
Opt imiz ing Decision Quali ty w i t h Contract Algor i thms

Shlomo Zilberstein*
C o m p u t e r Science D e p a r t m e n t

Un ive rs i t y o f Massachuset ts
A m h e r s t M A 01003 U S A

shlomo@cs umass edu

A b s t r a c t

Contract algorithms offer a tradeoff between
output quality and computation time provided
that the amount of computation tunc is de­
termined prior to their activation Originally
they were introduced as an intermediate step in
the composition of interruptible anytime algo-
rithms However for many real-time tasks such
as information gathering game playing, and a
large class of planning problems contract al­
gorithms offer an ideal mechanism to optimize
decision quality This paper extends previous
results regarding the meta-level control of con­
tract algorithms by handling a more general
type of performance description The output
quality of each contract algorithm is described
by a probabilistic (rather than deterministic)
conditional performance profile Such profiles
map input quality and computation time to a
probability distribution of output quality The
composition problem is solved by an efficient
off-line compilation technique that simplifies
the run-time monitoring task

1 D e c i s i o n m a k i n g w i t h c o n t r a c t
a l g o r i t h m s

The wide performance variability of artificial intelli­
gence techniques, most notably in search and knowledge-
based systems, has been a major obstacle in applying
these techniques to real-time environments This prob-
lem led to the development of a variety of approxima-
tion techniques such as anytime algorithms [Dean and
Boddy, 1988, Horvitz 1987], design -to time [Garvey and
Lesser 1993] and various progressive reasoning meth­
ods [Mouaddib and Zilberstein, 1995] It is by now well
understood that a successful system must trade off deci­
sion quality for computation time Anytime algorithms
in particular offer a simple means by which a sy stem can
monitor and maximize its overall ut i l i ty

Contract algorithms are a special type of anytime al­
gorithms that was introduced in order to simplify the

"URL ht tp / /anyt ime cs umass edu/-shlomo

anytime algorithm composition problem [Russell and Zil-
berstein 199l] General anytime algorithms are inter­
ruptible but naive composition of anytime algorithms
destroys interruptibihty since no results are available be­
fore the last component is activated Similar to inter­
ruptible algorithms, contract algorithms offer a tradeoff
between computation time and quality of results, but the
amount of computation time must be determined prior
to activation so that time can be allocated optimally to
the components This leads to a two step solution to the
composition problem of interruptible algorithms first
the system is compiled into one large contract algorithm
and then this algorithm is made interruptible wi th only
a small constant penalty [Zilberstein, 1993]

Despite the original motivation for their development,
contract algorithms may be just the right solution in
many real-time problem domains Such domains as in­
formation gathering, database query processing, game
playing and many planning and scheduling tasks are
characterized by a predictable utility function, that is,
the ut i l i ty of results of quality q at a future tune t can
be determined by the current state of the domain In
such domains, and in domains that have near predictable
utility function it is advantageous to utilize contract al­
gorithms rather than interruptible ones, given the per­
formance degradation associated wi th the contract to in­
terruptible conversion

Many existing programming paradigms can be used
to construct useful contract algorithms Examples in­
clude iterative deepening search, iterative improvement
algorithms in numerical computation variable precision
logic, relational database query answering, and random­
ized techniques such as Monte Carlo algorithms and fin­
gerprinting algorithms For a survey of such program­
ming techniques and examples of their AI applications
see [Zilberatein, 1993] The composition of these algo-
rithms, however, presents a non-tr iv ial meta-level re-
source allocation problem For any given contract time
allocated to a composite system, the problem is how to
allocate this time to the componenta BO as to maximize
the overall output quality We refer to this problem as
the contract algorithm composition problem

The rest of this paper presents an efficient solution to
the contract algorithm composition problem Section 2

