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Abstract 

Any attempt to introduce automation into the moni­
toring of complex physical systems must start from 
a robust anomaly detection capability. This task 
is far from straightforward, for a single definition 
of what constitutes an anomaly is difficult to come 
by. In addition, to make the monitoring process 
efficient, and to avoid the potential for information 
overload on human operators, attention focusing 
must also be addressed. When an anomaly occurs, 
more often than not several sensors are affected, and 
the partially redundant information they provide can 
be confusing, particularly in a crisis situation where 
a response is needed quickly. 

The focus of this paper is a new technique for at­
tention focusing. The technique involves reasoning 
about the distance between two frequency distri­
butions, and is used to detect both anomalous sys­
tem parameters and "broken" causal dependencies. 
These two forms of information together isolate the 
locus of anomalous behavior in the system being 
monitored. 

1 In t roduct ion 

Mission Operations personnel at NASA have the task of deter­
mining, f rom moment to moment, whether a space platform 
is exhibiting behavior which is in any way anomalous, which 
could disrupt the operation of the platform, and in the worst 
case, could represent a loss of ability to achieve mission goals. 
Our approach to introducing automation into real-time sys­
tems monitoring is based on two observations: I) mission op­
erators employ multiple methods for recognizing anomalies, 
and 2) mission operators do not and should not interpret all 
sensor data all of the time. We seek an approach for determin­
ing from moment to moment which of the available sensor data 
is most informative about the presence of anomalies occurring 
within a system. The work reported here extends the anomaly 
detection capability in the SELMON monitoring system [4; 
5] by adding an attention focusing capability. 

Other model-based monitoring systems include Dvorak's 
M I M I C , which performs robust discrepancy detection for con­
tinuous dynamic systems [61, and DeCoste's D A T M I , which 
infers system states f rom incomplete sensor data [3]. This 
work also complements other work within NASA on empiri­

cal and model-based methods for fault diagnosis of aerospace 
platforms [ 1 ; 7; 8; 103. 

2 Background: The SELMON Approach 

Abnormal behavior is always defined as some kind of depar­
ture from normal behavior. Unfortunately, there appears to be 
no single, crisp definition of "normal" behavior. In the tradi­
tional monitoring technique of l imit sensing, normal behavior 
is predefined by nominal value ranges for sensors. A funda­
mental limitation of this approach is the lack of sensitivity 
to context. In the other traditional monitoring technique of 
discrepancy detection, normal behavior is obtained by simu­
lating a model of the system being monitored. This approach, 
while avoiding the insensitivity to context of the l imi t sens­
ing approach, has its own limitations. The approach is only 
as good as the system model. In addition, normal system 
behavior typically changes with time, and the model must 
continue to evolve. Given these limitations, it can be difficult 
to distinguish genuine anomalies from errors in the model. 

Noting the limitations of the existing monitoring tech­
niques, we have developed an approach to monitoring which 
is designed to make the anomaly detection process more ro­
bust, to reduce the number of undetected anomalies (false 
negatives). Towards this end, we introduce multiple anomaly 
models, each employing a different notion of "normal" be­
havior. 

2.1 Anomaly Detection Methods 

In this section, we briefly describe methods that we use to 
determine when a sensor is reporting anomalous behavior. 
The first few measures use knowledge about each individual 
sensor, without knowledge of any relations among sensors. 

Surprise. An appealing way to assess whether current be­
havior is anomalous or not is via comparison to past behavior. 
This is the essence of the surprise measure. It is designed to 
highlight a sensor which behaves other than it has historically. 
Specifically, surprise uses the historical frequency distribu­
tion for the sensor in two ways: To determine the likelihood 
of the given current value of the sensor, and to examine the 
relative likelihoods of different values of the sensor. It is those 
sensors which display unlikely values when other values of 
the sensor are more likely which get a high surprise score. 
Surprise is not high if the only reason a sensor's value is un­
likely is that there are many possible values for the sensor, all 
equally unlikely. 
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Alarm. Alarm thresholds for sensors, indexed by operating 
mode, typically are established through an off-l ine analysis 
of system design. The notion of alarm in SELMON extends 
the usual one bit of information (the sensor is in alarm or it is 
not), and also reports how much of the alarm range has been 
traversed. Thus a sensor which has gone deep into alarm gets 
a higher score than one which has just crossed over the alarm 
threshold. 

