
G e n e r a l i z i n g I n c o n s i s t e n c y L e a r n i n g f o r C o n s t r a i n t S a t i s f a c t i o n * 

Eugene C. Freuder and Richard J. Wallace 
Department of Computer Science 

University of New Hampshire 
Kingsbury Hall M208, College Road 

Durham, NH 03824 USA 
e-mail: ecf,rjw@cs.unh.edu 

Abs t rac t 
Constraint satisfaction problems, where values 
are sought for problem variables subject to re-
strictions on which combinations of values are 
acceptable, have many applications in artificial 
intelligence. Conventional learning methods 
acquire individual tuples of inconsistent values. 
These learning experiences can be generalized. 
We propose a model of generalized learning, 
based on inconsistency preserving mappings, 
which is sufficiently focused so as to be compu­
tationally cost effective. Rather than recording 
an individual inconsistency that led to a fail­
ure, and looking for that specific inconsistency 
to recur, we observe the context of a failure, 
and then look for a related context in which 
to apply our experience opportunistically. As 
a result we leverage our learning power. This 
model is implemented, extended and evaluated 
using two simple but important classes of con­
straint problems. 

1 I n t roduc t i on 
1.1 Overview 
Constraint satisfaction problems (CSPs) involve finding 
values for problem variables subject to constraints on 
which combinations of values are allowed. They have 
many applications in artificial intelligence, ranging from 
design to diagnosis, language understanding to machine 
vision. A solution is an assignment of a value to each 
variable such that all the constraints are simultaneously 
satisfied. A constraint on a subset of k variables can 
be regarded as a set of k-tuples of values, where each k-
tuple represents an inconsistent choice of values for those 
variables. 

In addition to the inconsistencies in the constraints 
that are given to define the problem, there are implicit 
inconsistencies, that become apparent during the search 
for a solution. In general, a k-tuple of values is incon­
sistent, or a nogood1, if it does not appear in any solu-

*This material is based on work supported by the National 
Science Foundation under Grant No. IRI-9207633 

1We only consider global nogoods, whose inconsistency 
does not depend on a context of other choices. 

tion. Solution methods are commonly based on back­
track search. When a failure is encountered during 
search, there are "learning" methods that can identify 
and record an individual nogood "responsible" for the 
failure. While the inference methods employed to ex­
tract the nogoods may be relatively sophisticated, the 
actual learning tends to be rather primitive. There is 
little if any of the generalized learning from examples or 
background knowledge that has been employed so suc­
cessfully in the machine learning community. (There 
are other interesting applications of learning methods 
to constraint satisfaction, to synthesize heuristics or al­
gorithms, but we focus here on learning additional con­
straint information.) 

As a simple, motivating example of generalized learn­
ing consider five vertices, A, B, C, D and E in a coloring 
problem with a great many vertices and three colors: red, 
blue and green. Suppose that there are no edges among 
these five, but that each of them is connected to vertex 
F. A person trying to color the vertices in lexical or­
der would observe that while there are no edges between 
vertices A, B and C, nevertheless there is an implied 
constraint that if A is red and B is blue, then C cannot 
be green. A CSP search algorithm could make the same 
observation. A standard CSP learning algorithm could 
learn and remember that the triple of values (red, blue, 
green) for the triple of variables (A, B, C) is inconsis­
tent. A person, however, would be likely to generalize 
that learning: 

• A person could recognize that D and E cannot be 
green either, when A is red and B blue. 

• When encountering a similar configuration among 
other variables elsewhere in the problem, the per­
son could recognize that this situation had been en­
countered before. 

• A person would understand that the specific colors 
involved are not critical, they could be black, orange 
and brown. 

• A person might even observe that a similar situation 
exists when four colors are available (or n colors). 

In this paper we introduce a basic form of general­
ized learning. The principle behind it is this: when a 
subproblem "learning environment" can be mapped onto 
another subproblem encountered later in the search with 

FREUDER AND WALLACE 563 



an "inconsistency preserving mapping", then the original 
learned nogood generalizes to the new situation. 

Of course, finding such mappings could easily become 
more computationally expensive than solving the orig­
inal problem. To apply the general insight we need to 
identify learning contexts that are general enough to be 
interesting, but restricted enough to make generalization 
cost effective. We identify a basic context that meets 
these criteria (which encompasses, in particular, the first 
two examples of generalization listed above), and then 
begin to relax the restrictions. 