1576 PLANNING

defines the problem formally and describes the main fac­
tors that determine the complexity of the problem In
Section 3, we show that the resource allocation problem
can be mapped to a decision problem represented by an
influence diagram Unfortunately, standard algorithms
for evaluating influence diagrams perform poorly on this
problem Section 4 describes an off-line compilation pro-
cess and a run-tune monitoring technique that offer an
alternative solution to the resource allocation problem
In section 5, we show that the compilation problem can
be solved efficiently for a large class of composite sys­
tems As a result large systems composed of contract
algorithms can be optimally monitored with negligible
run-time overhead We conclude with a summary of the
contribution of this work and some open problems

2 The meta-level resource allocation
problem

This section defines the resource allocation problem that
arises when a system is composed of a set of contract
algorithms To formally define the problem one must
answer a number of basic questions These questions are
discussed below

P r o g r a m s t r u c t u r e The first question is what type
of programming constructs are used to connect the s\s
tern's components In this paper, we wil l consider the
case of functional composition as the only programming
construct The results howe\er can be generalized to
additional programming constructs as shown in [Zilber­
stein, 1993]

Speech Recognizer(utterance)
LinguisticVerification (

Generatelnterpretation(
FilterNoise (utterance)
ClassifySpeaker(utterance))

GenerateContext(state))

Figure 1 A speech recognition module composed of con­
tract algorithms

Many systems can be described at the top level as a
composition of a set of modules Consider for example
a speech recognition system whose structure is shown in
Figure 1 Each elementary function represents a contract
algonthm The lower level modules filter noise from the
input and classify the speaker (in terms of geneder ac­
cent, and other features that may be used to calibrate
the interpretation module) The results are passed to a
function that generates possible interpretations Finally,
candidate interpretations along wi th the current context
are passed to a function that performs linguistic verifi-
cation and determines the best interpretation Each one
of these functions can be composed of more primitive
contract algorithms The resource allocation problem is

the problem of calculating the execution time of each el­
ementary component, so as to maximize the quality of
the final interpretation

Pe r fo rmance prof i les The second question is what
meta-level knowledge is used to characterize the perfor­
mance of individual contract algorithms We use discrete
conditional performance profiles (CPPs) that map input
quality and run-time to a discrete probabil i ty distr ibu­
tion of output quality For an algorithm A with two
inputs for example, the CPP is denoted by
and is the probability of output quality
Qk w i th input qualities (g,,?j) and time allocation t
Each quaht\ measure can represent the
level of certainty, precision, or specificity of the data
These quality measures arc "local" to each component
Part of the composition problem is to propagate the ef­
fect of quality degradation in lower levels on the over-
all quality of the system and on its. ut i l i ty The CPP
of an elementary contract algorithm can be determined
empirically by running the algorithm over randomly
selected problem instances [Dean and Boddy, 1988
Zilberstein 1993] In fact, we are currently de\eloping
a bet of programming tools to mechanize the construc­
tion of CPPs and to store them in a library for later
use [Grass and Zilberstein, 1995]

T ime-dependen t u t i l i t y func t ions The th i rd ques­
tion is how the quality of the output of the system wil l
affect the domain, V, in which it operates As we men­
tioned earlier, we assume that the environment is char­
acterized by a predictable util ity function
This function represents the ut i l i ty of a result of quality
q in state S at time t For example in the speech recogni­
tion domain described above, the state S may represent
situations with different level of error sensitivity, q may
represent the probability of correct interpretation and
the overall utility may depend on 5 and q, as well as on
the delay in producing the interpretation

M o n i t o r i n g schemes The fourth question is how to
determine the tot al allocation of computation tune to the
system and how to monitor the execution of the compo­
nents In this paper, our goal is to derive the optimal
allocation prior to the activation of the system This
approach leads to a simple monitoring scheme by which
every module is activated wi th a fixed predetermined
contract time Several strategies for adjusting the al­
location of residual tune based on the actual progress
in problem solving have been proposed in [Zilberstein,
1993] These techniques can be used to modify the fixed
contract strategy to improve performance when there is a
large degree of uncertainty regarding the output of each
module

The answers to the above four questions produce
a well-defined meta-level resource allocation problem
Namely, given a system that is a functional composition
of contract algorithms, the CPPs of the components, and

