
T h e G e n e r i c F r a m e P r o t o c o l 

Peter D. K a r p Karen L. Myers 
Artificial Intelligence Center 

SRI International 
333 Ravenswood Ave. 

Menlo Park, CA 94025 
Phone: 415-859-6375 Fax: 415-859-3735 

pkarp@ai.sri.com myers@ai.sri.com 

Abst rac t 

The Generic Frame Protocol (GFP) is an ap­
plication program interface for accessing knowl­
edge bases stored in frame knowledge represen­
tation systems (FRSs). GFP provides a uni­
form model of FRSs based on a common con­
ceptualization of frames, slots, facets, and in­
heritance. GFP consists of a set of Common 
Lisp functions that provide a generic interface 
to underlying FRSs. This interface isolates an 
application from many of the idiosyncrasies of 
specific FRS software and enables the develop­
ment of generic tools (e.g., graphical browsers, 
frame editors) that operate on many FRSs. To 
date, GFP has been used as an interface to 
LOOM, Ontolingua, THEO, and SIPE-2. 

1 I n t roduc t i on 
Frame knowledge representation systems (FRSs) have a 
long history within the knowledge representation (KR) 
community. FRSs have been used as information-
management components for planners, expert systems, 
and natural-language understanding systems. A recent 
review identified more than 50 FRSs, including the KL-
ONE family (with members such as LOOM and BACK), 
and the UNITS family (with members such as CYCL and 
THEO) [4]. 

FRSs are in danger of extinction, however, because of 
several serious limitations. They do not scale to large 
knowledge bases (KB). They do not support multiuser 
access. Most cannot provide networked, client-server op­
eration. It is difficult to reuse the knowledge in a given 
FRS across applications, and it is difficult to reuse high-
level knowledge base management utilities (such as KB 
browsers and editors) across a range of FRSs. In con­
trast, object-oriented databases do not suffer many of 
these limitations, and they duplicate many capabilities 
of FRSs. Their growing popularity may end all hope 
that FRSs can have significant impact in the general 
computing community. 

Our groups at SRI and Stanford, and the AI 
knowledge-sharing community, are addressing these lim­
itations. At SRI, Karp and Paley are integrating 
database storage technology and multiuser access ca-

Tom Gruber 
Knowledge Systems Laboratory 

Stanford University 
Stanford, CA 94305 

gruber@ksl.stanford.edu 

pabilities into FRSs [5]. The knowledge-sharing com­
munity has undertaken a number of efforts aimed,at 
supporting knowledge reuse, including development of 
shared portable ontologies in Ontolingua [3], and de­
velopment of well-defined languages for knowledge in­
terchange such as KIF [2]. Efforts such as Ontolingua 
and KIF provide knowledge reuse through a paradigm 
of specification-time translation. For example, given an 
ontology of bibliographic data encoded in Ontolingua, 
translators convert the Ontolingua encoding into the lan­
guage of a specific FRS. 

Just as knowledge reuse is extremely important, so is 
the ability to reuse, and to mix and match, the software 
components of a large AI system. For example, con­
sider the knowledge-management utilities (KMUs) that 
are often developed in conjunction with FRSs, such as 
graphical KB browsers and editors. Typically, KMUs 
are built from scratch for each FRS, despite great over­
lap in the capabilities of KMUs for different FRSs (the 
literature shows a pattern of many KB editors with sim­
ilar capabilities). The result is a tremendous duplication 
of effort. When an FRS falls into disuse, its KMUs be­
come worthless. The substantial investment involved in 
building a sophisticated KMU would generate a larger 
payoff if that KMU could operate with several FRSs. 

The Generic Frame Protocol (GFP) is a set of Com­
mon Lisp functions that constitute a generic application-
program interface to FRSs. A KMU (or other applica­
tion program) can employ GFP operations to retrieve, 
update, and create information in an FRS. GFP sup­
ports 

• Access to knowledge from multiple FRSs using a 
single, uniform interface 

• Portability with respect to FRSs, thus enabling 
switches from one FRS to another with minimal ef­
fort 

• Reuse of KMU software, such as editors and 
browsers 

• Reuse of knowledge through a paradigm of runtime 
translation 

By runtime translation, we mean that GFP translates 
knowledge from a given FRS representation to a GFP-
compatible form during the execution of an applica­
tion. This approach contrasts with the specification-time 

768 KNOWLEDGE BASE TECHNOLOGY 



approach to translation adopted by other knowledge-
sharing efforts. In effect, GFP treats a KB and its associ­
ated FRS as a complete module that can be spliced into 
many applications, with translation occurring at runtime 
as required. 