We validate the utility of generalization in two spe­
cific contexts. We start by considering "coloring" prob­
lems in which the single permitted constraint is inequal­
ity. These "constraints of difference" [Regin, 1994] are of 
considerable interest, and in fact model basic coloring, 
scheduling and resource allocation problems. Next we 
add the ordering constraints: <, >, <, >, =. 

1.2 Relation to Previous Work 
There is a stream of work on CSP nogood learning (see 
[Frost and Dechter, 1994; Schiex and Verfaillie, 1993] 
for recent examples) with connections to truth main­
tenance (e.g. [Smith and Kelleher, 1988]). There is a 
stream of work on CSP symmetry (see [Ellman, 1993; 
Puget, 1993] for recent examples), which extends at least 
as far back as ([Fillmore and Williamson, 1974]). One 
of the current authors did some tentative work earlier 
on subgraph isomorphism in constraint graphs [Freuder, 
1984]. Benhamou [Benhamou, 1994] uses symmetrical 
values and search branches to improve CSP algorithms. 

The current work brings these two streams together, 
using isomorphic mappings to generalize learned no-
goods. We find local mappings, dynamically during 
search, between subproblems, in which some of the vari­
ables have been instantiated to specific value choices. 
The pruning done by the basic form of generalization 
that we implement would be subsumed by some forms of 
look-ahead (though not by forward checking alone) [Har-
alick and Elliott, 1980]. However, generalization accom­
plishes the pruning in a more targeted manner; our ex­
perimental results show that generalization can be more 
cost effective than the additional look-ahead. 

2 Pr inc ip le 
Generalization will be based on inconsistency preserv­
ing mappings. A mapping takes a value/variable pair, 
e.g. red/A, value red for variable A, into another 
value/variable pair. An inconsistency preserving map-
ptng, f, from a source subproblem, S, to a destination 
subproblem, D, is a function from the value/variable pairs 
of S into the value/variable pairs of D, such that if any 
v/V is inconsistent with any u/U in S, then f(v/V) will 
be inconsistent with f(u/U) in D. Clearly, inconsistency 
preserving mappings can permit us to generalize the ap­
plication of learned nogoods by mapping a nogood ac­
quired in one subproblem into a situation encountered 
in another subproblem. 

Just as clearly, looking for these mappings could eas­
ily be computationally counterproductive. We can focus 

our attention along a number of axes: semantic, syntac­
tic and pragmatic. We choose a very restricted starting 
point on each of these axes, to establish a basic model 
of generalization learning, and then begin to move out­
ward. We begin with with value-identity mappings such 
that a value/variable pair, v/V, can only map into a 
pair, v/U, involving the same value. We assume that 
in a given problem all variable domains are the same, 
and all the given constraints are the same, and binary 
(involves only two variables). We use the fundamental 
"deadend learning" context to establish the structure of 
the source subproblem, and the basic backtrack search 
structure to propose destination subproblems. 

Instances of the prototypical source and destination 
problems, with an inconsistency preserving mapping be­
tween them, are shown in Figure 1. The source sub-
problem consists of a hub variable and k spoke vari­
ables. Each spoke variable domain has been reduced 
to a single value; all these values are deemed mutually 
consistent by the given problem constraints. Every value 
in the hub variable domain is inconsistent with at least 
one of the spoke variable values. This is the basic CSP 
deadend learning situation, in which we record that the 
spoke variable values (or some subset of them) form a 
learned nogood.2 Here, for simplicity, we assume that 
the hub variable in the destination problem corresponds 
to the current variable in the search, the one for which 
we are about to choose an instantiation. The values 
from k-1 of the spoke variables in the source map into 
k-1 previously chosen values in the destination. The kth 
source spoke variable corresponds to a "future" unin-
stantiated variable at the destination. Applying the dis­
covered generalization is done by pruning the value in 
the source subproblem corresponding to the value at the 
kth spoke variable. (Note that there may be additional 
"past", instantiated variables, or future, uninstantiated 
ones that constrain the current variable. The other fu­
ture variables offer additional opportunities for general­
ization pruning.) 

Given the assumptions that we have made here, it 
is easy to see that this is an inconsistency preserving 
mapping, and that to discover it all we have to do is 
observe that k-1 of the source spoke values appear in 
instantiated variables that share a constraint with the 
current variable in the destination subproblem. (For ex­
ample, there may be constraints between spoke variables 
in the source, but they are irrelvant now since the spoke 
variable values are all mutually consistent.) Discovering 
source problems requires essentially the same effort as 
deadend learning; the effort expended in looking for an 
opportunity to generalize is strictly circumscribed. 

