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Abstract 

In th is paper we propose a proposit ional tem
poral language based on fuzzy temporal con
straints which turns out to be expressive 
enough for domains - l i ke many coming from 
medic ine- where knowledge is of proposit ional 
nature and an expl ici t handl ing of t ime, impre
cision and uncerta inty are required. The lan
guage is provided w i t h a natura l possibilistic 
semantics to account for the uncertainty issued 
by the fuzziness of temporal constraints. We 
also present an inference system based on spe
cific rules deal ing w i t h the temporal constraints 
and a general fuzzy modus ponens rule whereby 
behaviour is shown to be sound. The analysis of 
the different choices as fuzzy operators leads us 
to ident i fy the wel l -known Lukasiewicz impli
cation as very appropr iate to define the not ion 
of possibilistic entailment, an essential element 
of our inference system. 

1 Introduction 
Representation and reasoning about t ime is a major issue 
to be considered in al l those reasoning tasks which take 
account of a dynamic domain . Most of AI systems incor
pora t ing an exp l ic i t tempora l representation are based in 
some manner on constraint-reasoning techniques [Al len, 
1983; Ma l i k and B in fo rd , 1983; Valdes-Perez, 1986; 
V i l a i n and Kau tz , 1986; Dean and McDermot t , 1987; 
Kn igh t and J i x i n , 1992; Por to and Ribeiro, 1992; V i la , 
1994a] 1. Tempora l constraints account for uncertainty 
in tempora l knowledge up to a certain extent. B o t h qual
i ta t ive [Al len, 1983; V i l a i n and Kautz , 1986; van Beek, 
1989] and met r ic tempora l constraints [Dechter et a/., 
1991] represent the set of "equal ly possible" precise tem
poral relat ions between two t ime uni ts. The larger is 
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1See [Vila, 1994b] for a comparative survey. 

this set, the higher is the degree of uncerta inty about 
the temporal re lat ion. 

Nonetheless, this is not enough for domains where 
knowledge about t ime is h ighly pervaded w i t h vague
ness and uncertainty. Let 's i l lust rate i t w i t h an example 
taken from a medical domain and suppl ied by an expert 
in the domain of lumbalgia pathologies. Brucelosis is one 
infectious pathology which may be the or ig in of serious 
lumbalgia problems. I t has an evolut ion pa t te rn which 
can be regarded as a par t icu lar instance of the common 
infectious evolut ion pa t te rn . I t is usual ly composed of 
an Inoculation event [1], an Initial Period [ IP] , a period 
of Ondulating Fever [OFP] and, finally, it reaches the 
state of an Intervertebral Affection [ IA ] . We reproduce 
here the temporal aspects of th is knowledge w i thou t ab-
stract ing the vagueness in terms of which it is obtained 
from experts. There is some (vague) knowledge about 
the temporal evolut ion of brucelosis cases: 

• The initial period usually star ts at a t ime between 
one and three weeks after the inoculation event, al
though extreme cases range f rom s tar t ing at the 
very inoculat ion t ime up to four weeks after. 

• The initial period uses to be short : it lasts few days, 
although in unusual cases i t may last up to two 
weeks at most. 

• The ondulating fever per iod always occurs after the 
initial period. It uses to last between 20 and 25 days 
though other less possible cases range f rom 4 days 
as the lowest bound up to 45 days the uppest one. 

• Final ly, the intervertebral affection usual ly starts 
between 15 and 20 days after the s tar t of the on
dulating fever per iod, having extreme cases where 
the intervertebral affection d i d not appear after 22 
months. The intervertebral affection lasts more or 
less between 3 and 6 months. Ex t reme cases may 
range f rom the shortest case of 40 days and longer 
periods up to 12 months in cases where it is not 
proper ly t reated. 

Several pieces of work have considered the represen
ta t ion of approximate tempora l knowledge. Among 
them we would stress those based on possibility the
ory [Vi tek, 1983; Du t t a , 1988; Dubois and Prade, 1989; 
Kohlas and Monney, 1990; Console et a/., 1991; Dubois 
et a/., 1992; Mar in et a/., 1994; Bar ro et a/., 1994; 
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Vi la and Godo, 1995]. In part icular, Bar ro et al [1994] 
propose an stra ight forward redefinit ion of generaliza
t ion of the not ion of metr ic temporal constraint based 
on fuzzy sets [Mar in et al., 1994]. 