GFP has been designed as a procedural rather than a 
declarative interface to FRSs because procedural inter­
faces are more convenient in many cases, and can yield 
better performance (see Section 5.2). 

2 Design Goals 
Several design objectives were defined for GFP: Sim­
plicity: The protocol should be simple and reasonably 
quick to implement for a particular FRS, even if this 
means sacrificing theoretical considerations or support 
for idiosyncrasies of that FRS. Generality: The proto-
col should apply to many FRSs, and support the most 
common FRS features. No legislation: The protocol 
should not require substantial changes to an FRS for 
which the protocol is implemented. That is, the protocol 
should not legislate the operation of an underlying FRS. 
Performance: Inserting the protocol between an ap­
plication and an FRS should not introduce a significant 
performance cost. Consistency: The protocol should 
exhibit consistent behavior across implementations for 
different FRSs, that is, a given sequence of operations 
within the protocol should yield the same result over 
a range of FRSs. Precision: The specification of the 
protocol should be as precise and unambiguous as pos­
sible. Language independence: Ideally, GFP should 
be programming-language-independent, but currently it 
has many COMMON LISP dependencies. Connecting 
GFP to an FRS implemented in some other language 
should be straightforward using LISP foreign-function 
calls, but implementing a user-callable GFP implemen­
tation in a different language would require significant 
effort. 

Satisfying these objectives simultaneously is impossi­
ble because many of them conflict. Put another way, 
the very essence of GFP involves compromise. Dif­
ferent FRSs behave differently, and unless we legislate 
a minutely detailed behavioral model for KR systems 
(which no developers will subscribe to anyway), we can­
not force these systems to behave the same. GFP is 
a study in the art of compromise because it requires 
a reference model that encompasses many FRSs and is 
detailed enough to be useful in practice, but is not so 
detailed as to exclude every FRS from its model. An 
example of conflicts among our objectives is that to pre­
cisely specify the semantics of the GFP function that 
retrieves the values of a slot, we must specify the inher­
itance semantics to be used. However, different FRSs 
use different inheritance mechanisms [4]. Conformance 
with a specific semantics for inheritance would require ei­
ther altering the inheritance mechanism of a given FRS 
(violating the no-legislation goal), or emulating the de­
sired inheritance mechanism within the implementation 
of the protocol (violating performance and generality, 
since the inheritance method used by that FRS is inac­
cessible through the protocol). 

To address variations among key FRS operations, 

GFP identifies a set of dimensions — called behaviors 
— along which FRSs differ. The GFP implementation 
for a given FRS declares which behaviors it supports; 
an application program declares what behaviors are re­
quired for its correct execution. When the application 
attempts to access a given KB, GFP verifies that the be­
haviors required by the application are in fact supported 
by the GFP implementation for the desired FRS. In ad­
dition, an application or a KMU can be conditionalized 
on the behaviors of different FRSs. For example, the dis­
play of a frame created by a KB editor can conditionally 
retrieve and display facets or not, depending on whether 
the FRS in use supports facets or not. 

3 Reference Mode l 
A comprehensive survey of FRSs reveals a large vari­
ety of system designs [4]. Some of the differences among 
these systems are significant, while others are superficial. 
In defining the generic frame model that underlies GFP, 
we have attempted to identify those commonalities that 
are useful for a broad range of applications. Because of 
the large number of FRSs in existence, researchers of­
ten use different terminology to mean the same thing. 
Our reference model for GFP employs the terms knowl­
edge base, frame, class, instance, slot, and facet, each of 
which is described below.1 The reference model is based 
on an axiomatic formalization of classes, relations, and 
functions for the Frame Ontology in Ontolingua [3] but 
extends the ontology to include aspects relevant to op­
erational applications (e.g., kinds of inheritance, facets). 

3.1 Representational Primitives 
Frames 
A frame is an object with which facts are associated. 
Each frame has a unique name. Frames are of two kinds: 
classes and instances. A class frame represents a seman-
tically related collection of entities in the world. Each 
individual entity is represented by an instance frame. 
A frame can be an instance of many classes, which are 
called its types, and a class can be a type of many in­
stances. A class can also be an instance, that is, an 
instance of a class of classes (a metaclass). The relation 
that holds between an instance and a class is primitive, 
akin to set membership.2 With this primitive we can de­
fine the sub relation that holds between classes: a class 
Csub is a sub of class C8uper iff whenever i is an instance 
of Csub then i is also an instance of C8uper. 

