
A R e i n f o r c e m e n t L e a r n i n g A p p r o a c h t o J o b - s h o p S c h e d u l i n g

Wei Zhang
Department of Computer Science

Oregon State Unjversity
Corvalhs, Oregon 97331-3202

U S A

Abs t rac t

We apply reinforce merit learning methods to
learn domain-specific heuristics for job shop
scheduling A repair-based scheduler starts
with a critical-path schedule and incrementally
repairs constraint violations with the goal of
finding a short conflict-free schedule The tem
poral difference algorithm is applied
to tram a neural network to learn a heuris-
tic evaluation function over s ta tes This eval
uation function is used by a one-step looka-
head search procedure to find good solutions to
new scheduling problems We evaluate this ap
proach on synthetic problems and on problems
from a NASA space shuttle pay load process-
ing task The evaluation function is trained on
problems involving a small number of jobs and
then tested on larger proble ms The TD sclied
uler performs better than the best known exist
ing algorithm for this task—Zwehen s iterative
repair method based on simulated annealing
The results suggest that reinforcement l<arn
mg can provide a new method for constructing
high-performance scheduling systems

1 I n t r o d u c t i o n
Many problems of commercial interest—including job
shop scheduling—are instances of NP-Complete prob
lems Hence, there is l i t t le hope of finding general-
purpose solutions to these problems However in any
particular application setting there are usually domain-
specific constraints and regularities that can be exploited
to construct fast, domain-specific heuristic algorithms
While such domain-specific heuristics can be engineered
bv hand, the process is expensive and time-consuming
I he goal of the research described in this paper is to ex
plore the possibility of applying reinforcement learning
algorithms lo discover good domain-specifie heuristics
automatically

Reinforcement learning algorithms learn policies for
state-space problem-solving tasks For each state, the
policy specifies what action should be performed Dur
ing learning, the learning system receives a reinforce
ment signal (called a ' reward') after each action The

T h o m a s G D i e t t e n c h
Department of Computer Science

Oregon State Universi ty
Corvalhs, Oregon 97 511-3202

U S A

goal of tht learning system is to find a policy that maxi
mizes the expected reinforce ment over future actions In
the context of job shop scheduling, (he policy tells what
scheduling action to make next in order to maximize
some measure of the quality of the final schedule

In this paper we focus on the application domain of
space shuttle payload processing for NASA The. goal is
to schedule a set of tasks a set of temporal and
resource constraints while also seeking to minimize the
total duration (makespan) of the schedule Of particular
interest to NASA are scheduling methods that can also
be used to re p u r a schedule when some unforeseen diffi
cult\ arises In previous work on this task Zweben and
colleagues [Zwehen developed an iterative
repair-based scheduling procedur« that combines a set of
heuristics with a simulaLed annealing se arch procedure
The resulting scheduling system provides an efficient and
flexible facility for scheduling space shuttle ground op
erations It is in regular use at the Kennedy Space Cen
ter [Deale ti al , 1994] The challenge Tor a 1 earning
approach is to discover scheduling heuristics that ian
match or exceed the quahtv- and efficiency of t Ins itera
five repair method

In the remainder of the paper we describe tht
scheduling task in greater detail We then briefly de
scribe 7weben s iterative repair-based scheduler Follow
ing this we review the reinforcement learning method
known as and describe how the scheduling task
can be formulated so that can be applied We
then describe our experiments on simulated problem sets
and discuss the results These results indicate that re
inforcement learning can outperform the iterative repair
scheduler on realistic scheduling tasks Furthermore the
knowledge learned through reinforcement learning can
be applied to scheduling problems that are larger and
more complex than the ones that were studied during
training These init ial results suggest that reinforce
ment learning has an important role to play in devel
oping high-performance AI scheduling systems

2 The N A S A Doma in and the I te ra t i ve
Repai r M e t h o d

The NASA space shuttle payload processing (SSPP) do
main requires scheduling the various tasks that must
be performed to install and test the payloads that are