In th is paper we propose an approximate temporal 
logic based on the embedding of fuzzy temporal con
straints i n to a logical framework. It is provided w i th an 
inference system composed of specific inference rules for 
the fuzzy tempora l constraints. For the sake of clarity, 
we have chosen a simple proposi t ional language. Dealing 
w i t h fuzzy tempora l constraints leads to many-valued in
terpretat ions of our formulas, but inference from fuzzy 
constraints also induces uncertainty as soon as they rep
resent a k i nd of incomplete in format ion. Th is induces to 
extending the whole language to handle both fuzziness 
and uncertainty. The natura l f ramework where to model 
fuzziness and uncerta inty in a unif ied way is the possi-
bi l ist ic f ramework. Therefore this wi l l be the model used 
througout this paper in accordance w i th using fuzzy sets 
for representing the temporal constraints. Uncertainty 
wi l l be taken in to account in the extended language by 
at taching cer ta inty (necessity-like) degrees to formulas. 

The paper is organized as follows. In next section, we 
describe the syntax -wh i ch is i l lustrated by formalizing 
the example above in t roduced- and semantics of our ba
sic language. In the t h i r d section an extended language 
and semantics to handle uncertainty is presented. In 
section 4 we present an inference system and prove its 
soundness. Final ly , we sketch future lines of work. 

2 T h e Basic Tempora l Language 
We star t out f rom a language where the temporal and 
the atemporal parts are neat ly separated. The atempo-
ral par t is s imply made over a set of classical crisp propo-
sitions. The temporal par t is based on fuzzy temporal 
constraints over a set of temporal proposit ions. It con
sists of the in t roduct ion of a single predicate FuzzDlST 
which states a fuzzy temporal constraint between a pair 
of t ime points. Whereas in the metr ic case, a temporal 
constraint is represented as an interval, now it is repre
sented by a (convex) fuzzy set of t ime points, inducing 
a possibi l i ty d is t r ibu t ion on the set of durat ion values . 
A l though this approach is very simple in def in i t ion, it is 
h ighly powerful in expressiveness. Some impor tant con
st ra int based tempora l representations, like point algebra 
[Vi la in and Kau tz , 1986], or the metric pointwise con
straints [Dechter et al, 1991] t u r n out to be a part icular 
case of i t . T h e l ink between the temporal propositions 
and the tempora l constraints is performed through the 
durat ion-valued funct ions B E G I N ( P ) and E N D ( P ) that 
specify the in i t ia l and f inal instants of the period the 
proposi t ion p holds throughout . 

Regarding the under ly ing t ime structure, and for the 
sake of s impl ic i ty , we take a fix interpretat ion of the set 
of dura t ion symbols VU as the set of rat ional numbers 
Q. Accordingly, the set TVU of fuzzy durat ions wi l l 
be taken as the set of fuzzy subsets of Q, i.e. TVU = 
Q'° '1 ] . However, no th ing wou ld prevent us to take other 
par t icu lar either discrete or dense group structures of 
t ime. 

To illustrate the usage of our language in formaliz
ing domain knowledge let's consider the example in the 
introductory section. Figure 1 presents a graphical rep-
resentation of it. Events and properties being part of 
the temporal evolution description are taken as primitive 
temporal propositional variables. We shall approximate 
a soft constraint in FDU by a trapezoidal function char
acterized by four points 2. From a knowledge adquisition 
point of view the second and third point determine the 
interval of those temporal values which are likely whereas 
the first and fourth points determine the interval out of 
which the values are absolutely impossible. For example, 
both the inoculation event and the initial period state are 
conceptualized as temporal propositional variables and 
the first statement related to the temporal distance be
tween the inoculation event and the begin of the initial 
period will be formalized as a fuzzy temporal constraint 
described by [0, 7, 21, 28] where these values represent 
days. The heuristic rule formalizing the whole piece of 
knowledge would be as follows:" 

2Notice that this approximation is only feasible for uni-
modal fuzzy constraints. 
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where m stands for month (Xm can be taken as a short 
hand of the value X * 30). 

