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Abstract 
This paper explores the relationships among 
reactivity, heuristic reasoning, and search. It 
describes a hybrid, hierarchical reasoner that first 
has the opportunity to react correctly. If no ready 
reaction is computed, the reasoner activates a set of 
reactive triggers for time-limited search proce­
dures. If they too fail to produce a response, the 
reasoner resorts to collaboration among a set of 
heuristic rationales. In a series of experiments, this 
hybrid reasoner is shown to be effective and 
efficient. The data also show how each of the three 
processes (correct reactions, time-limited search 
with reactive trigger, and heuristic rationales) plays 
an important role in problem solving. Reactivity is 
demonstrably enhanced by brief, knowledge-based, 
intelligent searches to generate solution fragments. 

1. Introduction 
When confronted with an intractable search space, people 
employ a variety of devices to make what they hope will be 
expert decisions. Some of this behavior is automatic; certain 
perceptions of the world trigger action without conscious 
reasoning. AI researchers have modeled this automaticity 
with reactive systems. Other portions of this behavior are 
heuristic; limitedly rational reasoning principles are applied 
in some combination. AI researchers have modeled this 
pragmatic behavior with rule-based systems. There is, how­
ever, another important mechanism people use. Situation-
based behavior is the serial testing of known, triggered tech­
niques for problem solving in a domain. The integration of 
situation-based behavior with reactivity and heuristic rea­
soning is the subject of this paper. The contributions of this 
work are an architecture that integrates situation-based be­
havior with reactivity and heuristic reasoning, and empirical 
evidence that situation-based behavior is indeed an effective 
method when resources are limited. 

Situation-based behavior is based upon psychologists' re­
ports about human experts in resource-limited situations 
[Klein and Calderwood, 1991]. For example, an emergency 
rescue team is called to the scene of an attempted suicide, 
where a person dangles from a sign after jumping from a 
highway overpass. Time is limited and the person is semi-
conscious. During debriefing after a successful rescue, the 

commander of the team describes how they immediately se­
cured the semiconscious woman's arms and legs, but then 
needed to lift her to safety. He retrieved, instantiated, and 
mentally tested four devices that could hold her while the 
team lifted, one device at a time. When a device failed in his 
mental simulation, he ran the next. When the fourth scenario 
ran several times in simulation without an apparent flaw, he 
began to execute it in the real world. Klein and Calderwood 
describe the predominance of this situation-based behavior 
in 32 such incidents, and cite additional evidence from stud­
ies of army commanders, business executives, juries in de­
liberation, judges setting bail, highway engineers, and nu­
clear power plant operators. Its key features, for the pur­
poses of this discussion, are that a situation triggers a set of 
procedural responses, not solutions, and that those responses 
are not tested in parallel. The purpose of this paper is to ex­
plore the role of situation-based behavior with respect to re­
activity and heuristic reasoning under time limitations. 

2. FORR: the Architecture 
The architecture described in this section supports the de­
velopment of a reactive reasoner. The problem solvers 
whom Klein and Calderwood studied did not have the 
leisure to research similar situations or to explore many al­
ternatives. They had to decide quickly. Reactive systems are 
intended to sense the world around them and respond with a 
quick computation [Brooks, 1991; Maes and Brooks, 1990]. 
They are meant to iterate a "sense-compute-execute" loop 
where the sensing is predetermined and the heuristic compu­
tation is either hardwired or extremely rapid. In most com­
plex dynamic problems, however, a simulation of intelli­
gence is strengthened by learning. In the spirit of reactivity, 
such learning should be quick to do and easy to apply in 
subsequent loop iterations. 