Alarm Anticipation. The alarm anticipation measure in 
SELMON performs a simple form of trend analysis to decide 
whether or not a sensor is expected to be in alarm in the fu­
ture. A straightforward curve fit is used to project when the 
sensor w i l l next cross an alarm threshold, in either direction. 
A high score means the sensor wi l l soon enter alarm or wi l l 
remain there. A low score means the sensor wi l l remain in 
the nominal range or emerge from alarm soon. 

Value Change. A change in the value of a sensor may be 
indicative of an anomaly. In order to better assess such an 
event, the value change measure in SELMON compares a given 
value change to historical value changes seen on that sensor. 
The score reported is based on the proportion of previous 
value changes which were less than the given value change. 
It is maximum when the given value change is the greatest 
value change seen to date on that sensor. It is minimum when 
no value change has occurred in that sensor. 

Although many anomalies can be detected by applying 
anomaly models to the behavior reported at individual sen-
sors, some can only be detected by reasoning about interac­
tions occurring in a system and about behavior reported by 
several sensors. 

Deviation. The deviation measure is our extension of the 
traditional method of discrepancy detection. As in discrep­
ancy detection, comparisons are made between predicted and 
actual sensor values, and differences are interpreted to be in­
dications of anomalies. This raw discrepancy is entered into 
a normalization process identical to that used for the value 
change score, and it is this representation of relative discrep­
ancy which is reported. The deviation score for a sensor is 
minimum if there is no discrepancy and maximum if the dis­
crepancy between predicted and actual is the greatest seen to 
date on that sensor. 

Deviation on\y requires that a simulation be available in any 
form for generating sensor value predictions. However, the 
remaining sensitivity and cascading alarms measures require 
the ability to simulate and reason with a causal model of the 
system being monitored. 

Sensitivity and Cascading Alarms. Sensitivity measures the 
potential for a large global perturbation to develop from cur­
rent state. Cascading alarms measures the potential for an 
alarm sequence to develop from current state. Both of these 
anomaly measures use an event-driven causal simulator [2; 
9] to generate predictions about future states of the system, 
given current state. Current state is taken to be defined by 
both the current values of system parameters (not all of which 
may be sensed) and the pending events already resident on the 
simulator agenda. The measures assign scores to individual 
sensors according to how the system parameter corresponding 
to a sensor participates in, or influences, the predicted global 
behavior. A sensor wi l l have its highest sensitivity score when 
behavior originating at that sensor causes all sensors causally 
downstream to exhibit their maximum value change to date. 

A sensor wi l l have its highest cascading alarms score when 
behavior originating at that sensor causes all sensors causally 
downstream to go into an alarm state. 

2.2 Previous Results 

In order to assess whether SELMON increased the robustness 
of the anomaly detection process, we performed the fol lowing 
experiment: We compared SELMON performance to the per­
formance of the traditional l imi t sensing technique in selecting 
critical sensor subsets specified by a Space Station Environ­
mental Control and Li fe Support System (ECLSS) domain 
expert, sensors seen by that expert as useful in understanding 
episodes of anomalous behavior in actual historical data from 
ECLSS testbed operations. 

The experiment asked the fol lowing specific question: How 
often did SELMON place a "cr i t ical" sensor in the top half of 
its sensor ordering based on the anomaly detection measures? 

The performance of a random sensor selection algorithm 
would be expected to be about 50%; any particular sensor 
would appear in the top half of the sensor ordering about half 
the time. L imi t sensing detected the anomalies 76.3% of the 
time. SELMON detected the anomalies 9 5 . 1 % of the time. 

These results show SELMON performing considerably bet­
ter than the traditional practice of l imi t sensing. They lend 
credibility to our premise that the most effective monitoring 
system is one which incorporates several models of anoma­
lous behavior. Our aim is to offer a more complete, robust 
set of techniques for anomaly detection to make human oper­
ators more effective, or to provide the basis for an automated 
monitoring capability. 

The fol lowing is a specific example of the value added 
of SELMON. During an episode in which the ECLSS pre-
heater failed, system pressure (which normally oscillates 
within a known range) became stable. This "abnormally 
normal" behavior is not detected by traditional monitor­
ing methods because the system pressure remains f irmly 
in the nominal range where l imit sensing fails to tr ig­
ger. Furthermore, the fluctuating behavior of the sensor 
is not modeled; the predicted value is an averaged stable 
value which fails to trigger discrepancy detection. See [4; 
51 for more details on these previous results in evaluating the 
SELMON approach. 

3 Determining the Locus of an Anomaly 

A robust anomaly detection capability provides the core for 
monitoring, but only when this capability is combined with 
attention focusing does monitoring become both robust and 
efficient. Otherwise, the potential problems of information 
overload and too many false positives may defeat the utility 
of the monitoring system. 