1114 LEARNING

placed in the cargo bay of the space shut t le In j ob -
shop schedul ing te rm ino logy each shut t le mission is a
j ob Each j o b consists of a par t ia l l y -ordered set of tasks
that mus t be per fo rmed Each task has a du ra t i on and
a list of resource requirements For example, the task
MISSION -SEQUENCE -TEST has a du ra t i on of 7200 and re
quires two qua l i t y -con t ro l officers, two technicians, one
ATE one SPCDS, and one HITS There are 35 different
tvpes of resources There may be many uni ts of a re
source avai lable For example, there are 8 qual i ty con
trol officers avai lable and 25 technicians However these
available resources may be spl i t i n to resource pools so
that for example , the 8 qua l i t y contro l officers m i g h t be
subdiv ided i n to three pools of size 2 2, and 4 If a task
requires two qua l i t y contro l officers they must both be
drawn from the same poo l Resource pools model m u l t i
ple work shi f ts and m u l t i p l e physical locat ions A com
plete schedule mus t specify the star t t ime of each task
and the resource poo l by which each resource require
ment of each task is satisf ied

A typ ica l SSPP p rob lem involves the s imultaneous
scheduling of between two and six shut t le missions t cash
mission involves between 32 and 164 tasks Hencr th<
SSPP doma in requires solv ing schedul ing problems con
taming several hundred tasks Most of these tasks must
be per fo rmed pr io r to launch but some also take place
after the shut t le has landed Fach shut t le mission has a
fixed launch date bu t no s ta r t ing date or ending date
Hence tasks pr ior to launch have deadlines but no ready
t imes tasks after l and ing have readv t imes but no dead-
Imes A key goal of t he schedul ing system is to min imize
the to ta l d u r a t i o n of the schedule Th is is much more
chal lenging than s imp l y f ind ing a / e a i i M e schedule

^weben et al 1994 developed the fo l low ing i te ra l i ve re
pair m e t h o d for so lv ing th is schedul ing prob lem F i rs t
a c r i t i ca l pa th schedule is constructed bv work ing back
ward and f o rwa rd f r o m the launch and land ing dates
Fach task pr io r to launch is scheduled as late as The l< m-
pora l pa r t i a l order w i l l pe rm i t each task after land ing is
scheduled as earl> as the tempora l par t ia l o rd t r w i l l per
m i t Resource constra ints are ignored, resource requests
are r a n d o m l y assigned to resource pools Th i s cr i t ica l
path schedule can be constructed verv eff iciently, and it
provides the s ta r t i ng state for the scheduling problem
space In each state of th is prob lem space there are two
possible operators tha t can be appl ied The R F A S S I G N -
P O O L operator changes the pool assignment for one of
the resource requi rements of a task It is only appl ied
when the pool reassignment wou ld a l low the resource re=-
quirement to be successfully satisf ied The M O V F opera
tor moves a task to a di f ferent t ime and then reschedules
all of the t empora l dependents of the task using the cr i t
ical pa th m e t h o d (leav ing the resource pool assignments
of the dependents unchanged) The M O V L operator i s
only appl ied to move a task to the f irst earl ier or the first
later t ime at wh ich the v io la ted resource requirement can
be satisf ied

These two operators are appl ied by the i terat ive repair
me thod as fo l lows At each step, the earliest constra int
v io la t ion (l e , where a resource pool is over-al located) is
ident i f ied If a REASSlGN-PoOL operator can be appl ied

to reduce this over-allocation, then it is applied If not,
then the MOVE operator is applied to move one of the
offending tasks to an earlier or later time If several dif
ferent pool re assignment a are possible, one is chosen at
random If both an earlier and a later move are possi
ble, then one is chosen at random Of the several tasks
involved in the resource violation one is chosen at ran
dom based on a heuristic that prefers to move the task
that (a) requires an amounL of resource nearly equal Lo
the amount that is over allocated (b) has few tempo-
ral dependents and (c) needs to be moved onlv a short
distance lo satisfy the resource request