2.2 Semant ics 
The semantics of our proposi t ional language C involves, 
for each model , f i rst the assignment of intervals of t ime 
points to the tempora l proposi t ional variables, and sec
ond the in terpre ta t ion in terms of truth-values of the 
formulas of the language. A tempora l proposit ional vari
ables can be d i rec t ly assigned to either 1 (True) or 0 
(False), whi le tempora l constraints expressions are as
signed t ruth-values of [0,1) v ia the fuzzy durat ion func
t ion they conta in 3 . As for compound formulas, we 
have chosen to in terpret conjunct ion by the min func
t ion and imp l i ca t ion by the Godel's many-valued imp l i 
cat ion funct ion (see Def in i t ion 2). The choice of min for 

'W i thou t gain of complexity we could allow the atemporal 
propositions to be fuzzy as well and thus to have a more 
general language but, for the sake of clarity we prefer to only 
allow fuzziness in the temporal expressions, which is the focus 
of the paper. 
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3 T h e P o s s i b i l i s t i c T e m p o r a l L a n g u a g e 
To ful ly explo i t the use of fuzzy expressions for tem
poral durat ions in the language, i t seems very natu
ral to also allow for par t ia l degrees of matching be-
tween fuzzy expressions. As a mat ter of example, con
sider the fol lowing piece of knowledge: the durat ion of 
the Ondulating Fever Period of a pat ient has been be
tween 2 and 3 weeks, b u t it is known that in any case 
it has been not less t han 17 days and not more than 
32. Th is knowledge can be represented by the proposi
t ion F U Z Z D I S T ( B E G I N ( O F P ) , E N D ( O F P ) , 7 T ) , being 
the trapezoidal possibi l i ty d is t r ibu t ion corresponding to 
the parameters [17, 22, 27, 32] and presented graphical ly 
in f igure 2. 

On the other hand, the example rule in Section 
2.1, codi fy ing the Brucelosis evolut ion pat tern, has 
F u z z D l S T ( B E G I N ( O F F ) , E N D ( O F P ) , [4, 20,25,45]) as 

one of condit ions, being the membership funct ion A 
of the fuzzy durat ion represented by the tuple [4, 20, 25, 
45] also shown in the figure 2. Of course Π < uA, and 
therefore F U Z Z D I S T ( B E G I N ( O F P ) , E N D ( O F P ) , Π) does 
not entail F U Z Z D I S T ( B E G I N ( O F P ) , E N D ( O F P ) , / i A ) , in 
the sense of Def ini t ion 4, but one would say tha t i t 
nearly entails i t . In such a context, if we want to use 
the above mentioned rule to conclude about the possi
b i l i ty for tha t pat ient of having Brucelosis, i t makes 
sense to th ink of a way to measure at what extent n 
is included in uA ANd use this measure as a certainty 
degree w i th which that condi t ion of the rule is satisfied 
4 . Therefore, in reasoning w i th fuzzy constraints one 
is led to deal w i th par t ia l degrees of certainty, main ly 
of proposit ions involving fuzzy durat ion constraints but 
also non-fuzzy proposit ions. On the other hand, many 
AI domains, being the medical one a good example, re-
quire the management of uncertainty f rom a knowledge 
representation language. Possibility theory (Dubois and 
Prade, 1988] offers a unified framework where to model 
both uncertainty and fuzziness. We would like to stress 
here again that the k ind of uncertainty the possibil istic 
model deals w i th comes from the use of imprecise knowl
edge modelled by a fuzzy set, and differs f rom other kinds 
of uncertainty, l ike probabi l i ty, which are of different na
ture. We present below an extension of the language 
decribed in the previous section where lower bounds of 
a necessity-like degree are attached to formulas, w i t h a 
semantics based on ideas in [Dubois and Prade, 1990; 
1992] and extending the Dubois, Lang and Prade's Pos
sibil istic Logic semantics [Dubois et a/., 1994] for crisp 
propositions. 

Let us make more precise the above claim. Temporal 
constraint inference rules provide the t ightest constraints 
between durat ions of events entailed by a given set of 
temporal facts. Such constraints can be used as inputs 
in heuristic rules that may help in tu rn to obta in addi
t ional temporal facts. Therefore, when t ry ing to apply 
heuristic rules, we are interested in certainty qual i fy ing 
the condit ions of such rules given for granted the con
straints provided by the temporal facts. Next subsection 
is devoted to discuss how such certainty evaluation can 
be performed. 