ZILBERSTEIN 1577

a time-dependent ut i l i ty function, what is the beat over­
all contract and how should the time be distributed to
the components so as to maximize the overall ut i l i ty of
the system

3 O p t i m a l r e s o u r c e a l l o c a t i o n u s i n g
i n f l u e n c e d i a g r a m s

The tune allocation problem defined above can be rep­
resented as a decision problem using influence dia­
grams [Howard and Matheson, 1981] The construction
of the influence diagram is a t r iv ia l modification of the
directed acyclic graph (DAG) representation of the sys­
tem itself

Figure 2 Influence diagram representation of the meta-
level resource allocation problem

For example, the speech recognition system described
above can be schematically represented by the following
functional expression E(D(A(x) B(y)) C(z)) where A B
C D and E are contract algorithms Given such an ex­
pression, we can map the resource allocation problem to
the influence diagram shown in Figure 2 In this dia­
gram, each elementary contract algorithm is represented
by a chance node that corresponds to the uncertainty
regarding the output quality of the algorithm In addi­
tion, we represent the quality of each input X Y and Z,
by a chance node The output quality of each contract
algorithm is influenced bv the qualities of the inputs and
by the time allocation to that node This dependency is
characterized by the CPP of the contract algorithm that
forms the conditional probability matnx attached to the
node The problem is then to determine the total alloca­
tion of time, T, and the sub-allocation a tl t5 to each
component, that would maximize the overall quality of
the system Note that the overall ut i l i ty is represented
by a value node that is influenced by the quality of the
system's output and by the state of the environment
represented by a single chance node S The state of the
environment is more likely to be determined be a com­
plex probabibstic model but since we focus in this paper

on the behavior of the decision making components, a
single node is used to represent that influence

Note that, in general, the decision diagrams that we
get satisfy the following two restrictions

1 There is a total ordering among the decision nodes
that is determined by the order of evaluation of the
composite system

2 Each decision node influences all the successive de-
cisions (since only the remaining time can be allo-
cated at each step) To simplify the diagram, the
links representing this influence are shown as short
outgoing arrows

Under these two conditions, Shachter's[1986] transfor
mation approach can be applied to evaluate the diagram
But the complexity of this evaluation technique is high
even with a small number of modules The reason is the
exponential complexity of the algorithm combined wi th
the fact that the discrete time variables may range over
a large number of values As a result, solving the t ime
allocation problem by standard evaluation techniques for
influence diagrams is not practical

The question is what properties or reasonable restric­
tions can be introduced so as to reduce the complexity
of the run-time resource allocation problem An efficient
alternative solution wil l not only simplify the compo-
sition of contract algorithms but wi l l also apply to a
general class of resource allocation problems represented
b\ the above influence diagram These general resource
allocation problems are characterized by the following
three properties

1 Each computational element offers a trade off be­
tween resource consumption (not necessarily com­
putation time) and output quality

2 Resource availability is l imited, and
3 Conditional performance profiles can be constructed

to characterize the dependency of output quality on
input quality and resource allocation

This class of resource allocation problems is, in general
NP-complete [Zilberstein, 1993], but under a set of rea­
sonable assumptions it can be solved efficiently by the
compilation process described in the next two sections

4 O p t i m a l r e s o u r c e a l l o c a t i o n u s i n g
o f f - l i ne c o m p i l a t i o n

As an alternative to the influence diagram solution, we
developed a two-step solution baaed on (1) an off-line
compilation process that derives the optimal allocation
to the components for any given contract t ime, and con­
structs the best performance profile of the whole system,
and (2) a run-time monitoring technique that determines
the optimal overall contract tune m any given situation

Ca l cu l a t i ng t he o p t i m a l C P P o f t h e sys tem
When the computation time of each component of a sys­
tem is known, we can easily derive the probabil i ty dis-
tr ibut ion of the output Hence, for any given contract