The overall control structure of the algorithm applies
simulated annealing to minimize the number of resource
pool violations After each operator is applied the num
her of violations m the resulting sche dule is computed If
this has decreased, the resulting schedule is accepted as
the "current' schedule if it has increased the resuiting
schedule is accepted only Willi probability ' * ' / r T "
where is the change in tin number of violations and
1 is the current temperature the temperature is grddu
ally, decreased Sean h proceeds until no constraints are
violated To obtain a short schedule the algorithm is
run sveral tunes and the shortest resulting schedule is
selected

3 Reinforcement Learn ing, Tempora l
Difference Learn ing, and Scheduling

He mforcement learning methods learn a policy for select
ing actions in a problem space The pohev tells for < ach
state which action is to be performed in that state After
an action a is chosen and tpplied in state the problem
space shifts lo slate ?' and the learning system receives
reinforcement

To view the scheduling problem as a reinforcemc nt
learning problem we must describe the problem space
and the reinforcement function Ft Wt employ the same
problem space as Zweben et al the starting statt sn

is lhe critical path schedule as discusstd above We
define the reinforcement function to give a
reinforcement of —0 001 for each schedule ' that still
contains constraint violations This asse-sscs A small
penalty for each scheduling action (REASSIGN-POOL or
M O V L) and it is intendi d to encourage reinforcement
learning to prefer actions that quickly find i good sched
ule For any schedule s' that is free of violations, the re m-
forcenient is the negative of the resource dilation factor

The RDF attempts to provide a scale
independent measure of the length of the schedule and
this final reinforcement is intended to tncourag* rein
forcement lea iiing to find short final schedules Because
the reinforcement function depends only on the resulting
stat< , we will write it as .

The RDF is defined as follows L< I capacity{i) be the
(fixed) capacity of resource type i—that is the combined
capacity of all resource pools of resource ty pe i At each
time t in the schedule let be the current utilization

of resources of type i ifu(it) ' capacity(i), then the
resource of type i is overallocated at time T (no matter
how we assign resource requests to resource pools of this
type) We define the resource utilization indez

ZHANG AND DIETTERICH 1115

for resource type t at t ime t to be

If the resource is not over-allocated, oth
erwise it is the fraction of overallocation

The total resource uttltttzatton index (TRUI) for a
schedule of length / is the sum of the resource util iza
tion index taken over all n resources and all I times

Given these definitions, the resource dilation factor is
defined as

To understand the rationale behind this formula, first
note that in the final schedule s, is just n times
the length of the schedule This is because in the final
schedule, no resource is overallocated,
Hence We could have used the neg
ative of this value as the reinforcement function, but re
inforcement learning is easier if the reinforcement func
tion is independent of the difficulty of the scheduling
problem A very difficult problem (e g , with man\ jobs
that have simultaneous deadlines) would require a very
long schedule, whereas a simple problem would require
a much shorter schedule The total resource uti l ization
index of the init ial schedule measures the
amount of overallocation of resources in the init ial state,
and hence, provides a crude measure of the difficulty of
the scheduling problem Hence we use this to normalize
the final schedule length to produce the resource dilation
factor

Now that we have specified how to view repair-based
scheduling as a reinforcement learning problem, we turn
our attention to the learning algorithm Suppose at a
given point in the learning process we have developed
policy which says that in state s the best action to
select is a = We can define an associated function
/T , called the value function, such that tells the cu
mulative reward that we wil l receive if we follow policy
from state 6 onward Formally,
where N is the number of steps until a conflict-free sched
ule is found

As in most reinforcement learning work, we wil l at
tempt to learn the value function of the optimal policy

denoted , rather than directly learning
Once we have learned this optimal value function, we
can transform it into the optimal policy via a simple
one-step lookahead search To choose the best action
in state s we compute the state a(s) that would result
from applying each possible action a to state s For each
such action, we compute the value of the resulting state,

and choose the action a that maximizes this
value Note that this approach requires that we know
the effects of our operators—which is certainly true for
repair based scheduling operators

