d/2] (as required for DUAL*). A 
simple calculation and empirical evidence show this to 
be realistic storage requirements. (Due to lack of space 
we refer to [Plaat et a/., 1994c] for an in-depth treatment 
of these issues.) 

A transposition table provides a flexible way of stor
ing solution trees. While at any time entries from old 
(inferior) solution trees may be resident, they will be 
overwritten by newer entries when their space is needed. 
There is no need for a time-consuming SSS* purge op
eration. As long as the table is big enough to store the 
min and/or max solution trees that are essential for the 

efficient operation of the algorithm, it provides for fast 
access and efficient storage. 

The literature cites four issues concerning SSS* 
[Kaindl et a/., 1991; Roizen and Pearl, 1983]. The first 
is the complicated algorithm. Comparing the code for 
Alpha-Beta [Knuth and Moore, 1975] and SSS* [Stock-
man, 1979], one cannot help getting the feeling of being 
overwhelmed by its complexity. Looking at the code in 
figure 2 we think this is solved. The second is SSS*'s 
exponential storage demands. A counter-argument is 
that Alpha-Beta in game-playing programs also has ex
ponential storage needs to achieve good performance; the 
transposition table must be large enough to store the 
move ordering information of the previous iteration. In 
other words, both Alpha-Beta and SSS* perform best 
with a minimum of storage of the order of the size of 
min/max solution tree(s). The third is that SSS* uses 
expensive operations on the sorted OPEN list. In our 
MT reformulation, no such operations are used. There 
is no explicit OPEN list, only an implicit search tree 
stored in a transposition table. The store and retrieve 
operations are just as fast for Alpha-Beta as for SSS*. 
In summary, the arguments against SSS* are eliminated 
using an MT representation. SSS* is no longer an im
practical algorithm [Plaat et al., 1994c]. 

The fourth issue in the literature is that SSS* will 
provably never expand more leaf nodes than Alpha-Beta 
[Stockman, 1979]. However, our experiments used itera
tive deepening and move reordering, which violates the 
implied preconditions of the proof. In expanding more 
nodes than SSS* in a previous iteration, Alpha-Beta re
orders more nodes. Consequently, in a subsequent itera
tion SSS* may have to consider a node for which it has 
no move ordering information whereas Alpha-Beta does. 
Thus, Alpha-Beta's inefficiency in a previous iteration 
can actually benefit it later in the search. With iterative 
deepening, it is now possible for Alpha-Beta to expand 
fewer leaf nodes than SSS* (a short example proving this 
can be found in [Plaat et a/., 1994c]). 

MTD(+ oo) shows up poorly if all nodes visited in the 
search is used as the performance metric. MTD(-l-oo) re-
traverses internal nodes to find the best node to expand 
next, whereas Alpha-Beta does not. 

We conclude that our reformulation together with the 
results of section 5 contradict the literature on all four 
points. 

4 Dr ivers for MT 
Having seen one driver for MT, the ideas can be en
compassed in a generalized driver routine. The driver 
can be regarded as providing a series of calls to MT to 
successively refine bounds on the minimax value. By 
parameterizing the driver code, a variety of algorithms 
can be constructed. The parameter needed is the first 
starting bound for MT. Using this parameter, an algo-
rithm using our MT driver, MTD, can be expressed as 
MTD (first) (see figure 3). (In [Plaat et a/., 1994b] a more 
general version of MTD is presented, facilitating the con
struction of more algorithms.) A number of interesting 
algorithms can easily be constructed using MTD. Some 
interesting MTD formulations include: 

PLAAT ETAL 276 



SSS*. SSS* can be described as MTD 
DUAL*. In the dual version of SSS* minimization 

is replaced by maximization, the OPEN list is kept in 
reverse order, and the starting value is -oo. This algo
rithm becomes MTD i. The advantage of DUAL* 
over SSS* lies in the search of odd-depth search trees 
[Marsland et a/., 1987]. 

MTD(/) . Rather than using as a first 
bound, we can start at a value which might be closer to 
/. Given that iterative deepening is used in many appli
cation domains, the obvious approximation for the mini-
max value is the result of the previous iteration. In MTD 
terms this algorithm becomes MTD(heuristic-guess). If 
the initial guess is below the minimax value, MTD(/) 
can be viewed as a version of DUAL* that started closer 
to /, otherwise it becomes a version of SSS* that started 
closer to /. 

Other MTD variations possible are: bisecting the in
terval in each pass, using larger step sizes, and 
searching for the best move (not the best value) [Plaat 
et a/., 1994b]. 