Knowledge bases 
A knowledge base, or KB, is a collection of frames and 
their associated slots and values. Multiple KBs may be 
in use simultaneously within an application, possibly ser­
viced by different FRSs. Frames in a given KB can ref­
erence frames in another KB, provided that both KBs 
are serviced by the same FRS. 

1 We use the following pairs of terms synonymously: class 
and concept, instance and individual, and slot and role. 

2 But not as powerful, since not all sets can be described 
as classes in FRSs. 

KARP, MYERS, AND GRUBER 769 



Slots 
Information is associated with a frame via slots. A slot 
is a mapping from a frame and a slot name to a set of 
values. A slot value can be any Lisp object (e.g., symbol, 
list, number, string). Slots can be viewed as binary rela­
tions; GFP does not support the explicit representation 
of relations of higher arity. 

In some FRSs, slots are modeled as relations that cover 
all frames, and it is possible to define slot units, which 
are frames that specify KB-wide properties of slots (such 
as constraints). GFP supports slot units; alternatively, 
slot properties may be declared locally in GFP for each 
frame (see Section 3.1). 

Facets 
Facets provide information about slots. In GFP, facets 
are identified by a facet name, a slot name, and a frame. 
A facet has as its values a set of data objects. Some 
facets pertain to the values of a slot; for example, a facet 
can be used to specify a constraint on slot values (see 
Section 3.2) or a method for computing the value of a 
slot. Other facets may describe properties of the slot it-
self, such as documentation. GFP supports only a single 
level of facets. 

3.2 Inference 

The GFP reference model includes three forms of infer­
ence, namely, subsumption reasoning, constraint check­
ing, and inheritance. 

The reference model assumes domain closure on in­
stances; that is, an instance is defined for every object 
of interest in a given application domain. The model 
also assumes predicate closure on class and slot relations, 
that is, that the extensions of all such relations are fully 
specified in a given KB. 

Subsumption 
Subsumption reasoning is a key inferential capability in 
virtually all FRSs. For reasoning about subsumption 
relationships, GFP distinguishes direct from all relation­
ships. We say that i is a direct-instance-of a class C 
if i is an instance of C and there is no other class C 
(present in the KB) that is a subclass of C such that 
i is an instance of C. All-instance-of is the transitive 
closure of direct-instance-of. Similarly, a class 
a direct subclass of class Ctuper if Ctub is a subclass of 
Csuper and there is no other class C of which Csub is 
a subclass and which is, in turn, a subclass of Csuper. 
The relations direct-super- of and all-super-of are the in­
verses of direct-sub-of and all-sub-of All-types-of is the 
inverse of all-instance-of, and direct-type-of is the inverse 
of direct-instance-of. 

Some FRSs require direct relationships to be specified 
when frames are created. In contrast, FRSs that per­
form automatic classification may infer the direct rela­
tionships by comparing class definitions. In GFP, direct 
relationships must be specified at frame creation time. 
GFP operations allow the user to interrogate any of these 
specified class-subclass and class-instance relationships, 
no matter how the relationships were derived. 

Constraint Checking 
A KB often must contain not only ground facts about 
instances, but also general rules that constrain the valid 
relationships among classes and instances. These con­
straints may be checked to assure that the KB remains 
logically consistent when changes are made. Should a 
constraint be violated, a representation system may sig­
nal an error to the user or take steps to return the KB 
to a consistent state. Most FRSs support a limited form 
of constraints, the most common of which are slot con­
straints. Slot constraints constrain the possible values 
that a slot can be assigned. GFP supports two specific 
slot constraints: type and number restrictions on slot 
values. They are specified using common facet names 
that are included in the protocol (see Section 3.3 for de­
tails). 

Slot Value Inheritance 
A slot maps a particular frame to a set of values. For 
perspicuity, FRSs generally allow the user to describe a 
set of such mappings for all instances of a class. The 
instances are then said to inherit those slot values from 
the class. Many FRSs further augment inheritance by 
allowing slots to specify default values; such values are 
to be inherited only when they do not conflict with local 
information available for a frame. 