To learn the value function, we can apply the method
of temporal difference learning known as devel
oped by Sutton 1988 In the value function is

and updates the weights of the network according to

Here, is a smoothing parameter that combines previous
gradients with the current gradient in ej, and a is the
learning rate

The algorithm was designed to learn the value
function for a stationary Markov random process such as
would result from following a fired policy In reinforce-
menL learning however, we want to apply it to learn
the value function of the optimal policy starting with an
init ial random pohey To do this, we employ a form of
value iteration is applied online to the sequences
of states and reinforcements that result from choosing ac
tions according to the current estimated value function
/ At each state s during learning, we conduct a one-
step lookahead search using the current estimated value
function j to evaluate the states resulting from apply
ing each possible operator We then select the action
that maximizes the predicted value of the resulting state
;•' After applying this action and receiving the reward
we update our estimate o f / to reflect the difference be
tween the value of and the more informed value

(We actually employ a slightly more com
plex procedure described below) This means that the
policy is continually changing during the learning pro
cess Fortunately, wi l l sti l l converge under these
conditions [Sutton, 1988]

There are five further modifications that we made to
this algorithm based on preliminary experiments First
for any reinforcement learning algorithm it is critical to
perform some kind of exploration to discover new and
better ways of getting from the start 6tate to the goal
We employed the following simple exploration strategy
At each state, w i th probability we choose a random
action instead of the action recommended by the current
value function and policy Init ial ly, is set to 1 After
each action, is decreased by an amount . unti l il
reaches a final value of 0 05 (The values used for
are given below)

Second, we do not perform weight updates m the neu
ral network after each action Instead, we remember the
sequence of states visited along the path from the start
ing state to the final conflict-free schedule Then we up
date the network starting with the final action and work
ing backward to the start of the action sequence Exper
imentally, this works better than simple online training,
because the values being backed up are more up-to-date

1116 LEARNING

Thi rd , we employ Lin's experience replay method
During learning, the best sequence of moves from start
to goal is remembered, and after every four training se
quences, we update the network using this best training
sequence This improved learning and performance sig
nificantly

Fourth we do not emplo> a full one-step lookahcad
starch to select, actions, because the branching factor in
this problem space is typically 20 and it is costly to
compute the value of each of these 20 successor stites
Instead, we employ random sample greedy search which
generates a random 6ubse1 of the possible operators and
evaluates their resulting states The best of these oper-
ators is then chosen The size of the random sample is
determined incrementally An initial sample of four ac
tions is chosen Based on the resulting computed values
and a permitted amount of error t and desired confidence

we can compute the probability that the value of
(IK best sampled action is within e of the best possible
action We continue sampling possible actions until this
probabihtv 'e xceeds
Random sample greedy search is employed during both
training and execution

The final change in the learning algorithm is that we
tlo not use the actual stales of the scheduling process as
input to the neural network The neural network can
accept only a fixed vector of feature values describing
each state (i e each current schedule) Schedules on the
other hand are variable length objects Hence it was
necessary to define a set of useful features that extract
important aspects of the current schedule that the neural
network can use to predict Ihe value of the stale We
defined the following features (based on a v< ry modest
amount of experimentation)

M e a n and s tanda rd d e v i a t i o n o f the f ree poo l
capac i ty f o r bo t t l eneck pools Simple experiments
showed that only the technician logistics electrical en
gineer, mechanical engineer, and quality control officer
resource types became major bottleneck resources For
each bottleneck pool, the number of unallocated units
(the free capacitv) is measured over the whole sched
ule period and the mean and standard deviation of this
quantity provide two features for each pool

M e a n and s t a n d a r d d e v i a t i o n o f slaeks The
slack time between a task and one of its temporal prereq
uisites is the difference between the end time of the pre
requisite task and the scheduled start time of the task
We measure the minimum slack for each task (and all
of its temporal prerequisites) and the average slack for
each task The mean and standard deviation of these
two quantities taken over all tasks provide four features