1576 PLANNING

t ime, we can in principle find the best apportionment of
t ime to the components based on the resulting quality
distr ibution (and the ut i l i ty function of the system) We
refer to th is problem as global compilation of contract al­
gorithms, since it solves the global optimization problem
directly Global compilation is analogous to evaluating
the influence diagram of the previous section It is ob-
viously an NP-complete problem and cannot be solved
even off-line for large programs [Zilberstein, 1993] The
local compilation technique presented in Section 5 ad­
dresses this complexity issue

C a l c u l a t i n g t he o p t i m a l con t rac t t ime Suppose
that the system has been compiled into a single contract
algorithm, 4, whose CPP is QA(i ;,r.) Let SQ be the
current state of the domain, and let St represent the state
of the domain at tune (Let qt represent the quality of
the result of the contract algorithm at time t, anr1 let
Ut)(S,t,q) be the time-dependent ut i l i ty function The
optimal contract t ime is calculated as follows

Due to uncertainly concerning the quality of the result
of the algorithm, the expected ut i l i ty of the result in
state 5[at t ime / is represented b\

(1)
k

The probability distribution of future output quality is
provided by the CPP of the algorithm Due to uncer­
tainty regarding the future state of the domain the ex
pected ut i l i ty of the results at time / is represented b\

(2)

The probability distr ibution of the future state is cal­
culated using a probabilistic model of the environment
Now, the optimal contract time, tc can be determined
before the system is activated l>> sohing the following
equation

(3)

As we mentioned earlier once an init ial contract time
is determined, several monitoring strategies can be used
to modify the allocation based on the actual progress
in problem solving In particular we have studied two
strategies for contract adjustment [Zilberstein, 1993]
The first strategy re-allocates residual time among the
remaining modules once the result of a module becomes
available The second strategy adjusts the original con­
tract each time an elementary component terminates In
the latter case, the monitor considers the output pro­
vided by an intermediate computation as input to a
smaller residual system composed of the remaining con­
tract algorithms At that point, a better contract time
can be determined that takes into account the actual
quality of all the intermediate results generated so far

To summarize, the compilation and monitoring ap­
proach to meta-level resource allocation is a valuable al­
ternative, provided that the off-line compilation process
could be performed efficiently This is achieved by the
local compilation technique described below

5 T h e o p t i m a l i t y o f l o c a l c o m p i l a t i o n

In this section we show how the composition of contract
algorithms can be solved efficiently by an off-line local
compilation process The goal of the compilation pro­
cess is to produce the best possible CPP of a composite
module based on the CPPs of the components Instead
of solving the global optimization problem directly, lo­
cal compilation calculates the optimal CPP of an algo­
r i thm based on the CPPs of its immediate components
If those components are not elementary their CPPs are
calculated using local compilation as well

To simplify our analysis and to be able to guarantee
both efficiency and optimality, we use the following three
assumptions

1 The input monotomcity assumption that the out­
put quality of a contract algorithm improves as the
quality of its mput(s) improves This assumption
is not only reasonable but also represents a desired
property of every contract algorithm

2 The bounded degree assumption that the number
of inputs to each individual algorithm is bounded
This assumption represents a good software engi­
neering practice

3 The tree-structured assumption that the structure
of the program can be represented by a directed
tree This is the only real restriction since gen­
eral functional expressions have a DAG represen­
tation but not necessanly a tree-structured one
Several techniques to remove this restriction and
achieve optimal (or near-optimal) performance are
described in [Zilberstein 1993] These techniques
are analogous to the methods used to evaluate gen­
eral Bayesian networks [Pearl, 1988]

5 1 O p t i m a l i t y o f l o c a l c o m p i l a t i o n o f
d e t e r m i n i s t i c C P P s

We first prove the optimality of local compilation when
the CPP of each contract algorithm is deterministic, that
is, when the input quality and run-time determine ex­
actly the output quahty Under the above three assump-
tions, and without l imit ing the generality of the discus­
sion, we wil l consider binary functions onl> and assume
that the composite expression is a complete binary tree

Figure 3 A tree representation of a composite expres­
sion

Let f, j denote the jih function on the iih level of the
tree The root node is denoted accordingly by f00 If