The attention focusing technique developed here uses two 
sources of information: historical data describing nominal 
system behavior, and causal information describing which 
pairs of sensors are constrained to be correlated, due to the 
presence of a dependency. The intuition is that the origin and 
extent of an anomaly can be determined if the misbehaving 
system parameters and the misbehaving causal dependencies 
can be determined. Such information also supports reasoning 
to distinguish whether sensors, system parameters or mech­
anisms are misbehaving due to the fact that the signature of 
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"broken" nodes and arcs in the causal graph are distinguish­
able. See Figure 1. 

For example, the expected signature of an anomalous sen­
sor includes the node of the sensor itself and the immediately 
adjacent arcs corresponding to the causal dependencies that 
the sensor participates in directly. The intuition is that the 
actual system is behaving normally so the locus of "broken-
ness" is isolated to the sensor and the set of adjacent causal 
dependencies which attempt and fail to reconcile the bogus 
value reported by the sensor. 

The expected signature of an anomalous system parameter 
also includes nodes and arcs which are downstream in the 
causal graph from the node corresponding to the system pa­
rameter. The intuition here is that the misbehavior, being in 
the actual system, wi l l propagate. (Clearly a heuristic inter­
pretation, for not all misbehaviors wi l l propagate). 

The expected signature of an anomalous mechanism also 
includes arcs and nodes causally downstream from the arc 
corresponding to the mechanism. Once again, the intuition is 
that the misbehavior is in the system itself, and it wi l l prop­
agate. The way to distinguish this case from the anomalous 
system parameter case is to examine all input arcs (assuming 
there are more than one) to the most causally prior node in the 
"broken" subgraph. 

3.1 Distance and Causal Distance 

While SELMON runs, it computes incremental frequency dis­
tributions for all sensors being monitored. These frequency 
distributions can be saved as a method for capturing behav­
ior from any episode of interest. Of particular interest are 
historical distributions which correspond to nominal system 
behavior. 

To identify an anomalous sensor, we apply a distance mea­
sure, defined below, to the frequency distribution which rep­
resents recent behavior to the historical frequency distribution 
representing nominal behavior. We call the measure simply 
distance. To identify a "broken" causal dependency, we first 
apply the same distance measure to the historical frequency 
distributions for the cause sensor and the effect sensor. This 

reference distance is a weak representation of the correlation 
that exists between the values of the two sensors due to the 
causal dependency. This reference distance is then compared 
to the distance between the frequency distributions based on 
recent data of the same cause sensor and effect sensor. The dif­
ference between the reference distance and the recent distance 
is the measure of the "brokenness" of the causal dependency. 
We call this measure causal distance. 

3.2 Desired Properties of the Distance Measure 

Define a distribution D as the vector dt such that 

and 

For a sensor S, we assume that the range of values for the 
sensor has been partitioned into n contiguous subranges of 
equal size which exhaust the range. We construct a frequency 
distribution as a vector Ds of length nt where the value of dx 

is the frequency with which S has displayed a value in the i th 
subrange. 

If our aim was only to compare different frequency distri­
butions of the same sensor, we could use a distance measure 
which required the number of partitions, or bins in the two 
distributions to be equal, and the range of values covered by 
the distributions to be the same. However, since our aim is 
to be able to compare the frequency distributions of different 
sensors, these conditions must be relaxed. 

Before defining the set of desired properties of the dis­
tance measure, we define two special types of frequency dis­
tribution. Let F be the random, or flat distribution where 

and entropy is maximized. Let Sz be the set of 
"spike" distributions where dl = 1 and = 0, and 
entropy is minimized. 

It is our view that the flat and spike distributions should 
be maximally distinguished by our distance measure. For 
what change of behavior seems more startling, more abnor­
mal, more indicative of a deep anomaly than a sensor which 
has been perfectly predictive suddenly offering no basis for 
prediction, or vice versa? 

More generally, we seek a distance measure for frequency 
distributions with the fol lowing properties: 

Distance 

This property merely defines the measure as a distance 
measure. 

Identity 

Symmetry 
) 

We do not wish to emphasize whether we are comparing 
recent data to historical data or vice versa. Also, we do not 
wish to emphasize whether we are comparing cause data to 
effect data or vice versa. We want our method to be driven by 
the simplest causal graphs of undirected dependencies. 