M o d i f i e d R D F We used a slightly modified version
of the resource dilation factor of the current schedule
The numerator of the modified RDF is computed using
the capacity and allocation of individual resource-pools
rather than of resource types

Ove r -a l l oca t i on i n d e x This is the total number of
units of over-allocated resources in the current schedule
divided by the total number of units of over-allocated
resources in the starting schedule

Percentage of w indows in v i o l a t i on A window

is defined to be a maximal period of time during which
the set of currently scheduled tasks does not change A
schedule can be segmented into a sequence of windows
We compute the percentage of windows that contain a
constraint violation We also find the earliest window
lhat contains a constraint violation and compute the per
centage of the following 9 windows that have violations

Percentage o f w indows in v i o l a t i on t ha t can be
resolved by poo l reassignment This is the fraction
of those windows having constraint violations where the
total amount of resources assigned is actually less than
the total capacity, so that—if the resources were not sub
divided into pools—the resource requirements could be
met

Percentage of t i m e un i t s in v i o l a t i o n This is
measured over the whole schedule pterod

F i r s t v i o l a ted w i n d o w index (no rma l i zed) Let
wa be the index of the earliest window that has a viola
tion Let w be the total number of windows Then this
feature is As violations arc repaired, this
value decreases to zero If no window has a violation, we

Fach of these features was developed by studying small
scheduling problems to find quantities that had some
ability to predict RDT However we believe that these
features can be improved substantially and this is a goal
of our ongoing research

A consequence of using these features instead of the
full state is that the learned policy may enter infinite
loops We have taken two steps to detect and prevent
these loops First the randomness introduced by the
random sample greedy procedure and by the random
exploration process tends to avoid loops because even
when the same statf is revisited, the same action may
not be chosen Second, all states visited while solving
a particular problem are recorded and checked to detect
loops When a loop is detected we apply the learned
value function to compute the second best action and
choose it If a loop is detected again at the same state,
we backtrack to the preceeding state and again take the
second best action If this were to create a loop also, we
would continue backtracking to earlier states

4 M e t h o d s

We briefly describe the methods applied to generate the
training and lest problems, the network architecture
and tht parameters employed in the learning algorithm

4 1 P r o b l e m Sets

We constructed two problem sets an artificial prob-
lem set and a problem set based on specifications for
the NASA SSPP problem The artificial problems were
generated as follows First we generated a pool of 20
jobs From these, we constructed scheduling problems
by choosing random subsets of these jobs This was in
tended to model the NASA setting where there are only
a l imited number of possible shuttle cargo-bay configura
tions (l e , jobs), but where each scheduling problem is a
unique combination of such shuttle missions More gen
erally, this models a job shop where each new scheduling

ZHANG AND DIETTERICH 1 1 1 7

interval requires scheduling a unique mix of more-or less
standard jobs

To generate a synthetic job we choose the number
of tasks randomly in the range 6 to 10 A set of tem
poral constraints among these tasks is then randomly
generated such that approximately 60% of all possible
pairwise precedence constraints are asserted

Next, resource requirements are determined for each
task There are two types of resources Each resource
has two pools—one pool has a capacity of 6 units and
the other has a rapacity of 8 units Resource require-
ments are randomlv assigned to each task uniformly in
the range from 0 to 6 units for each resource tvpe

Once the pool of 20 jobs is generated in this way, 50
training problems and 50 test problems are constructed
To generate a problem, we first choose the number of
jobs in the problem to be either 3 or 4 (wi th equal prob
abil ity) The desired number of jobs is selected ran
domly with replacement from the 20-job pool Each job
is assigned a completion deadline with the deadlines ran
domly separated by between 8 and 15 time units

Sixteen input features are computed to represent
schedules for these problems H pool capacity features
for the 4 pools 4 slack features and features describ-
ing the modified RDF percentage of windows and time
units in violation, and percentage of violated windows
in which the violation can be resolved by pool reassign
ment