FORR (FOr the Right Reasons) is a problem-solving and 
learning architecture that models the transition from general 
expertise to specific expertise [Epstein, 1994a]. A FORR-
based system begins with a domain of related problem 
classes, such as board games or mazes, and some domain-
specific but problem-class-independent knowledge, such as 
"do not set the other contestant up for a win" or "avoid 
dead-ends." With experience, such as contests played or 
trips from one location to another, a FORR-based program 
gradually acquires usefiil knowledge, problem-class-specific 
data that is potentially useful and probably correct. This use-
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ful knowledge, such as good game openings or shortcuts in 
a particular maze from one area to the next, should enhance 
the performance of a FORR-based system. 

FORR's three-tiered hierarchical model of the reasoning 
process, is shown in Figure 1. An Advisor is a domain-spe­
cific but problem-class-independent, decision-making ratio­
nale, such as "minimize the other contestant's material" or 
"get closer to your destination." Each Advisor is a "right 
reason," implemented as a time-limited procedure. Input to 
each Advisor is the current state of the world, the current 
permissible actions from that state, and any learned useful 
knowledge about the current problem class. Each Advisor 
outputs any number of comments that support or discourage 
permissible actions. A comment lists the Advisor's name, 
the action commented upon, and a strength, an integer from 
0 to 10 that measures the intensity and direction of the Advi­
sor's opinion. Although there are no constraints on the na­
ture of the comment-generating procedures themselves, a 
FORR-based system is intended to sense the current state of 
the world and react with a rapid computation, i.e., to avoid 
extensive search. 

Tier-1 Advisors are consulted in a predetermined, fixed 
order. Each Advisor may have the authority to make a deci­
sion alone or to eliminate a legal action from any further 
consideration. Tier-1 Advisors are reactive and reference 
only correct useful knowledge. They "sense" the current 
state of the world and what they know about the problem 
class; if they make a decision, it is fast and correct. The 
commander had a tier-1 Advisor which insisted that the vic­
tim's limbs be secured. If one were building a FORR-based 
system to play games, an important tier-1 Advisor would be 
"if you see an immediately winning move, take it." Only 
when the first tier of a FORR-based system fails to make a 
decision does control default to the next tier. 

Tier-2 Advisors, in contrast, are not necessarily correct in 
the full context of the state space. Each of them epitomizes a 
heuristic, specialized view of reality that can make a valid 
argument for or against one or more actions. Tier-2 Advi­
sors are reactive too, but far less trustworthy, because nei­
ther their reasoning process nor the useful knowledge on 
which they rely is guaranteed correct. All of the tier-2 Advi­
sors have an opportunity to comment before any decision is 
made. The decision they arrive at is the action with highest 
total strength; this represents a consensus of their opinions. 
(A tie is broken by random selection.) In a FORR-based 
game-learning program, a good tier-2 Advisor is "maximize 
the number of your pieces on the board and minimize those 
of the other contestant." For the rescue situation, however, 
tier-2 Advisors are too slow and too risky. 

Situation-based behavior has recently been incorporated 
into FORR as tier 1.5. Each tier-1.5 Advisor has a reactive 
trigger and a procedure that generates and tests a highly-
constrained set of possible solution fragments. A solution 
fragment emerges from a tier-1.5 Advisor as a sequence of 
decisions, rather than a single reactive one, a digression 
from the "sense-compute-execute" loop. This new tier is 
prioritized like the first, but lacks any guarantee of correct­
ness. A tier-1.5 Advisor triggers when it recognizes that its 
method may be directly related to the current situation, the 
way the need to hoist triggers the rescue team's holding de­
vices. Execution of a tier-1.5 Advisor instantiates and tests 

Figure I: How FORR makes decisions. 

one or more possible solution fragments. Tier 1.5 is priori­
tized like tier 1, but is not guaranteed correct. The first tier-
1.5 Advisor to trigger is ceded control and given limited 
time to develop a solution fragment. If no tier-1.5 Advisor 
triggers or produces a sequence of recommended steps, the 
second tier will make the decision. If a tier-1.5 Advisor con­
structs a sequence of decisions that it believes relevant, they 
are executed and then, regardless of the outcome, control is 
returned to tier 1. 