Inheritance in GFP is based on the use of template 
and own slots. A template slot is associated with a 
class frame, but applies to all instances of that class. 
In many FRSs, template slots are presented as if they 
were actually slots. However, they are really a way of 
specifying, in one place, slots for all the instances of 
that class. For example, if we wanted to say that all 
instances of the class female-person have a slot called 
gender with the value female, we could define a tem­
plate slot called gender for the female-person frame 
and give it value female. Then if we created an in­
stance of female-person called maxy, and we asked for 
the value of the slot gender on mary, we would be told 
that her gender is female. What would we get if we 
asked for the value of the gender slot of female-person? 
The question is ambiguous, because we could mean the 
template slot on the frame female-person viewed as a 
class, or the slot on the frame viewed as an instance 
(e.g., of a class of classes). In the latter case, this slot 
is referred to as an own slot. GFP requires the user to 
declare a slot as either own or template. 

Inheritance in GFP can be characterized as follows. 
An own slot may have local values, which are asserted 
directly for that slot. The values for slot 5 of a frame / 
are determined by "combining" the local values and tem­
plate values of C.S for any class C that is a superclass of 
/, provided those values do not "conflict". GFP allows 
the use of different semantics for "combining" and "con­
flict" , to support a range of inheritance methods. Se­
lection of a specific inheritance mechanism is controlled 
through declarations for the behavior inheritance, as 
described in Section 4. 

Currently, the protocol makes no commitment (either 
directly or through behaviors) regarding the inheritance 
of values for frames that have multiple direct super-

770 KNOWLEDGE BASE TECHNOLOGY 



classes. Thus, applications should not depend on a spe­
cific semantics for inheritance in such cases. 

3.3 Common Names 
To insulate applications from meaningless variability 
among the names of frequently used objects in different 
FRSs, GFP specifies common names for certain frames, 
slots, and facets. Implementations of the protocol must 
translate these names into the appropriate FRS-specific 
objects. The common names for GFP are taken from the 
frame ontology (in which they are defined by a formal 
axiomatization [3]) and the basic data types in KIF [2]. 

For example, the common frame names include 
number (which has the frame integer as a subclass) 
and sequence (which has the frames l i s t , string, and 
array as subclasses). The frame class is defined as the 
all-super-of all frames that denote a class. 

4 Behaviors 
Although GFP necessarily imposes some common re­
quirements on the organization of knowledge (KBs, 
frames, slots, facets) and semantics of some assertions 
(instance and subclass relationships, inherited slot val­
ues, slot constraints), it allows for some variety in the op­
eration of underlying FRSs. This diversity is supported 
through behaviors, which provide explicit models of the 
FRS properties that may vary. At the time of decla­
ration, the protocol determines whether the behaviors 
required by the application can be supplied. Those be­
haviors might already be present in the underlying FRS, 
or the protocol itself might emulate them on behalf of 
the FRS. In cases where one or more of the required be­
haviors cannot be supplied, the protocol issues warnings 
to this effect. The GFP behaviors have a second role, 
namely to configure the operation of an FRS at runtime. 
For an FRS that can provide more than one of several 
alternative functionalities, the behaviors allow the user 
to specify how the FRS should operate at a given time. 

Here we describe the behaviors defined currently in 
GFP. We expect that additional behaviors will be sup­
ported in future versions of the protocol. It is impor­
tant to note that an implementation of the protocol for 
a given FRS might not provide every possible behav­
ior because of both the variability among FRSs and the 
complexity of GFP. 

The behavior : facets determines whether the FRS 
supports facets (see Section 3.1). The behavior 
: class-slot-types is used to indicate the slot types 
for classes supported by a given FRS, either template 
only or both template and own (see Section 3.2). Test­
ing the equality of slot and facet values is a common 
operation within FRSs, although the nature of the test 
used varies. For this reason, GFP supports a behav­
ior idefault-test-fnfor specifying an FRS-dependent 
function to be used for these value comparisons. 

The behavior : inheritance can be used to specify the 
model of inheritance used by the FRS. Two possibilities 
are currently supported: 
override The presence of any local value in a given slot 

of a frame blocks inheritance of any values for that 

slot from superclasses of the frame.3 

incoherence A slot inherits from its superclasses all 
values that do not violate any constraint associated 
with the slot. 