During training 15 of the 50 training problems were
held out as a validation set to determine when to halt
training The remaining 35 problems were repeatedly
processed to train the value function networks

In addition to the 50 test problems, we generated a
second test set of 20 larger problems to evaluate the abil
i ty of the learned value functions to scale up to larger
scheduling problems Each of these larger problems was
generated in the same way as the smaller problems ex
cept that the number of jobs was chosen uniformly be
tween 15 and 20

For the space shuttle pay load processing task, a prob
lem consists of a set of shuttle missions with launch dates
one to three months apart Lach mission can have one
or two pavloads We considered three kinds of pay loads
long module (LM) , mission peculiar equipment support
structure (MPESS), and pallet and igloo (PALLET &
IGLOO) These have 65 32, and 82 tasks, respectively
There are 35 types of resources of which only five are
major bottleneck resources

We randomly generated a training set of 20 problems
and a test set of 20 problems The training problems
each contained between two and four shuttle missions
Of the 20 training problems., 5 were held out for valida
tion to determine when to stop training The test prob-
lems each contained 3 to 6 shuttle missions The test
problems thus assess the ability of the learned policy to
scale up to larger problems

For the shuttle problems, 20 input features are used
10 features for pool capacity, 4 slack features, modified
RDF 2 features describing windows in violation, per
centage of time units in violation, index of firat violated
window and the overallocation index

4 2 N e t w o r k A r c h i t e c t u r e and T ra i n i ng
Procedure

To represent the value function, we trained feed-forward
networks having 40 sigmoidal hidden units and 8 sig-
moidaloutput unite The 8 output units encode the pre
dicted RDF using the technique of overlapping gaussian
ranges [Pomerleau, 1991] as follows Each output unit
represents one assigned RDF value,
For the artificial problems, these RDF values are

For the SSPP problems, the
RDF values are v\ < During
training, the target output activation for each output
unit is set to be
where is the standard normal probability den-
si ty function with mean and standard deviation a
During testinR the predicted RDF value is computed as

where aci3 is tht actual output
activation for output unit j

For each problem we Lrained eight different net
works, using all combinations of the following parame-
ters learning rate exploration schedule

and (Prelimi
nary experiments showed that did not perform
as well) The training set problems are processed in
round-robin fashion Each problem is solved using one
of the networks to obtain a sequence of states and ac
tions That network is then updated (via barkpropaga.
tion with by processing t he st at e sequence work
ing backward from the final state After every 50 passes
through the training set a cross-validation test is con
ducted to compute the average RDF of the final sched
ules produced over all cross-validation problems The
best network found during cross-validation (for each of
the eight parameter sets) is retained For each network
training continues until the cross-validated RDF of that
network is worse than the previous nine m< asured values
for cross-validated RDF

Six networks are chosen for testing as follows The
three best networks found during cross validation are re
tained along with their corresponding final networks We
retain the final networks to compensate for variance m
the cross-validation measurements

For the simulated annealing component of tht iterative
repair method, we set the starting temperature to 100 for
the synthetic scheduling task and to 200 for the SSPP
task After every 10 accepted repairs to the schedule
the temperature is reduced according to

5 R e s u l t s
Figure 1 shows the average cross-validation RDF for the
four value function networks trained wi th The
horizontal axis gives the number of training sequences
processed This figure shows that the performance of
the trained networks is improving on the cross-validation
problems Figure 2 plots the number of repair actions
for these same networks This shows that there is some
reduction in the number of actions required to convert
the starting schedule into a conflict-free final schedule

Figures 3 compares the performance of temporal dif
ference (TD) scheduling wi th the iterative repair (IR)