In the next sections we will implement and evaluate 
this basic generalization mechanism. We start by consid­
ering "coloring" problems in which the single permitted 
constraint is inequality. These problems precisely fit the 
basic model we have just introduced. Next we add the 

2In more advanced learning the deadend can consist of 
a subproblem rather than a single variable. This is beyond 
the scope of the present paper; however, we believe we can 
generalize such advanced learning, and avoid combinatorial 
explosion by limiting the size of the failed subproblem. 

564 CONSTRAINT SATISFACTION 



ordering constraints. This motivates us to relax the re­
strictions of the basic model. We observe that mappings 
will be inconsistency preserving as before as long as the 
constraints in the destination are more restrictive than 
the corresponding constraints in the source (e.g. "<" is 
more restrictive than "<"). We also move beyond value-
identity mapping in this context. 

3 Nogood Learn ing and General izat ion 
Generalization can, of course, be used with a variety of 
CSP algorithms. In the present paper, a forward check­
ing engine is used to evaluate the effect of adding gen­
eralization. As part of the overall comparison, nogood 
learning without generalization [Dechter, 1990] [Schiex 
and Verfaillie, 1993] is also considered. 

We first describe our nogood learning procedure, and 
then discuss the ways in which learning based on gen­
eralized nogoods differs from it. When nogood learning 
is used with forward checking, preclusion based on k-ary 
nogoods is performed in tandem with ordinary preclu­
sion (Figure 2). (In "ordinary preclusion", values in fu­
ture (uninstantiated) domains that are inconsistent with 
the latest value chosen for instantiation are discarded, 
or precluded.) For fixed order search, k-ary nogoods are 
ordered by their variables in accordance with the search 
order. Each nogood is associated with the penultimate 
variable in its ordered set. At this point in search, a 
match with previous assignments, plus the value cur­
rently being considered for the current variable, allows 
preclusion of the domain of the last variable in the no-
good. 

Two variants of nogood learning will be considered. 
One is based on the set of variables that are adjacent 
to one that has been wiped out. This is the procedure 
that [Frost and Dechter, 1994] call graph-based nogood 
learning. The other is based on the preclusion set, i.e., 
the variables whose assignments led to deletions of values 
in the domain that has been wiped out. This is called 
the jump-back set by [Frost and Dechter, 1994] and the 

Figure 2: Scheme for Nogood Learning. 

In the algorithms discussed here nogood building is 
based solely on ordinary preclusion. Thus, results of 
preclusion due to k-ary nogoods are not used. This 
would have required further elaborations to search for 
the relevant variables and to combine them properly. 
Since the nogoods will be larger than ones based on ordi­
nary preclusion, they are probably not as useful. This is 
because the probability that a nogood matches a current 
partial assignment decreases as the size of the nogood in­
creases. Some overhead is incurred because the program 
has to check that domain wipeout did not involve k-ary 
nogoods. 

The procedure for building generalized nogoods is sim­
ilar to that used for ordinary nogood learning (Figure 3). 
Nogoods are built following wipeout of a domain. But in 
this case the nogood consists of a set of disallowed val­
ues (one per domain) together with the conditions under 
which they are disallowed. In the general case these con­
ditions are: the type of constraint and the original set of 
values in the domain that was wiped out. If a particu­
lar condition is consistent for the entire problem, then it 
does not need to be specified. For example, if the original 
domains of the problem are identical, then a nogood will 
hold for any subproblem having the necessary pattern of 
constraints. If both the domains and the constraints are 
constant for a problem, then only the values need to be 
specified. 

For coloring problems, inconsistency mapping was 
done so that the hub variables were the uninstantiated 
(i.e., future) variables adjacent to the variable currently 
considered for instantiation. In other words, generaliza­
tion was based on a look-ahead by one procedure. In 
coloring problems, if the current variable itself is used as 

FREUDER AND WALLACE 565 



the hub, then preclusion based on nogoods is completely 
redundant with ordinary preclusion. This is because no-
good preclusion will apply only in those cases where the 
domain of the current variable has been reduced to the 
one value that can be precluded from the adjacent do­
mains. But, then, the value in the current domain will 
also preclude the same values from the adjacent domains, 
with the same (total) number of constraint checks. Since 
look-ahead by one proved to be a successful strategy, it 
was used with all sets of problems. 

it 

Figure 3: Scheme for Generalized Nogood Learning 
(with look-ahead by one). 