ZILBERSTEIN 1679

1580 PLANNING

Figure 4 It is not possible to determine which one of
the following quality distributions is "better ' without
knowing the CPP that they affect

Suppose, for example, that we compare two alterna­
tive allocations that produce the quality distributions
shown in Figure 4 It is impossible to determine locally
which one is better based on expected quality or any
other aspect of the distributions In particular, if low
output quality has a "disastrous" effect on the system s
performance, then the distribution that has a slightly
lower expected value but a higher lower bound on qual­
ity may be better

The question is under what circumstances wi l l the lo­
cal optimization approach (based on expected quality)
guarantee that the result is globally optimal A sufficient
assumption is that the dependency of output quality on
input quality is linear We call this assumption the input
l inearty assumption Input linearity means that for any
given time allocation, the probability of output quality
<Jjc IS a linear function of the mput qualities Since weonly consider increasing linear functions, input linearity

implies input monotomcity In such case, maximizing
expected quality at each compilation step wil l yield the
globally optimal results Hence we get the following re­
sult

T h e o r e m 5 2 Opttmaltty of local compilation of
probabilistic CPPs Let e be a composite expression
of an. arbitrary depth n whose conditional performance
profiles satisfy the input linearity assumption, then for
any input and contract time t

P r o o f An immediate result of Theorem 5 1 and the in­
put linearity assumption since for any linear function <j,

Note that input linearity guarantees that
the expected output quality of a module is a linear func­
tion of the qualities of its inputs, therefore we can simply
maximize expected mput quality to guarantee maximal
expected output quality D

Obviously, the validity of the input linearity assump-
tion cannot be generall} established However, we sug­
gest that it is a reasonable approximation even in those
cases where the dependency is not totally linear Based
on passed experience wi th contract algorithms, the de­
pendency of output quality on input quality follows a
general pattern Wi th very low input quality, the algo­
r i thm tends to fail Very high input quality does not
have a significant marginal effect on output quality But
withing the middle range of possible input quality, the
dependence is near-linear This has been the case wi th
several algorithms that we have developed in the past
We argue that the optimal operation of a system wil l
normally result m a contract time that falls wi th in the
middle range boundaries, hence the linearity assumption
is a good approximation Further experimental work is
needed to assess the validity of the last argument

5 3 A p p l i c a t i o n s o f t h e c o m p i l a t i o n
t e c h n i q u e

The advantages of compilation of contract algorithms
have already been demonstrated by two applications in
the area of mobile robot navigation [Zilberstein and Rus­
sell, 1993] (using deterministic CPPs) and in the area
of model-based diagnosis [Pos, 1993] (using a slightly
modified type of performance profiles, called Statistical
Performance Profiles) This paper extends those results
by analyzing the use of probabilistic CPPs that capture
more accurately the performance of contract algorithms

Another application of this work is to the evaluation
of a general class of decision problems that normally
arise in resource allocation When the resulting infiu
ence diagram has the structure and properties described
in Section 3, it can be evaluated efficiently using the lo­
cal compilation technique The idea of compiling CPPs
representing conditional probabil i ty matnces leads to a
powerful tractable evaluation technique for such decision
problems The technique is especially useful in real-time
domains where the meta-level resource allocation prob-
lem must be solved quickly at run-tune

ZILBERSTEIN 1581

6 Conclusion
Contract algorithms offer a flexible building block for
systems that must trade off decision quality for com­
putational resources We have formalized the problem
of resource allocation that arises m systems composed of
contract algori thm and offered two solutions to the prob-
lem The first solution exploits existing algorithms for
evaluation of influence diagrams but it is inefficient The
second technique rehes on local compilation of CPPs and
is both efficient and optimal under certain conditions,
most of which are satisfied by any system composed of
contract algorithms We argue that the input linearity
assumption, needed to guarantee the optimality of lo-
caJ compilation of probabilistic CPPs, is a reasonable
approximation and therefore it leads to near-optimal re-
sults