1118 LEARNING

Figure 2 Average Number of Repairs over 15
(\ Problems Figure 4 Performance Comparison of TD toIR

on 20 Medium scale Problems

method of Zweben The vert ical axis is the R D F of the
best conf l ict- f ree schedule found so far The horizontal
axis is a machine- independent proxy for the amount of
C P U Game consumed by each me thod For IR the hor i
zontal axis gives the number of restarts of the s i m u l a t i d
anneal ing procedure and the ver t ica l axis records the
H D t of the best conf l ict- free schedule found so far THE
longer IR is r u n , the better i ts performance

For the TD scheduler the hor izonta l axis represents
the number of neural ne twork evaluat ion funct ion;s em
ployed W h e n k networks are used to SOIVE a schedul
ing p rob lem, the p rob lem is sohed k t imes once w i t h
cach network and the schedule hav ing the best R D F is
returned as the answer The beet k networks, as deter
mined by cross-vahdat ion are used The curves stop at
k = 6, because only six networks were used (once each)

Some care mus t be taken in in te rp re t ing the hor izonta l
axis as a measure of C P U t ime Fach step of Lht TD
scheduler requires more C P U t ime than a step of the IR
scheduler, because the TD scheduler must per form the.
random sample lookahead search and check for loops On
the average, TD spends 2 2 t imes as much C PU t ime per
step as IR On the other hand TD requires fewer steps
to f ind a conf l ict- f ree schedule T h e average sequence
length for an i t e ra t ion of TD is 82% as long as an average
IR sequence T h e net effect is tha t one i te ra t ion of TD
is equivalent to app rox ima te l y 1 8 i terat ions of IR

Bear ing th is in m i n d , the key po in t to not ice is tha t the
curve for the TD scheduler alwav s lies below the curve for
i terat ive repair T h i s means that given the same amount
of C P U t ime , TD always f inds a bet ter schedule (l e ,
w i t h lower R D F) For example , w i t h 6 networks TD ob
tains an R D F of 1 320 compared to IR s R D F of 1 371
(at 1 8 6 = 1 1 i te ra t ions) T h i s is a 3 9% improvement ,
wh ich in a schedule last ing a year is a savings of 14 days

(and thousands of dol lars) The curve also shows that
i terat ive repair a lwa js requires much more t ime (29 lter
ations vs 11) to find a schedule whose quahtv matches
the R D F found by TD

F igure 4 shows a s imi lar comparison for TD and IR on
the 20 larger test problems Here the difference between
the a lgor i thms is even more pronounced Tempo ra l d l f
ference scheduling scales bel ter lo larger problems even
though it has onlv been tra ined on smaller problems

Figure r) shows analogous results for t empora l differ
ence and i terat ive repair on the 20 test-set SSPP prob
lems Here t in hor izonta l axis is log C P U l ime We see
that ID ma in ta ins a constant factor advantage over i ter
ative repair Tempora l difference schedul ing f inds bet ter
schedules faster than i terat ive repair

Note however that this f igure j us t gives the average
RDP over the whole test set Because of the random
components of both a lgor i thms, th is hides considerable
var ia t ion Figure 6 reveals th is var ia t ion Let us say
that TD wins" on a par t icu lar p rob lem i f the R D F of
i ts best schedule computed so Tar is be l ter than the RDF
of the best IR schedule computed w i t h the same amount
o f C P U t ime The two a lgor i thms w i l l be said to " t i e ' i f
they f ind schedules w i t h ident ical RD I - values I igurc f i
plots the f ract ion o f TD wins" and TD "w ins + ties
as a func t ion cf log C P U t ime We see that at low C P U
costs, TD wins on almost every p rob lem Eventua l ly , as
C P U t ime becomes larger, TD s t i l l wins or ties s l ight ly
more than 50% of the t ime

6 Discussion and Conclud ing Remarks
These results show that tempora l difference (T D) m e t h
ods ou tpe r fo rm the best previous a l g o r i t h m for schedul
ing space shuLtle payload processing jobs f u r t h e r m o r e ,

ZHANG AND DIETTERICH 1 1 1 9

http://cross-vahd.il

there are clearly many ways that the TD methods can be
improved For example, the current set of features needs
to be improved so that the learning procedure can cap
ture more domain specific knowledge There is also some
evidence to suggest that the training procedure could be
improved