As with ordinary nogood learning, variants based on 
adjacency sets and on preclusion sets were included in 
the tests. In connection with adjacency sets, two further 
cases are considered. In the first, there is no attempt 
to minimalize the set of nogoods and all are used in at­
tempting to preclude values. The second case involved 
minimalization. For nogood learning this is probably 
too expensive [Dechter, 1990; Frost and Dechter, 1994]. 
But, if there is only one set of generalized nogoods, as in 
the cases considered here, minimalization may be cost-
effective. 

4 Exper imenta l Tests 

4.1 Problems Tested 
Generalization in k-coloring problems is carried out as 
described in the previous section. If a nogood is discov­
ered during search, it can be used with any variable hav­
ing k or more adjacent variables, to delete values from 
some of the adjacent nodes. Of course, some procedures 
(those based on adjacency sets) may discover nogoods 

that are multisets of the k colors, and these can be gen­
eralized in the same fashion. 

Figure 4: Performance on 3-color problems, density = 
0.03. Means for 50 problems. Legend maps onto columns 
of graph when former is rotated counterclockwise. 

For problems with ordering constraints based on rela­
tional operators ("relop" problems), nogoods are discov­
ered in the same fashion as with coloring problems. For 
ordinary nogood learning, use of nogoods during search 
is also identical. However, in order to generalize prop­
erly, information about constraints must be considered 
in addition to nogood values. In the general case these 
nogoods are applied according to the mapping princi­
ples described in Section 2. This means that each con­
straint associated with a nogood value must match (by 
subsumption) a constraint in the subproblem being con­
sidered, and that the nogood value must not be more 
constraining than the current instantiation. 

For example, suppose that the domains of a problem 
are all {1, 2, 3, 4} and that the assignment for variable 
Vi must be greater or equal to the value of variable vk*, 
and the assignment for variable Vj must be equal to the 
value of Vk. In this case, assigning values 3 and 4, respec­
tively, to f, and Vj results in a wipeout of the domain 
of Vk- This nogood can be represented by the tuple, ((> 
3) (= 4)), whose elements can be thought of as partial 
Lisp expressions with the second argument unspecified. 
In addition to matching any subproblem with the same 
constraints and values, the first element of this nogood 
will match an assignment of 2 to a variable associated 
with a > constraint, an assignment of 3 to a variable 
with a > constraint, and so forth. 

Clearly, the effort to find a general match in this case 
may be too costly. In particular, finding an adequate 
mapping may require backtracking when a nogood ele­
ment can be matched to more than one element in the 
subproblem. However, the comparison criteria can be 
tightened, and search effort may still be reduced with 
acceptable overhead. For example, the comparison can 
be discontinued if a nogood element does not match any 
of the remaining instantiations, to avoid backtracking. 
In addition, matches can be restricted to identity map­
ping of constraints (here, exact matches for the relational 

566 CONSTRAINT SATISFACTION 



operators). And, in addition to these matching strate­
gies, targeting strategies can be used to limit the number 
of contexts that are checked for mapping. In sum, what 
generalization offers in this context is a set of opportu­
nities for nogood matching with attendant tradeoffs be­
tween search reduction and complexity of the additional 
computation. 

Figure 5: Performance on 3-color problems, density = 
0.04. Means for 50 problems. Same relation between 
legend and figure as in Figure 4. 

4.2 Experimental Methods 
Coloring problems had either three or four colors. Three-
color problems had 100 variables and an expected graph 
density of 0.02, 0.03 or 0.04; Four-color problems had 70 
variables and an expected density of 0.09. (Here, density 
is measured in terms of edges added to a spanning tree.) 
The 3-color densities span the critical region for problem 
complexity. In accordance with this, problem difficulty 
increases from 0.02 to 0.03 density, and decreases again 
at 0.04 density. The percentage of problems with solu­
tions at successively higher densities was 98, 12 and 0. 
Four-color problems were also in the critical region; 56 
percent of these problems had solutions. 

Relop problems had 45 variables and expected densi­
ties of 0.01 and 0.02. The percentage of problems with 
solutions at successively higher densities was 46 and 4. 

Both types of problem were generated according to 
a random model for arc inclusion. Construction began 
with a spanning tree in which successive nodes were cho­
sen at random and connected at random to nodes already 
in the tree. Then each remaining edge was chosen with 
a probability equal to the expected density. For relop 
problems, the type of each constraint was chosen at ran­
dom from among the six possibilities. Fifty problems 
were generated for each sample. 