Imagine that slot color records all colors visible on 
the surface of an animal, and that the default at class 
Elephant for color is gray. Suppose that the elephant 
Clyde has blue as a local value if color, to reflect the 
color of Clyde's eyes. For the override inheritance se­
mantics, the user-visible value of Clyde. color would be 
blue, whereas for incoherence, Clyde.color would be 
{blue,gray}. In the first case, the local value blocks 
inheritance of the default value, whereas in the second 
case, inheritance is not blocked because no constraint 
specifies that gray and blue are inconsistent values. If 
we further specified that color is a single-valued slot 
using a cardinality slot constraint, then the user-visible 
value of the slot under incoherence would be blue. 

We note that incoherence semantics makes no commit­
ment in cases where inheritance from all superclasses of 
a given frame leads to inconsistency, but not from some 
subsets of those supers. This vagueness is intentional to 
enable more inheritance mechanisms to satisfy the inco­
herence semantics, with the caveat that the FRSs should 
not depend on inherited values for such cases. 

5 The Generic Frame Protoco l 
This section summarizes the operations that comprise 
the Generic Frame Protocol, and describes the process 
of implementing the protocol for a new FRS. 

5.1 Programmatic Interface 
The Generic Frame Protocol defines a programmatic in­
terface of common operations that span the different 
object types in the reference model, namely, knowledge 
bases, frames, classes, instances, slots, and facets. There 
are three main categories of operations supported for 
each object type: retrieval operations, manipulator op­
erations, and iterators. Retrieval operations extract in­
formation about objects and object values. Retrieval 
operations generally come in two forms: functional oper­
ations, which retrieve a value, and relational operations, 
which test whether a relation holds between an object 
and some value(s). Manipulator operations create, de­
stroy, and modify objects. 

GFP supports three kinds of it­
erators: do-<object>-<reln>, map-<object>-<reln>, 
and mapc-<object>-<reln>, where <object> ranges 
over the object types of the reference model, and <reln> 
specifies a class of objects related to <object> in some 
manner (e.g., do-class-direct-subs iterates over the 
direct subs of a class, and mapcar-kb-classes maps 
over all classes in a KB). The iterators are included in 
GFP to support access to efficient iteration mechanisms 
that underlying FRSs may provide, rather than using 
the straightforward approach of first consing up a list of 
the objects to be iterated over, then iterating through 
the list. 

3This form of inheritance is sometimes referred to as speci­
ficity inheritance. 

KARP, MYERS, AND GRUBER 771 



Operations on KBs 
New KBs are created in GFP through the create-kb 
operation. A parameter of this operation is a CLOS 
class corresponding to the underlying FRS to be used 
for the new KB, such as the class loom-kb or theo-kb. 
Create-kb returns a CLOS instance of that class — the 
KB descriptor. This descriptor is the handle for all sub­
sequent access to the KB. 

In GFP, there is a notion of a current KB. All GFP 
operations apply to the current KB by default, unless 
a different KB description is specified for an operation. 
Additional KBs can be accessed; the notion of the cur­
rent KB is one of convenience, as it defines a default 
context for GFP operations. 

GFP provides functions for storing and retrieving KBs 
to and from secondary storage. Its model of access al­
lows KBs to reside on a variety of storage types, includ­
ing traditional flat files and database systems on remote 
servers. 

Operations on Frames, Classes, and Instances 
GFP includes manipulator operations to create, copy, 
delete, rename, and print frames. Retrieval operations 
retrieve the name and slots of a given frame and test the 
type of a frame (whether it is a class or an instance), 
the containment of a frame within a designated KB, and 
the coercion of a frame name to a frame object (possibly 
relative to a KB). 

Manipulators create classes and instances, and re­
trieval operations test all possible subsumption rela­
tionships between classes and instances, for both the 
direct and all relationships described in Section 3.2. 
Iterators are defined for all subsumption relation­
ships (i.e., direct-subs, all-subs, direct-supers, 
all-supers, direct-types, all-types, 
direct-instances, all-instances). Additional op­
erations test the equivalence, consistency, and disjointed-
ness of classes, determine whether a given class is prim­
itive (in the sense of classification), and determine the 
most specific/general classes from a list of classes. 

Operations on Slots and Facets 
Manipulation operations for slots add, remove, or replace 
a value, or replace the entire set of slot values. A com­
plete slot value can be retrieved, or checks can be made 
to see whether the slot contains one particular value. It­
erators are provided for both the facets and values of a 
slot. Another operation determines whether a frame has 
a slot with a given name. 