FORR is implemented in Common Lisp. To apply FORR 
to a domain, one describes the domain, its problem classes, 
its useful knowledge, and procedures to learn it. (Although 
learning supports some of the tier-2 Advisors, it is search, 
not learning, that is the focus of this discussion. Learning is 
addressed in [Epstein, 1995].) The effectiveness of situa­
tion-based Advisors and their role in reasoning is best 
demonstrated with an example. 

3. Ariadne: an Implementation 
Ariadne simulates robot path-finding. (Ariadne, daughter of 
King Minos of Crete, helped Theseus find his way through 
the labyrinth.) Ariadne is implemented as a set of Common 
Lisp files that run with FORR. A problem class in Ariadne 
is a particular maze, a rectangular grid with discrete internal 
obstructions, like the one in Figure 2. A location (r, c) is the 
position in the rth row and cth column of the maze, ad­
dressed as if it were an array. In Figure 2 the robot is at 
(18, 6) and the goal is at (5, 14). A problem is to travel from 
an initial robot location R to some goal location G in a se­
quence of legal moves, that is, to find a (not necessarily op­
timal) path to the goal. 
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Table J: Ariadne's Advisors for path finding. 

Advisor Description 

Tier 1 No Way Forbid entry to a dead-end not containing the goal. 
Victory Take the robot to a visible goal. 

Tier 1.5 Outta Here Seek a pair of moves that minimize the robot's distance to the goal and leave the confined area. 
Probe Seek to identify and apply an access point for the chamber. 
Super-Quadro Seek a gate out of the current quadrant, preferably into the goal quadrant. 
Wander Seek a well-directed, long, L-shaped path with a new view to a thus far unvisited location. 
Roundabout If the robot is aligned with the goal but there is a wall between them, go around the wall. 

Tier 2 Goal Row Move so that the robot's row coordinate matches that of the goal. 
Goal Column Move so that the robot's column coordinate matches that of the goal. 
Giant Step Make the longest possible move, with higher strengths for moves in the direction of the goal. 
Plod Move one step in any direction, with higher strengths for moves in the direction of the goal. 
Mr. Rogers Move into the immediate neighborhood of the goal, with higher strengths for closer locations. 
Been There Object to returning to a location already visited during this problem, with lower strengths for 

those visited more frequently. 
Done That Object to moving in a direction already taken from a location already visited in this problem, 

with lower strengths for directions taken more often. 
Chamberlain Move into a chamber whose extent indicates that the goal might lie within, and discourage 

moves into those that do not. 
Quadro When the robot and the goal are in different quadrants, move to gates that afford access to 

another quadrant, most strongly for those into the goal quadrant, less strongly for others. 
Opening Reuse previously successful path beginnings when applicable 

were to trigger in Figure 2 when the robot was at (18, 5), it 
would generate the path <(16, 5), (16, 3)> too. 

Super-Quadro scans to change the quadrant. It tries to 
move the robot in a pair of orthogonal steps to a location 
whose quadrant is different, preferably the goal quadrant. 
Super-Quadro would not find a gate from the robot's posi­
tion in Figure 2. 

Wander tests the 8 L-shaped paths that are pairs of longest 
possible steps in two orthogonal directions, with preference 
toward those in the direction of the goal. The path it selects 
ends at a previously unvisited location and makes additional 
unvisited locations visible. If Wander were to trigger in 
Figure 2, depending upon its recent experience, it could 
force the path <(18, 10), (20, 10)>, not a particularly helpful 
sequence. 

Roundabout triggers when the robot is in the same row or 
column as the goal but cannot see it because of an obstruc­
tion. When the robot is so aligned, Roundabout attempts to 
go around the wall between it and the goal. If, for example, 
the robot of Figure 2 were at (5,18), Roundabout would 
take it to (6, 18), (6, 17), and (6, 16) before stopping at 
(5, 16) where the goal is in sight. Note that Roundabout, like 
any tier-1.5 Advisor, is time-limited and heuristic. Round-
about may fail, or it may only get closer to the goal than it 
had been when it started, without actually bringing the goal 
in sight. 