Distinctness 
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the euclidian distance between the projections of the distri­
butions. The Extrema property is satisfied by taking = φ =pie/3. 
This choice of φ guarantees that (So, S n - 1 ) = A ( F , So) = 
A(F, 5 n - 1 ) = 1 and all other distances in the region which is 
the range of A are by inspection < 1. 

The Distinctness property is not satisfied by the func­
tion A(D\,D2). This is not surprising because the mult i ­
dimensional space arising from the number of bins in a 
distribution is collapsed to a two-dimensional space [/, s]. 
Thoughts on how to address this l imitation appear below. 

Insensitivity to the number of bins in the two distributions 
and the range of values encoded in the distributions is provided 
by the [/, s] projection function, which abstracts away from 
these properties of the distributions, 

3.4 Results 

In this section, we report on the results of applying the dis­
tribution distance measure to the task of focusing attention 
in monitoring. The distribution distance measure is used to 
identify misbehaving nodes (distance) and arcs (causal dis­
tance) in the causal graph of the system being monitored, or 
equivalently, detect and isolate the extent of anomalies in the 
system being monitored. 

3.4.1 A Space Shutt le Propulsion Subsystem 
Figure 3 shows a schematic for the Forward Reactive Con­

trol System (FRCS) of the Space Shuttle. Helium provides 
backpressure when valves are open to force propellant into 
the manifolds, or jets. There are two assemblies as shown, 
one for fuel and one for oxidizer. When these substances mix 
in the jets, spontaneous ignition occurs. 

Figure 4 shows a causal graph for a portion of the FRCS of 
the Space Shuttle. A fu l l causal graph for the Reactive Control 
System, comprising the Forward, Left and Right RCS, was 
developed with the domain expert. 

3.4.2 Examples 
S E L M O N was run on seven episodes describing nominal 

behavior of the FRCS. The frequency distributions collected 
during these runs were merged. Reference distances were 
computed for sensors participating in causal dependencies. 

SELMON was then run on 13 different fault episodes, repre­
senting faults such as leaks, sensor failures and regulator fai l ­
ures. Two of these episodes w i l l be examined here; however, 
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results were similar for all episodes. In each fault episode, 
and for each sensor, the distribution distance measure was 
applied to the incremental frequency distribution collected 
during the episode and the historical frequency distribution 
from the merged nominal episodes. These distances were a 
measure of the "brokenness" of nodes in the causal graph; i.e., 
instantiations of the distance measure. 

New distances were computed between the distributions 
corresponding to sensors participating in causal dependencies. 
The differences between the new distances and the reference 
distances for the dependencies were a measure of the "bro­
kenness" of arcs in the causal graph; i.e., instantiations of the 
causal distance measure. 

The first episode involves a leak affecting the first and 
second manifolds (Jets) on the oxidizer side of the FRCS. 
The pressures at these two manifolds drop to vapor pressure. 
The dependency between these pressures and the pressure in 
the propellant tank is altered because the valve between the 
propellant tank and the manifolds is closed. Thus there are 
two anomalous system parameters (the manifold pressures) 
and two anomalous mechanisms (the agreement between the 
propellant and manifold pressures when the valve is open). 

The distance and causal distance measures computed for 
nodes and arcs in the FRCS causal graph reflect this faulty 
behavior. See Figure 5. (To visualize how the distribution 
distance measure circumscribes the extent of anomalies, the 
coloring of nodes and the width of arcs in the figure are 
correlated with the magnitudes of the associated distance and 
causal distance scores). 

The behavior at the third manifold is due to a known bug in 
the training simulator software, which generated the anomaly 
signatures used in these examples. The apparent anomaly at 
the helium tank temperature has a different explanation. When 
the valves between the propellant tank and the manifolds close, 
the volume of the total system decreases. Since pressure 
remains the same, temperature changes in accordance with 
the ideal gas law. S E L M O N detects this change. 

The second episode involves an overpressurization of the 
propellant tank due to a regulator failure. Onboard software 
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automatically attempts to close the valves which isolate the 
helium tank from the propellant tank. One of the valves sticks 
and remains open. 

The distance and causal distance measures isolate both 
the misbehaving system parameters (propellant pressure and 
valve status indicators) and the altered relationships between 
the helium and propellant tank pressures and between the pro­
pellant tank pressure and the valve status indicators. Over-
pressurization of the propellant tank also alters the usual rela­
tion between propellant tank pressure and manifold pressures. 
See Figure 6. Note that the software bug affecting predicted 
behavior at the third manifold has manifested again. 