For facets, the manipulation operations add, remove, 
or replace values. Retrieval operations can obtain all 
values for a facet, or test for membership of a particular 
value for a facet. Iteration over facet values is supported. 
GFP can also determine whether a frame has a facet with 
a given name. 

Operations on Behaviors 
Retrieval operations obtain information about the be­
haviors supported by GFP in general, the behaviors that 
a given FRS supports, and the behaviors that are en­
abled for a particular KB. 

5.2 Programmatic vs. Declarative 
A variant of the procedural/declarative controversy, a 
long-standing issue in AI, arises in relation to interfaces 
for FRSs. Many authors argue that declarative Tell/Ask 
style interfaces are preferable because of their simplicity 
and well-defined logical semantics; others believe that 
procedural interfaces provide more natural and efficient 
interactions and can be ascribed comparable semantics. 

We believe that both kinds of interface are of value, 
depending on the situation at hand. Declarative inter­
faces are useful in interactive settings and for formulat­
ing complex queries, whereas procedural interfaces are 
preferable when embedded within other software. Our 
group employs both the procedural interface embodied 
by GFP, and a declarative, first-order query facility that 
is implemented on top of GFP (see Section 7). We have 
not built a declarative assertional facility (i.e., no Tell 
interface). 

We view a programmatic interface as essential to an 
operational KR system for the following reasons:4 (1) 
Although the procedural and declarative approaches pro-
vide equivalent expressive power in principle, it is more 
convenient to represent certain constructs procedurally. 
For example, combining quoted and evaluated terms is 
trivial in a procedural system but awkward in a declar­
ative system.5 (2) KMU tools often need access to 
meta-information about knowledge; for instance, a KB 
browser may need to determine whether a slot on a frame 
has a value in order to determine how to display the 
frame. The GFP programmatic interface provides an ex­
plicit function slot-has-value-p for accessing this in­
formation. Other useful metalevel relationships that are 
testable directly in the GFP programmatic interface in­
clude whether a given facet has a value; whether a name 
denotes a frame, class, instance, or facet; what slots exist 
for a given frame; and which values of a slot were inher­
ited rather than asserted locally. (3) Metalevel queries 
must execute fast for interactive applications, but are 
likely to be answered extremely slowly when proof tech­
niques are used. Furthermore, a query to distinguish 
inherited from local slot values would not be expressible 
in most Tell/Ask interfaces, but can be useful in under­
standing how various KB inferences were derived. 

5.3 GFP Implementation 
Users access all GFP operations as either functions or 
macros. At the implementation level, most of the func­
tions and macros call a generic function to do their work 
— an FRS-specific method implements the operation. 
The extra level is introduced to allow default values for 
arguments to be supplied, and to allow keyword argu­
ments (neither of which is provided by CLOS generic 
functions). Every generic function dispatches on an ar­
gument called kb, which is a KB descriptor (a CLOS in­
stance) that defaults to the current KB but can be over-

4 It is interesting to note that LOOM users clamored for a 
programmatic interface to be added to the original declara­
tive interface provided for that system. 

5Indeed, Tell/Ask interfaces rarely provide the same range 
of capabilities as their procedural counterparts because of this 
awkwardness. 

772 KNOWLEDGE BASE TECHNOLOGY 



ridden (as a keyword argument to the function wrapper 
around the generic function). 

A set of FRS-specific methods implement the GFP 
operations for each FRS. Therefore, to provide a GFP 
implementation for a new FRS, we provide a new mod­
ule of methods for that FRS. This module need not pro-
vide a method for every GFP operation, only for oper­
ations in a small kernel of GFP. GFP provides default 
methods for all operations outside the kernel, which are 
defined in terms of operations inside the kernel. For ex­
ample, the default method for slot-has-value-p calls 
the kernel operation get-slot-values. The kernel con­
sists of roughly 30 operations. The default methods can 
of course be overridden to improve efficiency or for bet­
ter integration with development environments. Their 
purpose is to simplify the GFP implementation for new 
FRSs. Two other connections must be made between 
GFP and a given FRS, namely, the linking of common 
GFP object names with the appropriate FRS objects, 
and the specification of the appropriate behaviors for 
the FRS. 

6 FRSs Supported by GFP 
To date, there exist four FRS-specific implementations of 
GFP for Loom [7], Theo [8], SIPE-2 [10], and Ontolin-
gua [3]. Table 1 summarizes the behaviors supported 
for each of these implementations. These FRSs cover a 
broad range of capabilities, from classification-based to 
nonclassificatory. 