Ariadne's 10 tier-2 Advisors embody path-finding com­
mon sense and do no forward search in the problem space. 
Goal Row and Goal Column attempt to align the robot with 
the goal. Giant Step and Plod advocate large and small 
steps, respectively. Mr. Rogers attempts to minimize the 
Euclidean distance to the goal. Been There and Done That 
discourage repetition of prior behavior. Chamberlain and 

Quadro apply learned knowledge about chambers and gates. 
Opening encourages the reuse of previously successful path 
beginnings when applicable. (Although such moves may 
seem odd if the goal is in a different location, the heuristic 
works well if the old path was successful because it began 
by moving to an area that offered good access to other parts 
of the maze.) The simple ideas behind the tier-2 Advisors 
support rapid computation. Given 10 seconds, no tier-2 Ari­
adne Advisor has yet run out of time, and no problem has 
occupied more than a minute. 

4. Experimental Results 
The data described here arose when Ariadne randomly gen­
erated a maze and tested the performance there of different 
reasoning agents. Because FORR is non-deterministic, re­
sults from 10 runs (i.e., 10 randomly-generated mazes) were 
averaged to produce an experiment. Experiments were per­
formed for problems with levels of difficulty 6, 8, 10, and 
12 in a 20 x 20 maze that was 30% obstructed. These pa­
rameters were selected to provide at least 1000 possible 
problems at the specified level of difficulty. Effectively, the 
level of difficulty of a problem is the minimum number of 
(left or right) turns the robot must make to reach the goal. 

In each maze the full version of Ariadne was given 10 
learning problems (robot location and goal location pairs) at 
a fixed level of difficulty. Then 5 newly-generated testing 
problems for the same maze and level of difficulty were of­
fered to all the agents with learning turned off. A problem of 
either kind was terminated when the reasoning agent 
reached the goal or when it had made 100 moves. (The 
learning problems established a useful knowledge base for 
those Advisors that depend on it. All agents using such Ad-
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visors had equal access to the learned knowledge.) The 100-
step limit incorporated any exploration during tier-1.5 
search. 

Four agents were tested. The FORR agent is the full ver­
sion of Ariadne; it used all 17 of the Advisors to simulate 
reactive decision making with situation-based behavior. The 
Random agent simply selected random legal moves; this is 
equivalent to blind search. Three ablated agents were for­
mulated by omitting tiers in the hierarchy. 
• The Reactive agent used only the tier-1 Advisors to simu­
late correct, reactive decision making alone. If more than 
one option was left after tier 1, a move was made at random. 
• The Reactive+ agent used the tier-1 and tier-1.5 Advisors 
to simulate reactive decision making with situation-based 
behavior but without heuristic reasoning. If no decision was 
made after tier 1.5, a move was made at random. 
• The Reactive-Heuristic agent used the tier-1 and tier-2 
Advisors to simulate correct and heuristic reactive decision 
making without situation-based behavior. 
During early trials the Random agent, solved only 12% of 
100 level 6 problems and 2% of 100 level 8 problems; it 
therefore serves merely as a benchmark and was eliminated 
from subsequent testing. Once any of the other agents per­
formed poorly at some level of difficulty, it too was elimi­
nated from testing at any higher level. 