4 Applications 

S E L M O N is being applied at the NASA Johnson Space Center 
as a monitoring tool for Space Shuttle Operations. Current 
application efforts include the one for the Propulsion (PROP) 
fl ight control discipline reported on here, and ones for the 
Guidance, Navigation & Control (GNC) discipline, the Me­
chanical (MMACS) discipline and the Thermal (EECOM) 
discipline. An operational SELMON prototype has been avail­
able since the recent Hubble Repair mission. SELMON runs in 
a client-server environment and processes change-only data 
from the telemetry server on hundreds of sensors in real time. 

At the Jet Propulsion Laboratory, we are looking at the 
problem of onboard automated downlink determination for 
the Pluto Express pre-project. There has also been a gen­
eral surge of interest recently in spacecraft autonomy. The 
challenge is to devise methods for robustly detecting and re-
covering from anomalies onboard. When onboard software is 
unable to effect a recovery, the spacecraft requests assistance 
from the ground and prepares an anomaly report to bootstrap 
the analysis of the ground experts. The anomaly detection 
and attention focusing capabilities of SELMON may be well-
matched to these tasks. 

5 Discussion 

The distance and causal distance measures based on the dis­
tribution distance measure combine two concepts: 1) empir­
ical data alone can be an effective model of behavior, and 2) 
the existence of a causal dependency between two parame­
ters implies that their values are somehow correlated. The 
causal distance measure constructs a model of the correla­
tion between two causally related parameters, capturing the 
general notion of constraint in an admittedly abstract manner. 
Nonetheless, these models of constraint arising f rom causal­
ity provide surprising discriminatory power for determining 
which causal dependencies (and corresponding system mech­
anisms) are misbehaving. (In the distance measure for detect­
ing misbehaving system parameters, we are simply using the 
degenerate constraint of expected equality between historical 
and recent behavior.) 

The approach described in this paper has usability advan­
tages over other forms of model-based reasoning. The over­
head involved in constructing the causal and behavioral model 
of the system is minimal. The behavioral model is derived 
directly from actual data; no offline modeling is required. 
The causal model is of the simplest form, describing only the 
existence of dependencies. For the Shuttle RCS, a 198-node 
causal graph was constructed in a single one and one half hour 
session between the author and the domain expert. 

5.1 Mon i to r ing Archi tecture 

The attention focusing capability provided by the distance and 
causal distance measures can be combined with the multiple-
viewpoint anomaly detection capability already developed in 
SELMON to construct a general monitoring architecture. 

The multiple anomaly measures (including the distance and 
causal distance measures, which are anomaly detection mea­
sures in their own right) provide continuous anomaly detection 
capability. A l l of these measures are normalized to the range 
[0, 1] so their sensitivity, individually or collectively, can be 
fine-tuned for the behavior of particular monitored systems. 
Whenever a detected anomaly is announced, the extent of the 
anomaly is isolated by applying the results of the distance and 
causal distance measures to the causal graph of the system. 
If S E L M O N is supporting a human operator, the operator's at­
tention is focused on the locus of the anomaly, rather than the 
potentially long and confusing list of the individual manifes­
tations of the anomaly. 

5.2 Al ternate Distance Measures 

Other distance measures derived from more standard statis­
tical concepts certainly are possible. For example, the mean 
and standard deviation of a distribution might form the basis 
for the projection space of the function A. Most of the desired 
properties for the distance measure can be achieved, with the 
notable exception of the Extrema property. (Consider three 
distributions: the flat distribution F, a spike distribution Sn/2, 
and a distribution with equal peaks at the lowest- and highest-
valued bins i = 0 and i = n — 1. The mean is the same 
for these distributions and the standard deviation is least for 
the spike distribution. However, the flat distribution does not 
have the greatest standard deviation, violating the Extrema 
property. Satisfying this property is a prime motivation for 
our work. Nonetheless a performance comparison of a dis-
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tance measure based on the mean and standard deviation of a 
distribution (or other features) would be useful. 

The x2 measure of the difference between two distribu­
tions is another possibility. However, the standard definition 
of x2 would have to be modified to accommodate not only 
distributions with different numbers of data points, but also 
distributions wi th different numbers of bins. 

6 Future Work 

In addition to exploring alternate distance measures, several 
issues need to be examined to continue the evaluation of the 
attention focusing technique based on the distance measure, 
and its util ity in monitoring. 