These results apply to the construction of a large
class of AI systems that operate in domains wi th time-
dependent, predictable ut i l i ty functions In addition, lo­
cal compilation is a powerful technique for evaluation of
decision models that share the structure of the influence
diagram in Section 3 For this type of resource allocation
decisions, local compilation offers a significant complex­
ity reduction based on the monotonicity of CPPs

Further work is needed to analyze the effect of non­
linear input-output dependency and to apply the results
to larger systems composed of contract algorithms Our
ult imate goal is to provide an analytical foundation for
the widespread use of reusable contract algorithms in
various decision making applications

A c k n o w l e d g e m e n t s

Support for this work was provided m part by the Na­
tional Science Foundation under grant IRI-9409827 (Re-
search Ini t iat ion Award) and by a Faculty Research
Grant from the University of Massachusetts

R e f e r e n c e s

[Dean and Boddy, 1988] T Dean and M Boddy An
analysis of time-dependent planning In Proceedings
of the Seventh National Conference on Artificial Intel­
ligence, pages 49-54, Minneapolis, Minnesota, 1988

[Garvey and Lesser, 1993] A Garvey and V Lesser
Design-to-time real-time scheduling In IEEE
Transactions on Systems, Man and Cybernetics,
23(6) 1491-1502, 1993

[Grass and Zilberstem, 1995] J Grass and S Zilber­
stem Programming wi th anytime algorithms In
Proceedings of the IJCAI-95 Workshop on Anytime
Algorithms and Deliberation Scheduling, Montreal,
Canada, 1995

[Hayes-Roth tt al, 1991]
B Hayes-Roth et al Guardian A prototype intel
ligent agent for intensive-care monitoring Technical
Report KSI-91-42, Stanford Knowledge Systems Lab-
oratory, Stanford California 1991

[Horvitz, 1987] E J Horvitz Reasoning about beliefs
and actions under computational resource constraints
In Proceedings of the 1987 Workshop on Uncertainty
in Artificial Intelligence, Seattle, Washington, 1987

[Howard and Matheson, 1981] R A Howard and J E
Matheson Influence diagrams In Principles and Ap­
plications of Decision Analysis, vol 2, Menlo Park,
California Strategic Decision Group, 1984

[Mouaddib and Zilberstem, 1995] A I Mouaddib and
S Zilberstem Knowledge-based anytime computa­
tion In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, Montreal,
Canada, 1995

[Pearl, 1988] J Pearl Probabilistic Reasoning in Intel­
ligent Systems Networks of Plausible Inference Los
Altos, California Morgan-Kaufmann, 1988

[Pos, 1993] A Pos Time-constrained model-based diag­
nosis Master Thesis, Department of Computer Sci­
ence University of Twente, The Netherlands, 1993

[Russell and Wefald, 1991] S J Russell and E H We-
fald Principles of metareasoning Artificial Intelli­
gence, 49 361-395 1991

[Russell and Zilberbtein, 1991] S J Russell and S Zil
berstein Composing real-time systems In Proceedings
of the Twelfth International Joint Conference on Ar­
tificial Intelligence pages 212-217, Sydney, Australia,
1991

[Shachter, 1986] R D Shachter Evaluating influence
diagrams Operation Research 34(6) 871-882, 1986

[von Neumann and Morgenstern, 1947] von Neu­
mann and O Morgenstern Theory of Games and
Economic Behavior 2nd ed Princeton, New Jersey
Princeton University Press, 1947

[Zilberstem, 1993] S Zilberstem Operational rational­
ity through compilation of anytime algorithms Ph D
dissertation, Computer Science Division, University of
California at Berkeley, 1993

[Zilberstein and Russell, 1993] S Zilberstem and S J
Russell Anytime sensing, planning and action A
practical model for robot control In Proceedings of the
Thirteenth International Joint Conference on Artifi
cial Intelligence, pages 1402-1407, Chambery, France,
1993

[Zilberstem and Russell, 1995] S Zilberstem and S J
Russell Optimal composition of real-time systems
Artificial Intelligence, forthcoming, 1995

1582 PLANNING