LOOM fits the GFP model fairly closely, but we note 
two exceptions. First, LOOM instances do not differen­
tiate local from inherited values. Second, attributes of 
LOOM classes are specified through complex definition 
expressions. LOOM has no notion of incremental redef­
inition for a facet of a template slot in a class, instead 
requiring the user to issue an entire new definition when 
only a small change occurs (such as changing a default 
value). The GFP methods for LOOM translate between 
facets and definitions, submitting an entire new defini­
tion to LOOM when any facet changes. 

Ontolingua is primarily a translation and analysis tool 
for ontologies, but its most recent version (4.0) includes 
a limited frame system. By using this embedded FRS, 
it is possible to write portable KIF ontologies and store 
or access them as knowledge bases using GFP. The On­
tolingua implementation supports the full range of GFP 
functionality. 

THEO is a conceptual descendant of RLL that fits the 
GFP model fairly closely; exceptions are a simplified 
multiple-KB system and the use of facets within facets 
to an arbitrary depth (not supported by GFP). 

SIPE-2 The SIPE-2 planner includes a simple frame-
style knowledge representation system that corresponds 
to a restricted subset of the GFP model. For instance, 
it has no KB operations. 

We expect that GFP interfaces to other FRSs (such 
as CLASSIC or BACK) would be no more difficult to 

implement than those we have described. 

7 Knowledge Management Ut i l i t ies 

Our group is building a collection of generic knowledge 
management utilities (KMUs). Because these tools are 
implemented on top of GFP, they can be used in con­
junction with any GFP-compatible FRS. 

Graphical KB Browsers and Editors We are de­
veloping a suite of graphical tools for interactive KB 
browsing and editing. The various tools provide dif­
ferent visualizations of the information within a KB 
and different editing operations. One tool presents the 
class/subclass/instance hierarchy as a graph, with in­
cremental expansion of nodes to support exploration of 
large KBs. Another tool graphs arbitrary relationships 
among frames as a semantic network. The third tool 
displays the slots and facets of an individual frame. A 
fourth tool shows selected slot values for a set of frames 
in tabular form. Prototype implementations of the first 
three tools exist; their development is ongoing. See URL 
http://www.ai.sri.com/"gkb/overview.html for 
more information. 

Query Processor GFP provides application program­
mers with an efficient procedural interface for access­
ing frame-based knowledge bases. As a complementary 
method, we have implemented a GFP-based query pro­
cessor that provides a declarative interface for extracting 
information from a knowledge base. The query proces-
sor supports an extended first-order query language that 
constitutes a restricted version of KIF. 

8 Discussion 

8.1 Adequacy of the Model 
The GFP reference model encompasses many but not all 
of the capabilities of current-generation FRSs. It does 
not provide rules or methods or contexts. It does not 
provide all operations required by classificatory FRSs; 
in particular, there is no explicit concept-definition lan­
guage (although facets provide a means of building con­
cept definitions in a structural way). The KRSS specifi­
cation [9] is a good candidate upon which to base such 
a concept-definition language. The GFP model of KBs 
is simplistic because it has no notion of dependencies or 
imports between KBs. We welcome input from the KR 
community in addressing these issues, and we hope to 
see other groups adopt GFP for use in conjunction with 
other FRSs. 

KARP, MYERS, AND 6RUBER 773 



8.2 The Price of Generality 
Our experimental evaluations indicate that the perfor­
mance penalty for using GFP is reasonable. Using a 
LOOM implementation of GFP, we compared the run­
ning times of key GFP kernel operations with their cor­
responding LOOM operations. The results showed the 
GFP operations to be 1% - 50% slower (depending on 
the operation). The high overhead costs resulted for op­
erations without direct counterparts in LOOM. For ex­
ample, GFP provides an operation for retrieving a frame 
when given an identifier; LOOM has no such operation, 
instead providing separate operations for instances and 
classes. The GFP operation must consider whether the 
name corresponds to a class or an instance in order to 
invoke the appropriate underlying LOOM operation. We 
note that on an absolute scale, the overhead is very small 
in this case (approximately .02 milliseconds). 

For directly comparable operations, the upper-bound 
on overhead was 35%. Much of the increased execution 
time results from activities common to all GFP opera­
tions. Thus, the overhead is high on a percentage basis 
for fast operations such as slot value retrievals (35% for 
a .3 millisecond operation), but low for more expensive 
operations such as retrieving all instances of a class (1% 
for a 16 millisecond operation). 