The basic experimental comparison was with forward 
checking. In these experiments, each algorithm was run 
with a fixed variable ordering based on (maximum) de­
gree of a node in the constraint graph for the CSP. (We 

are currently implementing dynamic ordering by mini­
mal domain size; this should still allow improvement due 
to nogood learning, as [Frost and Dechter, 1994] have 
shown.) Forward checking with look-ahead (FC+LA-1) 
was also tested to determine the effect of this proce­
dure, which was used with generalized nogood testing. 
Look-ahead was done using distance bounded relaxation 
[Freuder and Wallace, 1991] with distance = 1, which 
was the same as the distance used with the nogood algo­
rithms. Results were also compared with two of the most 
powerful techniques for solving CSPs: forward check­
ing with conflict-based backjumping (FC-CBJ) [Prosser, 
1993] and maintained arc consistency (MAC3) [Sabin 
and Freuder, 1994]. In the latter case, an AC-3-like pro­
cedure was used to maintain arc consistency, in order to 
have a measure (consistency checks) that allowed com­
parison with the other algorithms. 

For coloring problems, both ordinary and generalized 
nogood learning (NG and GenNG or Gen in the tables) 
were tested using either adjacency sets or preclusion sets 
("adj" and "precl" in tables); adjacency sets were either 
full or minimalized when used with generalized nogoods. 
For relop problems, testing was done with preclusion 
sets only. The following types of generalization were 
also tested: (i) simple identity matching (GenNG-id), 
(ii) identity matching of constraints (relational opera­
tors) and set/subset matching of values (GenNG-idop), 
(iii) set/subset matching of both operators and values. 
For the last two categories, a kind of minimalization was 
also carried out, according to the following procedure. 
If k-1 elements in two nogoods were identical, the kth 
elements were matched for operators. If both operators 
were in the set {>, >} or in {<, <}, then the element 
whose value was more inclusive was retained. 

Three measures of performance were used: backtracks, 
constraint checks and total search time. The number of 
backtracks, i.e., the number of times the values in a do­
main were exhausted causing search to back up, is an 
indication of the size of the search tree. Number of con­
sistency (or constraint) checks often gives a better overall 
view of performance. All algorithms did some consis­
tency checking as part of the preclusion done by forward 
checking. Algorithms that incorporated nogood learning 

FREUDER AND WALLACE 567 



also checked k-ary nogoods. Algorithms that employed 
look-ahead also did consistency testing between values 
in domains of future, uninstantiated variables. Natu­
rally, k-ary constraint checks differ from ordinary con­
straint checks in the time required, and the time required 
to test ordinary nogoods is different from the time to 
test generalized nogoods. For these problems simple no-
good testing was faster than ordinary constraint check­
ing, partly because the nogoods were small and look-up 
operations were simpler. (Rapidity of failure when test­
ing successive nogood variables may also have been a 
factor.) Generalized nogood testing was more involved, 
since the set of variables and their order were not known 
in advance; hence, this operation was slower than ordi­
nary constraint checking. (These differences are most 
evident in the data of Table 2.) 

Experiments were run on a DEC Alpha (DEC 3000 
M300LX). Algorithms were coded in Common Lisp, us­
ing Lispworks by Harlequin. All solutions were tested 
for validity; in addition, solutions produced by the new 
algorithms described in this paper were compared with 
those produced by a version of forward checking that has 
been thoroughly tested in previous work. (All of these 
algorithms should find the same first solution to a prob­
lem if the same variable and value orderings are used.) 

4.3 Results 
Coloring Problems 
For all problem sets, nogood learning improved on for­
ward checking alone (Figures 4-5, Tables 1-2). In most 
cases generalized nogood learning was better than or­
dinary nogood learning; the only exception was for 3-
color problems with expected density = 0.02 (see Table 
1). Comparisons involving look-ahead show that this 
technique may have been partly responsible for the im­
provement found with generalized nogood learning, but 
the latter was superior to straight look-ahead in situ­
ations in which it was also better than ordinary no-
good learning. Generalized nogood learning also out­
performed forward checking with conflict-directed back-
jumping or maintained arc consistency on most problem 
sets, including those in the critical complexity regions. 