Table 2 reports the results for the ablated agents and 
FORR averaged across the 10 runs in each experiment. 
"Solved" is the percentage of the test problems the agent 
could solve with at most 100 moves in the same maze. "Path 
length" is the Manhattan distance along the path to the goal. 
Since a step may move through more than one location, path 
length varies among problems of the same difficulty. 
"Moves" is the number of moves in the solution. The num­
ber of distinct locations actually visited during those moves 
is reported as "locations." "Triggers" measures the reliance 
of the system on tier 1.5; it is the number of passes through 
Figure 1 during which any situation-based Advisor exe­
cuted. Path length, moves, and locations are computed only 
over solved problems. (This makes the ablated agents look 

somewhat better than they actually are.) "Repetition" mea­
sures how repetitive an agent's paths are, calculated as 

1 locations 
moves 

On each problem level, "BFS%" indicates the percentage of 
the space reachable from the robot's initial position that 
breadth-first search would have visited on the same test 
problems. BFS% understates the cost of a physically exe­
cuted breadth-first search, whose many repetitive subpaths 
go uncounted here. 

The Reactive agent managed to find the goal about a 
quarter of the time on level 6 problems, not enough to con­
tinue testing it at higher levels. Its paths tend to be much 
more repetitious and several times as long as those of the 
other agents. The infrequent successes of the Reactive agent 
occur when large portions of the randomly-generated maze 
are unreachable from the robot's starting point, the way 
(1, 20) is in Figure 2. In such a maze the substantial random 
component of the Reactive agent's behavior was more likely 
to be effective. 

The Reactive-Heuristic agent, FORR's original formula­
tion, began to fail on the level 8 problems. Although it 
solves about as many problems there as the Reactive+ agent 
does, its paths are considerably longer and more repetitious, 
a precursor, in our experience, of dismal performance on 
slightly harder problems. The Reactive-Heuristic agent was 
eliminated from testing after level 10. 

The situation-based search Advisors of tier 1.5 make a 
clear contribution when combined with tier 1 as Reactive*, 
but they have a limited repertoire of behaviors. As the prob­
lems become more difficult. Reactive+ is clearly inadequate. 
It solved only 64% of the level 12 problems. 

In summary, as the problems become more difficult, sev­
eral things happen: breadth-first search reaches an increas­
ing percentage of the accessible unobstructed locations, the 
situation-based Advisors trigger more frequently, and the 
ability of the ablated agents to solve the problems becomes 
markedly inferior. FORR with tier-1.5 offers a measure of 
reliability and achievement the other versions lack. The 
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number of successes by the full FORR agent represents a 
statistically significant improvement over the others. 
(Indeed, inspection indicates that FORR often "had" the 
crucial solution fragment to many of its non-successes, but 
needed a few more steps to finish.) Although this work was 
predicated on the acceptability of suboptimal solutions, the 
successful paths of the ablated agents are extremely long. 
With all of FORR* s tiers in place, Ariadne gets the robot to 
the goal more often, more quickly, and considers fewer al­
ternatives along the way. 

5. Discussion 
This is not a domain in which one would want to do a stan­
dard search. The robot's knowledge is so limited that an or­
dinary evaluation function would be difficult to construct. 
(For example, closer to the goal is not necessarily better; 
there may be a very long wall there.) Depth-first search 
would require fairly elaborate backtracking and loop pre­
vention; very few of the test problems would be solvable in 
100 steps with depth-first search. Breadth-first search, while 
it will always solve the problem, does so at the cost of visit­
ing a high proportion of nodes in the search space and main­
taining a very large structure for open paths. Indeed, the data 
indicate that explicit, breadth-first search in these mazes is 
nearly exhaustive as the problems become more difficult. 
Means-ends analysis is not possible because the robot 
knows little, if anything at all, about the immediate vicinity 
of the goal. For a very large maze, then, explicit search 
would be extremely inefficient, perhaps intractable. 

Without Tier 1.5, FORR is a reactive system augmented 
by learned useful knowledge. The results with the Reactive-
Heuristic agent, however, simply are not good enough. This 
agent regularly gets stuck in regions where Giant Step can­
not extricate it; it needs maneuvers like Wander's L-shaped 
path to get out. It also regularly gets close to the goal but 
cannot see it because of an intervening wall; it needs 
Roundabout's determined circumvention to get closer. 