We need to understand the sensitivity of the technique to 
how sensor value ranges are partitioned. Clearly the discrim­
inatory power of the distribution distance measure is related 
to the resolution provided by the number of bins and the bin 
boundaries. The results reported here are encouraging for the 
number of FRCS sensor bins were in many cases as low as 
three and in no cases more than eight. Separately, we are 
developing a density-based auto-binning technique which se­
lects bin boundaries which the data naturally reflect. Results 
have been promising and we hope to soon remove this element 
of arbitrariness in our approach. 

We need to understand the suitability of the technique for 
systems which have many modes or configurations. We would 
expect that the discriminatory power of the technique would 
be compromised if the distributions describing behaviors from 
different modes were merged. Thus the technique requires 
that historical data representing nominal behavior is separable 
for each mode. If there are many modes, at the very least 
there is a data management task. A capability for tracking 
mode transitions is also required. We are exploring the use 
of unsupervised learning to identify and build classifiers for 
system modes directly from historical data. 

We need to understand the consequences of the Distinct­
ness property not being satisfied by the distribution distance 
measure. Of concern is whether or not distributions we wish 
to distinguish are in fact being distinguished. The judicial 
introduction of additional components (e.g., the number of 
local maxima in a frequency distribution) to the distribution 
projection space [/, s] may be required to enhance discrim-
inability. 

7 Acknowledgements 

The members of the SELMON team are Len Charest, Dennis 
DeCoste, Nicolas Rouquette and Jay Wyatt. Matt Barry and 
Dennis DeCoste provided valuable discussion on the concepts 
in this paper. Harry Porta provided valuable mathematical 
and counterexample insights during the development of the 
distance measure. Matt Barry also served invaluably as do­
main expert for the Shuttle FRCS. Dave Goeken and Charlie 
Robertson provided valuable support at Johnson Space Center. 

The research described in this paper was carried out by the 
Jet Propulsion Laboratory, California Institute of Technology, 
under a contract with the National Aeronautics and Space 
Administration. 

References 
[1] K. H. Abbott, "Robust Operative Diagnosis as Problem 

Solving in a Hypothesis Space ," 7th National Confer­
ence on Artificial Intelligence, St. Paul, Minnesota, Au­
gust 1988. 

[2] L. Charest, Jr., N. Rouquette, R. Doyle, C. Robertson, 
and J. Wyatt, " M E S A : An Interactive Modeling and Sim­
ulation Environment for Intelligent Systems Automa­
tion," Hawaii International Conference on System Sci­
ences, Maui, Hawaii, January 1994. 

[3] D. DeCoste, "Dynamic Across-Time Measurement In ­
terpretation," 8th National Conference on Artificial In­
telligence, Boston, Massachusetts, August 1990. 

[4] R. J. Doyle, L. Charest, Jr., N. Rouquette, J. Wyatt, and 
C. Robertson, "Causal Modeling and Event-driven Sim­
ulation for Monitoring of Continuous Systems," Com­
puters in Aerospace 9, American Institute of Aeronautics 
and Astronautics, San Diego, California, October 1993. 

[5] R. J. Doyle, S. A. Chien, U. M. Fayyad, and E. J. Wy­
att, "Focused Real-time Systems Monitoring Based on 
Mult iple Anomaly Models," 7th International Workshop 
on Qualitative Reasoning About Physical Systems, East-
sound, Washington, May 1993. 

16] D. L. Dvorak and B. J. Kuipers, "Model-Based Moni ­
toring of Dynamic Systems," I1 th International Confer­
ence on Artificial Intelligence, Detroit, Michigan, A u ­
gust 1989. 

[7] T H i l l , W. Morris, and C. Robertson, "Implementing 
a Real-time Reasoning System for Robust Diagnosis," 
6th Annual Workshop on Space Operations Applications 
and Research, Houston, Texas, August 1992. 

[8] J. Muratore, T. Heindel, T. Murphy, A. Rasmussen, and 
R. McFarland, "Space Shuttle Telemetry Monitoring by 
Expert Systems in Mission Control," in Innovative Ap­
plications of Artificial Intelligence, H. Schorr and A. 
Rappaport (eds. ) .AAAI Press, 1989. 

[9] N. F. Rouquette, S. A. Chien, and L. K. Charest, Jr., 
"Event-driven Simulation in SELMON: An Overview of 
EDSE" JPL Publication 92-23, August 1992. 

LlO] E. A. Scarl, J. R. Jamieson, and E. New, "Deriving Fault 
Location and Control from a Functional Model," 3rd 
IEEE Symposium on Intelligent Control, Arl ington, Vir­
ginia, 1988. 

DOYLE 1827 