As would be expected, minimalizing nogoods reduced 
the number of constraint checks. Timing data also in-

dicate that overall performance was improved, so that 
minimalization used with generalized nogood learning 
was cost-effective in this case. Using preclusion sets was 
more effective than using adjacency sets for both ordi­
nary and generalized nogood learning, and this difference 
was greater for the harder 4-color problems. But for gen­
eralized nogood learning, minimalization made the two 
almost identical with respect to search time and mea­
sured operations. 

Relop Problems 
For these problems, nogood learning was again supe­
rior to forward checking alone (Figure 6). The effect 
of using generalized nogoods depended on the charac­
ter of the match and the use of minimalization. With 
pure identity matching, performance was actually worse, 
showing that a simple matching strategy corresponding 
to the one used with coloring problems was not suffi-
cient in this case. More sophisticated matching based 
on set/subset relations was much more successful, and 
performance was further improved by the minimaliza­
tion procedure. (Examination of data structures during 
runs confirmed that this procedure did reduce the prolif­
eration of nogoods found during search.) Although the 
results were not as good as those for ordinary nogood 
learning, they show that generalization can improve on 
the basic forward checking engine even for problems with 
a fairly complicated pattern of constraints. 

The targeting strategies mentioned at the end of Sec­
tion 4.1 have not yet been implemented and these may 
improve performance further. In particular, a simple 
'match and store' strategy, in which matching nogoods 
are stored in a manner similar to ordinary nogoods, may 
reduce the amount of redundant matching during search. 

5 Conclusion 
By using inference, background knowledge, and recog­
nizing structural similarities within and among prob­
lems, we can potentially leverage our learning power. 
We have identified a basic principle that supports gen­
eralized learning, and begun to identify specific contexts 
in which the principle can be profitably applied. 

568 CONSTRAINT SATISFACTION 



References 
[Benhamou, 1994] B. Benhamou. Study of symmetry 

in constraint satisfaction problems. In Second Work-
shop on Principles and Practice of Constraint Pro­
gramming, PPCP-94, pages 246-254, 1994. 

[Dechter, 1990] R. Dechter. Enhancement schemes for 
constraint processing: backjumping, learning, and 
cutset decomposition. Artificial Intelligence, 41:273-
312, 1990. 

[Ellman, 1993] T. Ellman. Abstraction via approximate 
symmetry. In Proceedings IJCAI-93, pages 916-921, 
1993. 

[Fillmore and Williamson, 1974] J. P. Fillmore and 
S. G. Williamson. On backtracking: A combinato-
rial description of the algorithm. SI AM Journal of 
Computing, 3:41-55, 1974. 

[Freuder and Wallace, 1991] E. C. Freuder and R. J. 
Wallace. Selective relaxation for constraint satisfac­
tion problems. In Int'l Conference on Tools for Arti­
ficial Intelligence, TAI-9I, pages 331-339, 1991. 

[Freuder, 1984] E. C. Freuder. Utilizing subgraph iso­
morphism in constraint graphs. Tech. Rept. 84-13, 
Computer Science Dept, Univ New Hampshire, 1984. 

[Frost and Dechter, 1994] D. Frost and R. Dechter. 
Dead-end driven learning. In Proceedings AAAI-94, 
pages 294-300,1994. 

[Haralick and Elliott, 1980] R. Haralick and G. Elliott. 
Increasing tree search efficiency for constraint satis­
faction problems. Artificial Intelligence, 14:263-313, 
1980. 

[Prosser, 1993] P. Prosser. Hybrid algorithms for the 
constraint satisfaction problem. Computational Intel­
ligence, 9:268-299,1993. 

[Puget, 1993] J.-F. Puget. On the satisfiability of sym­
metrical constraint satisfaction problems. In Seventh 
International Symposium, ISMIS-93, 1993. 

[Regin, 1994] J.-C. Regin. A filtering algorithm for con­
straints of difference in csps. In Proceedings AAAI-94, 
pages 362-367,1994. 

[Sabin and Freuder, 1994] D. Sabin and E. C. Freuder. 
Contradicting conventional wisdom in constraint sat­
isfaction. In Proceedings ECAI-94, pages 125-129, 
1994. 

[Schiex and Verfaillie, 1993] T. Schiex and G. Verfaillie. 
Nogood recording for static and dynamic constraint 
satisfaction problems. In Int'l Conference on Tools 
with Artificial Intelligence, TAI-98, pages 48-55,1993. 

[Smith and Kelleher, 1988] B. Smith and G. Kelleher. 
Reason Maintenance Systems and Their Applications. 
Ellis Horwood, Chichester, England, 1988. 