8.3 Relation to Knowledge-Sharing Efforts 
Both GFP and KIF [2] seek to provide a domain-
independent medium that supports the portability of 
knowledge across applications. GFP is narrower in rep­
resentative scope than KIF; Whereas KIF is intended to 
be a comprehensive first-order representation formalism, 
GFP is focused on the representation of class hierarchies. 
Ontolingua [3] is a set of tools for writing and analyz­
ing KIF knowledge bases along with translators for map­
ping KIF KBs to specific FRSs. KIF and Ontolingua are 
declarative representation languages; GFP is a procedu­
ral interface for accessing representation structures. KIF 
and Ontolingua are designed for use in sharing a large 
corpus of knowledge at specification time, through the 
use of translators. GFP is designed for runtime access 
to and modification of existing KBs. GFP is similar to 
KQML [l] in that it provides a set of operations defining 
a functional interface for use by application programs. 
However, the GFP operations are grounded in knowl­
edge representation structures, while KQML operations 
correspond to performatives for agent execution. 

9 Conclusions 
In addition to supporting the development of the KMUs 
described in Section 7, GFP is in use in two applications. 
The SIPE-2 planning system can access static informa­
tion about a planning domain via GFP; it has success­
fully solved military transportation planning problems 
for which the planning domain is defined in a LOOM KB. 
In addition, the EcoCyc project at SRI has constructed 
a large KB and associated graphical user interface of E. 
coli genes and biochemistry. All code for managing the 
THEO EcoCyc KB, and for accessing the KB from the 
graphical user-interface, employs GFP. 

Future work related to GFP proceeds in several direc­
tions. We are extending GFP to provide greater cover­
age of FRS features. A second direction under way at 
Stanford is to allow GFP calls to traverse a network. 

Acknowledgements 
We thank Bob MacGregor for comments on early ver­

sions of GFP, and for help with the LOOM implemen­
tation of GFP. Fritz Mueller, James Rice, and Suzanne 
Paley contributed to the design and implementation of 
GFP. This work was supported by Rome Laboratory 
Contract No. F30602-92-C-0115, and by grant R29-LM-
05413-01A1 from the National Institutes of Health. The 
contents of this article are solely the responsibility of 
the authors and do not necessarily represent the official 
views of ARPA nor of the NIH. 

References 
[1] T. Finin et al Specification of the KQML Agent-

Communication Language. Technical Report EIT 
TR 92-04, Enterprise Integration Technologies, Palo 
Alto, CA, 1992. 

[2] M. R. Genesereth and R. E. Fikes. Knowledge In­
terchange Format, Version 3.0 Reference Manual. 
Technical Report Logic-92-1, Computer Science De­
partment, Stanford University, 1992. 

[3] T.R. Gruber. A translation approach to portable 
ontology specifications. Knowledge Acquisition, 
5(2):199-220, 1993. 

[4] P.D. Karp. The design space of frame knowledge 
representation systems. Tech. Report 520, SRI In­
ternational AI Center, 1992. 

[5] P.D. Karp, S.M. Paley, and I. Greenberg. A storage 
system for scalable knowledge representation. In 
Proceedings of the Third International Conference 
on Information and Knowledge Management, 1994. 

[6] P.D. Karp and T. Gruber. A generic knowledge­
base access protocol. Technical report, AI Cen­
ter, SRI International, 1994. Available via World 
Wide Web URL http://www-ksl.staniord.edu/ 
knowledge-sharing/lib/gfp/spec/paper.ps. 

[7] R. MacGregor. The evolving technology of 
classification-based knowledge representation sys­
tems. In J. Sowa, editor, Principles of semantic 
networks, pages 385-400. Morgan Kaufmann Pub­
lishers, 1991. 

[8] T.M. Mitchell, J. Allen, P. Chalasani, J. Cheng, 
E. Etzioni, M. Ringuette, and J.C. Schlimmer. 
Theo: A framework for self-improving systems. In 
Architectures for Intelligence. Erlbaum, 1989. 

[9] P. Patel-Schneider and B. Swartout. Description 
Logic Specification from the ARPA KRSS Effort. 
In preparation. 

[10] D.E. Wilkins. Can AI planners solve practical prob­
lems? Computational Intelligence, 6(4):232-246, 
1990. 

774 KNOWLEDGE BASE TECHNOLOGY 