Formulating a seemingly diverse collection of algo
rithms into one unifying framework focuses attention on 
the fundamental differences. For example, the frame-
work allows the reader to see just how similar SSS* and 
DUAL* really are, and that these are just special cases 
of calling Pearl's Test (or rather MT). The drivers con
cisely capture the algorithm differences. MTD offers us a 
high-level paradigm that facilitates the reasoning about 
important issues like algorithm efficiency and memory 
usage, without the need for low-level details. 

By using MT, all MTD algorithms benefit from the 
maximum number of cutoffs a single bound can gener
ate. Each MTD makes a different choice for this bound, 
which influences the number of cutoffs. Tests show that 
on average, there is a relationship between the starting 
bound and the size of the search trees generated: a se
quence of MT searches to find the game value benefits 
from a start value close to the game value. Starting 
bounds such as are in a sense the worst 
possible choices. 

Figure 4 validates the choice of a starting bound close 
to the game value. The figure shows the percentage of 
unique leaf evaluations of MTD(/), for Othello; similar 
results were obtained using chess and checkers. The data 
points are given as a percentage of the size of the search 
tree built by our best Alpha-Beta searcher (Aspiration 
NegaScout). (Since iterative deepening algorithms are 
used, the cumulative leaf count over all previous depths 

is shown for depth 8 and 9.) Given an initial guess of h 
and the minimax value of /, the graph plots the search 
effort expended for different values of h — f. For each 
depth the first guess is distorted by the same amount. 
To the left of the graph, MTD(/) is closer to DUAL*, 
to the right it is closer to SSS*. A first guess close to 
/ makes MTD(/) perform better than the 100% Aspi
ration NegaScout baseline. The guess must be close to 
/ for the effect to become significant (between —15 and 
+ 10 of / for Othello, given that values lie in the range 

. Thus, if MTD(/) is to be effective, the / 
obtained from the previous iteration must be a good in
dicator of the next iteration's value. 

5 Exper iments 
There are three ways to evaluate a new algorithm: anal
ysis, simulation or empirical testing. The emphasis in 
the literature has been on analysis and simulation. This 
is surprising given the large number of game-playing pro
grams in existence. 

The mathematical analyses of minimax search algo
rithms do a good job of increasing our understanding 
of the algorithms, but fail to give reliable predictions of 
their performance. The problem is that the game trees 
are analyzed using simplifying assumptions; the trees dif
fer from those generated by real game-playing programs. 
To overcome this deficiency, a number of authors have 
conducted simulations (for example, [Kaindl et a/., 1991; 
Marsland et a/., 1987; Muszycka and Shinghal, 1985]). 
In our opinion, the simulations did not capture the be
havior of realistic search algorithms as they are used in 
game-playing programs. Instead, we decided to conduct 
experiments in a setting that was to be as realistic as 
possible. Our experiments attempt to address the con
cerns we have with the parameters chosen in many of 
the simulations: 

• High degree of ordering: most simulations have the 
quality of their move ordering below what is seen in 
real game-playing programs. 

• Dynamic move re-ordering: simulations use fixed-
depth searching. Game-playing programs use itera
tive deepening to seed memory (transposition table) 

276 AUTOMATED REASONING 



with best moves to improve the move ordering. This 
adds overhead to the search, which is more than off
set by the improved move ordering. Also, transposi
tions and the history heuristic dynamically re-order 
the game tree during the search. Proofs that SSS* 
does not expand more leaf nodes than Alpha-Beta 
do not hold for the iterative deepened versions of 
these algorithms. 

• Memory: simulations assume either no storage of 
previously computed results, or unfairly bias their 
experiments by not giving all the algorithms the 
same storage. For iterative deepening to be effec
tive, best move information from previous iterations 
must be saved in memory. In game-playing pro
grams a transposition table is used. Simulations 
often use an inconsistent standard for counting leaf 
nodes. In conventional simulations (for example, 
[Marsland et a/., 1987]) each visit to a leaf node is 
counted for depth-first algorithms like NegaScout, 
whereas the leaf is counted only once for best-first 
algorithms like SSS* (because it was stored in mem
ory, no re-expansion occurs). 

• Value dependence: some simulations generate the 
value of a child independent of the value of the par
ent. However, there is usually a high correlation 
between the values of these two nodes in real games. 