The situation-based Advisors, however, are insufficient on 
their own. They consistently trigger more often with Reac-
tive+ than with Ariadne, because most of their triggers mea­
sure lack of recent progress, something the robot experi­
ences more often with Reactive*. Tier 1.5 is, effectively, a 
device to execute subgoals. The subgoal is the opposite of 
the trigger, e.g., Wander tries to "get out of here," and 
Roundabout tries to "get around the wall." Subgoals are de­
tected by the program, but their nature is predetermined by 
the programmer. 

There is a complex relationship among the tiers. Tier 1 of­
fers the commonsense inherent in any problem solving task. 
Tier 2 tries to avoid search and effectively sets up the situa­
tion-based Advisors in tier 1.5 so that they can trigger. For 
example, Goal Row and Goal Column push the robot into a 
situation where Roundabout can trigger. In turn, the situa­
tion-based Advisors of tier 1.5 set up the heuristic reasoners 
in tier 2. For example, Wander puts the robot where all the 
tier-2 Advisors are more likely to make new, constructive 
comments. Another important side effect of the search in 
tier 1.5 is the acquisition of useful knowledge. (See 
[Epstein, 1995] for further details.) 

The initial impulse behind reactive programming was to 

avoid search. When one augments the reactive Advisors of 
tier 1 and tier 2 with tier 1.5, it is easy to forget that. Tier 1.5 
Advisors are kept within the search minimization philoso­
phy in two ways. First, FORR only allocates each Advisor, 
in any tier, a limited amount of computing time. Solution 
fragments that take too long to construct will not be consid­
ered. Second, tier-1.5 Advisors have hand-coded routines 
intended to address their particular subgoals. These routines 
generate and test solution fragments, just the way the com­
mander did, but the proposed partial solutions must be 
highly constrained, just as the commander's were. This con­
straint saves the tier-1.5 Advisor from a combinatoric explo­
sion. For example, Roundabout follows a procedure that 
first moves it as close to the wall between it and the goal as 
possible (the goal direction) and then "kicks" it away in an 
orthogonal direction (the secondary direction), with a pref­
erence for clockwise. After that, Roundabout seeks the goal, 
trying to move in the goal direction, then the secondary di­
rection, and then their opposites. Roundabout has some 
mechanisms to prevent loops in a path, and initially the kick 
is of length one. As long as Roundabout does not find a way 
around the wall and still has time left, it will increment the 
kick by one and try again. Although this search is quite 
deep, it also severely curtailed by knowledge; that is why it 
is effective. 

There are two ways to view Ariadne's task as resource-
limited. If CPU time is a scarce resource, then the agent that 
makes the fewest passes through Figure 1 is best. If travel­
ing time or fuel is a scarce resource, then the agent that 
constructs the shortest paths is best. On both metrics the full 
FORR agent achieves a synergy that its individual compo­
nents lack. 

6. Related Work 
Situation-based behavior is not case-based reasoning (CBR), 
although they have much in common. In CBR, experiences 
are indexed and stored. Later, one or more potentially rele­
vant cases are retrieved, and an attempt is made to modify 
their solutions to solve the current problem [Kolodner, 
1993], Although situation-based behavior is triggered by an 
abstraction of the current state that could have been used as 
an index for CBR, situation-based behavior does not retrieve 
specific solutions to be modified, only procedures intended 
to generate solution fragments. Situation-based behavior and 
CBR both constrain solution generation, but CBR does it by 
searching from old solutions, while situation-based behavior 
does it by the knowledge inherent in its procedures. Klein 
and Calderwood emphasize that the human experts they 
study do not perceive their problem solving as reminding. 
(This is not a claim that CBR has no parallel in people, only 
that it is less likely to be used when resources are very lim­
ited.) 