4 Such certainty degrees should not be confused wi th the 
t ruth degrees arising from the many-valued approach intro
duced in the previous section to evaluate fuzzy temporal ex
pressions. There, L-models evaluate the t ruth degree of for
mulas in a purely functional way. This is not the case wi th 
the certainty degrees we propose in the possibilistic temporal 
extension. 
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3 . 1 C e r t a i n t y e v a l u a t i o n o f f u z z y 
c o n s t r a i n t s 

In technical terms, for a given dura t ion variable X on 
DU, we a im at f ind ing the cer ta inty evaluation of a fuzzy 
proposi t ion XisA ( the condi t ion of a rule), being A a 
fuzzy subset of DU, knowing tha t the values of X are 
restr icted by a possibi l i ty d is t r ibu t ion (the constraint 
induced by the tempora l fact base). Dubois and Prade 
[1992] have discussed th is issue and they propose to use 
the fol lowing measure: 

where is the reciprocal of the Godel's impl icat ion, 

i.e.: 

and HA is the membership funct ion of the fuzzy set 
A. It is remarkable to notice tha t — 1 iff 

and tha t reduces, when A is non-fuzzy, 
, the necessity measure 

of A based on TT and used in Possibilistic Logic . In fact, 
Dubois and Prade [1990,1992] discuss the inverse prob
lem, t ha t is, wh ich possibi l i ty d is t r ibu t ion corresponds 
to the semantical in terpretat ion of the qualif ied proposi
t ion "(XisA) is a — certain", and to which evaluation of 
A is ident i f ied. Th is is also of much interest since it w i l l 
allow us to use uncertain constraints derived f rom a set 
of heurist ic rules as inputs in the temporal fact base. An 
interest ing l ine of argumentat ion leads them to represent 
the above qual i f ied proposi t ion by the fol lowing fami ly 
of inequali t ies 

which, as expected, turns to be equivalent to 

However, the cer ta in ty degree provides not very 
na tura l results in very common si tuat ions. In part icular , 
the existence of on ly one element u in the domain for 
wh ich n(u) — 1 and causes the certa inty 
degree . to be 0, independently whether the value 

is close to 0 or close to 1. For instance, this is the 
case depicted in Figure 2 where an easy computat ion 
shows tha t whi le π is very close to entai l A. 

Th is counter - in tu i t ive behaviour has led us to look for 
an al ternat ive def in i t ion of the certa inty degree. I f one 
wants to keep the p roper ty tha t = 1 iff TT < nA, 
one is forced to stay either w i t h residuated many-valued 
impl icat ions 5 or w i t h thei r reciprocals. Residuated im
pl icat ions, in general, share the problem that the result-
ing cer ta in ty degree does not collapse to the necessity de
gree in the non-fuzzy case (actual ly it becomes a t r iv ia l 
{0 ,1 } -va lued measure) , and thus the result ing semantics 
is not an extension of t ha t of Possibil istic Logic. On the 

5Residuated many-valued implications are binary opera-
tions in [0,1] defined as 
where stands for a t-norm, i.e. a a binary operation in 
[0,1] which is associative, commutative, non-decreasing in 
each variable, w i th 1 as neutral element and 0 as absorbent 
element. 

other hand, the reciprocal impl icat ions, in general again, 
share the above ment ioned prob lem of the Godel's recip
rocal impl ica t ion. However, among these two families 
of impl icat ion functions, there is one exception (up to 
isomorphisms), the wel l -known Lukasiewicz impl icat ion 

tha t avoids the above problems. Namely, def ining 

we keep most of the interesting propert ies of the previous 
def in i t ion whi le solving the ma in prob lem w i t h i t . Now 
the interpretat ion of "given (X is A) is (at least) 
certain" as ~ is semantical ly equivalent to 

Th is representation can be provided w i t h pract ical ly the 
same argumentat ion used in [Dubois and Prade, 1992] to 
jus t i fy their proposal, on ly a sl ight modi f icat ion in one 
step is needed. The agreement of th is proposal w i t h the 
original one in the non-fuzzy case is easy to establish by 
not ic ing that i when 
A is non-fuzzy. 

3 .2 P o s s i b i l i s t i c S e m a n t i c s 

Now, we are prepared to define our Possibilistic Tempo
ral Language and show tha t captures the above require-
ments. 

D e f i n i t i o n 5 The set of possibilistic temporal formulas 

D e f i n i t i o n 6 A P o s s i b i l i s t i c T e m p o r a l m o d e l I I is 
a possibility distribution over the set Q of C-models, II : 

D e f i n i t i o n 7 ( P o s s i b i l i s t i c E n t a i l m e n t ) A possi
bilistic temporal model ] satisfies a with a certainty 
degree written 

where we have identified the -formula with its corre
sponding fuzzy subset of the set of -models defined 
as The notion of logical consequence is 
the natural one, i.e. a possibilistic temporal formula G 
is a logical consequence of a set of possibilistic temporal 
formulas F 1 , . . . , F n , written iff for 
any possibilistic model imply 

The possibil istic entai lment [=7- in £7- is related to the 
entai lment relat ion [= of the basic language C (w i thou t 
uncerta inty) as follows. 