The net result is that iterative deepening and mem
ory improve the move ordering beyond what has been 
used in most simulations. Besides move ordering the 
other three differences between artificial and real trees 
can cause problems in simulations. Just increasing the 
move ordering to 98% is not sufficient to yield realis
tic simulations. As well, simulations are concerned with 
tree size, but practitioners are concerned with execution 
time. Simulation results do not necessarily correlate well 
with execution time. For example, there are many pa
pers showing SSS* expands fewer leaf nodes than Alpha-
Beta. However, SSS* implementations using Stockman's 
original formulation have too much execution overhead 
to be competitive with Alpha-Beta [Roizen and Pearl, 
1983], 

5.1 Experiment Design 
To assess the feasibility of the proposed algorithms, 
a series of experiments was performed to compare 
Alpha-Beta, NegaScout, SSS* (MTD(+oo)), DUAL* 
(MTD(-oo)), MTD(/) (and other variants, see [Plaat 
et al., 1994b]). 

Rather than use simulations, our data has been 
gathered from three game-playing programs: Chinook 
(checkers), Keyano (Othello), and Phoenix (chess). All 
three programs are well-known in their respective do
main. For our experiments, we used the program au
thor's search algorithm which, presumably, has been 
highly tuned to the application. The only change we 
made was to disable search extensions and forward prun
ing. All programs used iterative deepening. The MTD 
algorithms would be repeatedly called with successively 
deeper search depths. All three programs used a stan
dard transposition table with 221 entries. For our exper

iments we used the program author's original transposi
tion table data structures and table manipulation code. 

Conventional test sets in the literature proved to be 
poor predictors of performance. Test set positions are 
selected, usually, to test a particular characteristic or 
property of the game and are not indicative of typical 
game conditions. By using a sequences of moves from 
real games as the test positions, we are attempting to 
create a test set that is representative of real game search 
properties. 

All three programs were run on 20 balanced test posi
tions, searching to a depth so that all searched roughly 
the same amount of time. (A number of test runs was 
performed on a bigger test set and to a higher search 
depth to check that the 20 positions did not cause 
anomalies.) In checkers, the average branching factor 
is approximately 3 (1.2 moves in a capture position; 8 in 
a non-capture position), in Othello it is 10 and in chess 
it is 36. The branching factor determined the maximum 
search depth for our experiments: 17 ply for Chinook, 
10 ply for Keyano, and 8 ply for Phoenix. 

Many papers in the literature use Alpha-Beta as the 
base line for comparing the performance of other algo
rithms (for example, [Campbell and Marsland, 1983]). 
The implication is that this is the standard data point 
which everyone is trying to beat. However, game-playing 
programs have evolved beyond simple Alpha-Beta algo
rithms. Therefore, we have chosen to use the current al
gorithm of choice as our base line: aspiration window en
hanced NegaScout [Campbell and Marsland, 1983]. The 
graphs in figure 4 show the cumulative number of nodes 
over all previous iterations for a certain depth (which 
is realistic since iterative deepening is used), relative to 
Aspiration NegaScout. 

To our knowledge this is the first comparison of algo
rithms like Alpha-Beta, NegaScout, SSS* and DUAL* 
where all algorithms are given the exact same resources. 

5.2 Experiment Results 
Figure 5 shows the performance of Phoenix for (unique) 
leaf evaluations (NBP or number of bottom positions), 
and Figure 6 shows the total node count (leaf, interior, 
and transposition nodes). The total node count includes 
all revisits to previously searched nodes. Although most 
simulations only report NBP, we find that the total node 
count has a higher correlation with execution time for 
some algorithms. Detailed results for all the games can 
be found in [Plaat et a/., 1994b]. 

Over all three games, the best results are from 
MTD(/). Its leaf node counts are consistently better 
than Aspiration NegaScout, averaging at least a 5% 
improvement. More surprisingly is that MTD(/) out
performs Aspiration NegaScout on the total node mea
sure as well. Since each iteration requires repeated calls 
to MT (at least two and possibly many more), one might 
expect MTD(/) to perform badly by this measure be
cause of the repeated traversals of the tree. This sug
gests that MTD(/), on average, is calling MT close to 
the minimum number of times. For all three programs, 
MT gets called between 3 and 4 times on average. In con
trast, the SSS* and DUAL* results are poor compared 

PLAAT, ET AL 277 



to NegaScout when all nodes in the search tree are con
sidered. Each of these algorithms performs dozens and 
sometimes even hundreds of MT searches, depending on 
how wide the range of leaf values is. 