Situation-based behavior is not planning either. A plan is 
a set of actions intended to reach a specific goal [Tate, et al., 
1990]. The commander tested holding devices by incorpo­
rating them into plans and then simulating those plans until 
one promised success. The Advisors of tier 1.5, however, 
are not planners because they actually execute their behav­
ior, even if they do not eventually recommend it. For exam­
ple, Wander can investigate as many as eight L's (by mov-
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ing one longest step in each direction and then testing for 
possible second steps) before it chooses one to execute. 
Rather than planners, situation-based Advisors are proce­
dures that reactively seize control of a FORR-based pro­
gram's resources for a fixed period of time. When that time 
elapses the situation-based Advisor either returns control to 
tier 2 or returns a sequence of actions whose execution it re­
quires. Tier 2 constitutes a reactive decision maker, much 
like Pengi [Agre and Chapman, 1990]. The principal differ­
ence is that Pengi's problem is living in its world; it is not 
held to an explicit decision standard like Ariadne's "solved 
in 100 decision steps." 

Situation-based behavior is a resource-grabbing, heuristic 
digression intended to produce a solution fragment, not a 
production rule or a macro-operator. Although the trigger of 
a tier-1.5 Advisor could be the condition of a production 
rule, the comment generator's response is too complex 
(particularly since it can be rescinded) to be the action part. 
A macro-operator is a generalization across the variables en­
tailed in a successful procedure, whereas a situation-based 
Advisor is a procedural generalization over several kinds of 
behavior appropriate to a situation. 

This work has some clear counterparts with Korf s analy­
sis of heuristic search in the tile puzzles [Korf, 1990]. His 
minimin search "strategy of least commitment" is shared by 
Ariadne's Plod, but it of necessity lengthens the number of 
steps in a solution. For example, if the correct, unobstructed 
move is from (1, 1) to (1, 10), plodding will take 9 moves to 
get there, although an immediate move to (1, 10) would be 
legal. Ariadne's Mr. Rogers uses the Euclidean distance 
heuristic much the way Korf tried heuristic node ordering in 
the tile puzzles, and with the same disappointing results. 
Once you get close in this domain, too, there may be better 
ways to reach the goal. Korf s permission to backtrack with 
loop prevention is analogous to some of the decision-mak­
ing in Roundabout. Ariadne has no foolproof loop preven­
tion, but Been There and Done That discourage loops. In 
Ariadne's graph (rather than tree) search space, Korf indi­
cates that one cannot expect locally optimal solutions. If the 
search horizon were limited only by how far the robot could 
see ahead, the Reactive-Heuristic agent should solve few 
problems, since it sees only one step ahead. That agent's 
better than expected performance is attributable to its useful 
knowledge about a particular maze and its general maze-
traveling knowledge in the tier-2 Advisors. It is possible to 
dictate the level of difficulty in Ariadne's problems, but 
with the tile puzzles there remains some uncertainty about 
how the level of difficulty impacts upon the ability of the 
problem solver. 

Although Ariadne's maze problems may be reminiscent 
of recent machine learning work in reinforcement learning, 
it is important to note that the program's task and funda­
mental approach are significantly different [Moore and 
Atkeson, 1993; Sutton, 1990]. Such programs seek conver­
gence to an optimal path through repeated solution of what, 
according to our definition in Section 3, would be a single 
problem. In contrast, Ariadne constructs satisficing paths for 
a set of problems, applying knowledge learned from one 
problem to the others, instead of from one problem-solving 
attempt to another attempt at the same problem. The com­
plexity of a maze problem for the reinforcement learners is a 

function of both goal strength and the number of state-action 
pairs (the number of reachable locations and directed one-
step movements from them). The complexity of a problem 
for Ariadne, on the other hand, is the numbers of turns re­
quired, independent of the size of the maze and the strength 
of the goal. Memory use is different, too. Ariadne learns 
abstractions, while the reinforcement learners refine esti­
mates for the value of each one-step move attempted from 
each state. 