Several authors [Bradtke, 1993, Thrun and Schwartz,
1993, Boyan and Moore 1995, Schraudolph et al, 1994]
have shown that there are pitfalls associated with us
ing neural networks (and other function approximation
schemes) to represent value functions in reinforcement
learning However, the results of this paper and the no
table success of Tesauro's [1992] TD backgammon sys
tem show that in some situations, these pitfalls are nol
encountered An important open question is to under
stand why works in this and other applications

We suspect that the success of TD methods in this
domain results from two factors First, there are prob
ably many good solutions to each scheduling problem
Certainly there are many good solution paths because
the search space is highly redundant Second, TD is es
sentially a technique for smoothing adjacent estimates of
the final RDF This smoothing can remove local minima
even if it does a poor job of predicting the final RDF
These two pToperties may permit a simple greedy algo
r i thm to find good schedules

These same two properties may explain why the iter
ative repair method with simulated annealing also suc
ceeds in this domain Simulated annealing IB a stochastic
method for locally smoothing an objective function As
applied in this domain, simulated annealing is not run
long enough to find a global opt imum, but it may be able
to escape local minima and find an acceptable solution

in spite of this
Industrial scheduling problems abound and general

purpose solutions to these problems probably do not ex
ist This research has shown that reinforcement learn
ing methods have the potential for quickly finding high-
quality solutions to these scheduling problems The goal
of future research must be to improve these learning
methods BO that they can be applied with a minimum
of domain-specific engineering to produce a new, cost
effective scheduling technology

Acknowledgements
I he authors thank Rich Sutton and Monte Zweben for
several helpful discussions The authors gratefully ac
knowledge the support of NASA grant NAG 2-630 from
NASA Ames Research Center Addit ional support was
provided by NSF grants CDA-9216172 and 1R1-9204129

References
[Boyan and Moore, 1995] J A Boyan and A W Moore

Generalization in reinforcement learning safely ap
proximating the value function In Advances in Neu
ral Information Processing Systems 7, San Mateov CA
1995 Morgan Kaufmann

[Bradtke 1993] S J Bradtke Reinforc ement learning
applied to linear quadratic regulation In Advancees in
Neural Information Processing Systems 5, pages 295-
302, San Mateo CA 1993 Morgan Kaufmann

[Deale et al 1994] M Deale, M Yvanovich, D Schnitz-
IUS D Kautz, M Carpenter, M Zweben, G Davis
and B Daun The space shuttle ground processing
scheduling system In M Zweben and M S Fox, ed
itors Intelligent Scheduling, chapter 15 pages 423
449 Morgan Kaufmann, San Francisco CA 1994

[Pomerleau, 1991] D A Pomerleau Efficient training of
artificial neural networks for autonomous navigation
Neural Computation, 3(1) 88-97, 1991

[Schraudolph et al 1994] N Schraudolph P Dayan
and T Sejnowski Using to learn an evalu
ation function for the game of go In Advances in
Neural Information Processing Systems 6, San Mateo
CA, 1994 Morgan Kaufmann

[Sutton 1988] R S Sutton Learning to predict by the
methods of temporal differences Machine Learning
3(1) 9-44, August 1988

[Tesauro, 1992] G Tesauro Practical issues in tempo
ral difference learning Machine Learning, 8 257-278,
1992

[Thrun and Schwartz, 1993] S Thrun and A Schwartz
Issues in using approximation for reinforcement learn
ing In Proceedings of the Fourth Connectonist Mod
els Summer School, Hillsdale, NJ, 1993 Lawrence Erl
baum Publisher

[Zweben el al, 1994] M Zweben, B Daun
and M Deale Scheduling and rescheduling with it
erative repair In M Zweben and M S Fox, editors
Intelligent Scheduling, chapter 8, pages 241-255 Mor
gan Kaufmann, San Francisco, CA, 1994

1120 LEARNING