Implementing SSS* as an instance of MTD yields re
sults that run counter to the literature. SSS* is now 
as easy to implement as Aspiration NegaScout, uses as 
much storage and has no additional execution overhead, 
but performs generally worse when viewed in the context 
of iterative deepening and transposition tables. DUAL* 
is more efficient than SSS* but still comes out poorly in 
all the graphs measuring total node count. Sometimes 
SSS* expands more leaf nodes than Alpha-Beta (as dis
cussed in section 3), contradicting both the analytic and 
simulation results for fixed-depth SSS* and Alpha-Beta. 
An interesting observation is that the effectiveness of 
SSS* appears to be a function of the branching factor; 
the larger the branching factor, the better it performs. 

Given these results, some of the algorithmic differences 
can be explained. If we know the value of the search 
tree is /, then two searches are required: 
which fails high establishing a lower bound on /, and 

, which fails low and establishes an upper 
bound on /. The closer the approximation to /, the 
less the work that has to be done (according to figure 4). 
As that figure indicated, the performance of MTD(/) is 

dependent on the quality of the score that is used as the 
first-guess. For programs with a pronounced odd/even 
oscillation in their score, results are better if not the 
score of the previous iterative deepening pass is used, 
but the one from 2 passes ago. Considering this, it is 
not a surprise that both DUAL* and SSS* come out 
poorly. Their initial bounds for the minimax value are 
poor, meaning that the many calls to MT result in sig
nificantly more interior as well as leaf nodes. NegaScout 
used a wide window for the principal variation (PV) and 
all re-searches. The wide-window search of the PV gives 
a good first approximation to the minimax value. That 
approximation is then used to search the rest of the 
tree with minimal window searches—which are equiv
alent to MT calls. If these refutation searches are suc
cessful (no re-search is needed), then NegaScout deviates 
from MTD(/) only in the way it searches the PV for a 
value, the wider window causing less cutoffs. MTD(/) 
uses MT for searching all nodes, including the PV. 

The bottom line for practitioners is execution time. 
Since we did not have the resources to run all our ex
periments on identical and otherwise idle machines, we 
only show execution time graphs for MTD(/) in fig
ure 7. Comparing results for the same machines we found 
that MTD(/) is on average consistently the fastest algo
rithm. In our experiments we found that for Chinook 
and Keyano MTD(/) was about 5% faster in execution 
time than Aspiration NegaScout, for Phoenix we found 
MTD(/) 9-13% faster. For other programs and other 
machines these results will obviously differ, depending in 
part on the quality of the score of the previous iteration, 
and on the test positions used. Also, since the tested 
algorithms perform relatively close together, the relative 
differences are quite sensitive to variations in input pa
rameters. In generalizing these results, one should keep 
this sensitivity in mind. Using these numbers as absolute 
predictors for other situations would not do justice to the 
complexities of real-life game trees. We refer to [Plaat 
et al., 1994b] for the remainder of our experimental data 
and explanations. 

Basing one's conclusions only on simulations can be 
hazardous. For example, the general view is that SSS* 
is (1) difficult to understand, (2) has unreasonable mem
ory requirements, (3) is slow, (4) provably dominates 
Alpha-Beta in expanded leaves, and (5) that it expands 

278 AUTOMATED REASONING 



significantly fewer leaf nodes than Alpha-Beta. A re
cent paper used simulations to show that point 2 and 
3 could be wrong [Reinefeld and Ridinger, 1994], paint
ing an altogether favorable picture for SSS*. Using real 
programs, we showed that all five points are wrong, mak
ing it clear that, although SSS* is practical, in realistic 
programs it has no substantial advantage over Alpha-
Beta-variants like Aspiration NegaScout. We think that 
only real programs provide a valid basis for conclusions. 

6 Conclusions 
Over thirty years of research have been devoted to im
proving the efficiency of Alpha-Beta searching. The MT 
family of algorithms are comparatively new, without the 
benefit of intense investigations. Yet, MTD(/) is already 
out-performing our best Alpha-Beta based implementa
tions in real game-playing programs. MT is a simple and 
elegant paradigm for high performance game-tree search 
algorithms. It eliminates all the perceived drawbacks of 
SSS* in practice. 

The purpose of a simulation is to reliably model an 
algorithm to gain insight into its performance. Simu
lations are usually performed when it is too difficult or 
too expensive to construct the proper experimental en
vironment. For game-tree searching, the case for simu
lations is weak. There is no need to do simulations when 
there are quality game-playing programs available for ob
taining actual data. Further, as this paper has demon
strated, simulation parameters can be incorrect, result
ing in large errors in the results that lead to misleading 
conclusions. In particular, the failure to include iterative 
deepening, transposition tables, and almost perfectly or
dered trees in many simulations are serious omissions. 