Finally, situation-based behavior sheds some light on the 
ongoing debate about representation and reactivity [Hayes, 
et al., 1994]. Ariadne's conceptual knowledge includes "the 
last 30% of the moves have been in no more than 5% of the 
locations in the maze" and "a wall lies between the aligned 
robot and the goal." This paper demonstrates that, at least in 
this domain, the representation of conceptual knowledge is 
an essential component in a reactive learner. 

7. Future Work 
An important difference between FORR with tier 1.5 and 
the rescue team commander is the fact that he ran his suc­
cessful simulation four times before he implemented it. If 
Ariadne were to do that, it could substantially shorten its 
path lengths by removing loops and checking for shortcuts. 
In the experiments, if a tier-1.5 Advisor discovered a partial 
solution but could not execute it within the 100-move limit, 
its agent was still considered to have failed on the problem. 
This accounts for most of the FORR agent's failures. With 
path reconstruction, Ariadne would solve even more prob­
lems, but not more efficiently, since one would have to 
count the nodes revisited once the path was refined. The al­
ternative, one we are pursuing now, is to have Ariadne learn 
additional useful knowledge about past paths. 

Based on preliminary empirical evidence, there is every 
reason to believe that Ariadne will scale up, i.e., that it will 
continue to perform well in much larger and more tortuous 
mazes than these. Hoyle, a FORR-based game-learning pro­
gram, progressed from expertise in spaces with several thou­
sand nodes to spaces with several billion nodes after the ad­
dition of only a few tier-2 Advisors. Ariadne has already 
performed well on preliminary tests in 30 x 30 mazes and 
continues to improve as we refine its Advisors and its learn­
ing algorithms. 

Ariadne's continued development addresses the balance 
between exploration and rapid solution. Since the data indi­
cate that repetitive paths are a forewarning of weakness, we 
intend to strengthen its penchant for novelty. There are also 
several new tier 1.5 Advisors on the drawing board. 

The thesis of this work is that some carefully constrained 
search can play an important role in the performance of an 
otherwise reactive and heuristic system. One could make the 
task more difficult, say by permitting the goal to shift during 
the problem, and still expect Ariadne to do well. Preliminary 
work with Hoyle in the domain of game playing indicates 
that situation-based behavior does well there too [Epstein 
and Gelfand, 1995]. 

Ideally one would like to see a FORR-based program 
learn tier 1.5, not just use it. AWL is an algorithm that learns 
weights for tier-2 Advisors [Epstein, 1994b]. It was devised 
to exploit empirical evidence that the accuracy of tier-2 

460 COGNITIVE MODELLING 



Advisors varies with the problem class. Work is currently 
under way to apply AWL so that FORR can learn to priori­
tize tier-1.5 Advisors for each problem class automatically. 
(Recall that now those priorities are assigned by the pro­
grammer.) The next step would be to learn the triggers. We 
have done some early work on trigger learning with Hoyle 
[Epstein, and Gelfand, 1995]. The triggers learned there are 
visual patterns; we expect to analogize some of that work 
for Ariadne. Finally, one would like to learn the comment-
generating procedure to accompany a learned trigger. This 
may be possible as a generalization over successful solutions 
after the trigger is satisfied, but it is a difficult problem. 

8. Conclusions 
For many intractable real-world problems, a suboptimal so­
lution may be acceptable. Situation-based behavior is mod­
eled on human production of suboptimal solutions under 
time constraints. A reactive system goes from perception 
(sensing the state of the world) to an associated action, 
without any opportunity to reason about the state. With tier 
1.5, FORR, like Klein and Calderwood's subjects, perceives 
and then reasons about the current state of the world before 
it elicits an associated action, but still maintains some of the 
advantages of reactivity. Ariadne's success at maze search is 
a clear indication that some highly-restricted, intelligent 
search is an important component in the simulation of effi­
cient, effective decision making under resource limitations. 
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