P r o p o s i t i o n 3 Let well-formed for
mulas of C. Then it holds that iff 

6These possibilistic models differ from those of Possibilis
tic Logic in that the possibility distributions are defined 
on [0, l]-valued ^-models, rather than on {0, l}-valued L-
models. 
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This proposition shows that the possibilistic entail
ment (=r actually extends (= in a natural way, as it 
could be expected. In particular, the set of inference 
rules for fuzzy constraints presented in section 2.3 are 
then also sound w.r.t. for \=T once the fuzzy tempo-
ral constraints appearing in those rules are attached the 
certainty value 1. 

A possibilistic temporal knowledge base is a pair KB = 
(FB, HB) of a set of weighted facts TB and a set of 
weighted rules RB. The temporal fact base wil l be rep
resented as a network of fuzzy temporal constraints. 

4 Inference 
In this section we supply the set of inference rules which 
compose the deductive system of our logic. The sepa
ration between the non-temporal and the temporal part 
also holds for them: we distinguish between rules specific 
for temporal propositions and rules applied to arbitrary 
well-formed forms in the KB. 

Since temporal inference rules deal exclusively with 
temporal constraints which certainty degree is 1, for 
the sake of completeness, additional inference rules are 
needed to state the degree of fulfillment for a temporal 
proposition and viceversa. 

Fuzzy Cons t ra in t In ference Rules. As already 
mentioned, the Reflexivity, Universal Constraint, Sym
metry, Transitivity, Intersection and Inclusion inference 
rules, with the certainty value [1) attached to premises 
and conclusions, are sound rules w.r.t. to the possibilis
tic semantics, and they capture constraint network pro
cedures. 

Cons t ra in t C e r t a i n t y Inference Rules. The fol
lowing inference rules show how uncertainty influences 
fuzzy temporal constraints, and thus how they provide 
a kind of bridge between knowledge from the temporal 
constraint network and knowledge from a heuristic rule 
set. In other words they provide a way to infer certain 
fuzzy constraints from uncertain ones, and viceversa. 

Taking back the example of the beginning of Sec
tion 3 and applying the Rl inference rule, from 
F U Z Z D I S T ( B E G I N ( O F P ) , E N D ( O F P ) , [4, 20,25, 45]), 
with certainty 1, we can derive the fuzzy constraint 
FuzzDlST(BEGiN(OFP), END(OFP), [17, 22, 27, 32]), 
with certainty E(Aπ) = 0.9 (see Figure 2). This cer
tainty value could be used after to conclude Brucelosis 
from the rule when applying the modus ponens inference 
rule introduced below. 

5 C o n c l u d i n g R e m a r k s 
We have presented a proposit ional temporal language 
based on fuzzy temporal constraints, and able to deal 
also w i th uncertainty w i th in the possibil istic framework. 
A l though this is a very restr icted language, it turns out 
to be expressive enough for a large set of applications 
in the medical domain and, eventually, in other domains 
where knowledge is of proposit ional nature, yet expl ic i t 
account of temporal l i ty and uncertainty are required. 
Th is language is provided w i t h : 

1. A formal semantics based on possibilistic models to 
account for the uncerta inty issued by the fuzziness 
of our temporal constraints. 

2. A sound inference system composed of a set of fuzzy 
temporal constraint inference rules, a possibil istic 
modus ponens and a pair of constraint certainty in 
ference rules. An overall p icture of the way this in 
ference system can operate is graphical ly presented 
in figure 3. 
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Figure 3: Steps of the uncertain fuzzy temporal Inference: 
1. fuzzy temporal constraint inference, 2. constraint cer
tainty evaluation ( R l ) , 3. possibilistic modus ponens, and 4. 
constraint certainty update (R2). 

We are current ly s tudy ing the completeness of our 
logic. Previous results on the non-fuzzy case [Vi la and 
Escalada-Imaz, 1994] seem to be a guarantee on the way 
to prov ing i t . We are also work ing in developing correct 
and efficient deductive algor i thms to make our language 
operat ional . 

The approach we have presented here allows for fur
ther work on two ma in lines. F i rs t the extension to f i rst-
order H o r n clauses, incorporat ing relations on the Fuzzy 
Dura t ion funct ions, and second, to involve more general 
types of constraint networks which w i l l be a mat ter of 
s tudy for fuzzy networks as well . 
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