Although a 10% improvement for Chess may not seem 
much, it comes at no extra algorithmic complexity: just 
a standard Alpha-Beta-based Chess program plus one 
while loop. Binary-valued searches enhanced with it
erative deepening, transposition tables and the history 
heuristic is an efficient search method that uses no ex
plicit knowledge of the application domain. It is remark-
able that one can search almost perfectly without explic
itly using application-dependent knowledge other than 
the evaluation function. 

Acknowledgements 
This work has benefited from discussions with Mark 
Brockington (author of Keyano), Yngvi Bjornsson and 
Andreas Junghanns. The financial support of the Dutch 
Organization for Scientific Research (NWO), the Natural 
Sciences and Engineering Research Council of Canada 
(grant OGP-5183) and the University of Alberta Cen
tral Research Fund are gratefully acknowledged. 

References 
[De Bruin et ai, 1994] A. de Bruin, W. Pijls, and 

A. Plaat. Solution trees as a basis for game-tree 
search. ICCA Journal, 17(4):207-219, December 1994. 

[Campbell and Marsland, 1983] M. Campbell and T.A. 
Marsland. A comparison of minimax tree search algo
rithms. Artificial Intelligence, 20:347-367, 1983. 

[Ibaraki, 1986] T. Ibaraki. Generalization of alpha-beta 
and SSS* search procedures. Artificial Intelligence, 
29:73-117, 1986. 

[Kaindl et ai, 1991] H. Kaindl, R. Shams, and H. Ho-
racek. Minimax search algorithms with and without 
aspiration windows. IEEE PAMI, 13(12):1225-1235, 
1991. 

[Knuth and Moore, 1975] D.E. Knuth and R.W. Moore. 
An analysis of alpha-beta pruning. Artificial Intelli
gence, 6(4):293-326, 1975. 

[Marsland et ai, 1987] T.A. Marsland, A. Reinefeld, 
and J. Schaeffer. Low overhead alternatives to SSS*. 
Artificial Intelligence, 31:185-199, 1987. 

[Muszycka and Shinghal, 1985] A. Muszycka and R. 
Shinghal. An empirical comparison of pruning strate
gies in game trees. IEEE SMC, 15(3):389-399, 1985. 

[Pearl, 1982] J. Pearl. The solution for the branching 
factor of the alpha-beta pruning algorithm and its op
timally. CACM, 25(8):559-564, 1982. 

[Pijls and De Bruin, 1990] W. Pijls and A. de Bruin. 
Another view on the SSS* algorithm. In T. Asano, 
editor, Algorithms, SIGAL '90, Tokyo, volume 450 of 
LNCS, pages 211-220. Springer-Verlag, August 1990. 

[Plaat et ai, 1994a] A. Plaat, J. Schaeffer, W. Pijls, and 
A. de Bruin. Nearly optimal minimax tree search? 
Technical Report CS-94-19, Dept. of Computing Sci
ence, Univ. of Alberta, 1994. 

[Plaat et al, 1994b] A. Plaat, J. Schaeffer, W. Pijls, and 
A. de Bruin. A new paradigm for minimax search. 
Technical Report CS-94-18, Dept. of Computing Sci
ence, Univ. of Alberta, 1994. 

[Plaat et ai, 1994c] A. Plaat, J. Schaeffer, W. Pijls, and 
A. de Bruin. SSS* = aB + TT. Technical Report CS-
94-17, Dept. of Computing Science, Univ. of Alberta, 
1994. 

[Reinefeld and Ridinger, 1994] A. Reinefeld and 
P. Ridinger. Time-efficient state space search. Ar
tificial Intelligence, 71(2):397-408, 1994. 

[Roizen and Pearl, 1983] I. Roizen and J. Pearl. A min
imax algorithm better than alpha-beta? Yes and no. 
Artificial Intelligence, 21:199-230, 1983. 

[Schaeffer, 1989) J. Schaeffer. The history heuristic and 
alpha-beta search enhancements in practice. IEEE 
PAMI, 11(1):1203 1212, 1989. 

[Stockman, 1979] G.C. Stockman. A minimax algo
rithm better than alpha-beta? Artificial Intelligence, 
12(2):179--196, 1979. 

PLAAT, ETAL 279 


