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Abstract

In this paper we propose a propositional tem-
poral language based on fuzzy temporal con-
straints which turns out to be expressive
enough for domains -like many coming from
medicine- where knowledge is of propositional
nature and an explicit handling of time, impre-
cision and uncertainty are required. The lan-
guage is provided with a natural possibilistic
semantics to account for the uncertainty issued
by the fuzziness of temporal constraints. We
also present an inference system based on spe-
cific rules dealing with the temporal constraints
and a general fuzzy modus ponens rule whereby
behaviour is shown to be sound. The analysis of
the different choices as fuzzy operators leads us
to identify the well-known Lukasiewicz impli-
cation as very appropriate to define the notion
of possibilistic entailment, an essential element
of our inference system.

1 Introduction

Representation and reasoning about time is a major issue
to be considered in all those reasoning tasks which take
account of a dynamic domain. Most of Al systems incor-
porating an explicit temporal representation are based in
some manner on constraint-reasoning techniques [Allen,
1983; Malik and Binford, 1983; Valdes-Perez, 1986;
Vilain and Kautz, 1986; Dean and McDermott, 1987;
Knight and Jixin, 1992; Porto and Ribeiro, 1992; Vila,
1994a] . Temporal constraints account for uncertainty
in temporal knowledge up to a certain extent. Both qual-
itative [Allen, 1983; Vilain and Kautz, 1986; van Beek,
1989] and metric temporal constraints [Dechter et al.,
1991] represent the set of "equally possible" precise tem-
poral relations between two time units. The larger is
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this set, the higher is the degree of uncertainty about
the temporal relation.

Nonetheless, this is not enough for domains where
knowledge about time is highly pervaded with vague-
ness and uncertainty. Let's illustrate it with an example
taken from a medical domain and supplied by an expert
in the domain of lumbalgia pathologies. Brucelosis is one
infectious pathology which may be the origin of serious
lumbalgia problems. It has an evolution pattern which
can be regarded as a particular instance of the common
infectious evolution pattern. It is usually composed of
an Inoculation event [1], an Initial Period [IP], a period
of Ondulating Fever [OFP] and, finally, it reaches the
state of an Intervertebral Affection [IA]. We reproduce
here the temporal aspects of this knowledge without ab-
stracting the vagueness in terms of which it is obtained
from experts. There is some (vague) knowledge about
the temporal evolution of brucelosis cases:

 The nitial period usually starts at a time between
one and three weeks after the inoculation event, al-
though extreme cases range from starting at the
very inoculation time up to four weeks after.

* The initial period uses to be short: it lasts few days,
although in unusual cases it may last up to two
weeks at most.

 The ondulating fever period always occurs after the
initial period. 1t uses to last between 20 and 25 days
though other less possible cases range from 4 days
as the lowest bound up to 45 days the uppest one.

« Finally, the intervertebral affection usually starts
between 15 and 20 days after the start of the on-
dulating fever period, having extreme cases where
the intervertebral affection did not appear after 22
months. The intervertebral affection lasts more or
less between 3 and 6 months. Extreme cases may
range from the shortest case of 40 days and longer
periods up to 12 months in cases where it is not
properly treated.

Several pieces of work have considered the represen-
tation of approximate temporal knowledge. Among
them we would stress those based on possibility the-
ory [Vitek, 1983; Dutta, 1988; Dubois and Prade, 1989;
Kohlas and Monney, 1990; Console et a/., 1991; Dubois
et al., 1992; Marin et al., 1994; Barro et al/., 1994



Vila and Godo, 1995]. In particular, Barro et al [1994]
propose an straight forward redefinition of generaliza-
tion of the notion of metric temporal constraint based
on fuzzy sets [Marin et al, 1994].

In this paper we propose an approximate temporal
logic based on the embedding of fuzzy temporal con-
straints into a logical framework. It is provided with an
inference system composed of specific inference rules for
the fuzzy temporal constraints. For the sake of clarity,
we have chosen a simple propositional language. Dealing
with fuzzy temporal constraints leads to many-valued in-
terpretations of our formulas, but inference from fuzzy
constraints also induces uncertainty as soon as they rep-
resent a kind of incomplete information. This induces to
extending the whole language to handle both fuzziness
and uncertainty. The natural framework where to model
fuzziness and uncertainty in a unified way is the possi-
bilistic framework. Therefore this will be the model used
througout this paper in accordance with using fuzzy sets
for representing the temporal constraints. Uncertainty
will be taken into account in the extended language by
attaching certainty (necessity-like) degrees to formulas.

The paper is organized as follows. In next section, we
describe the syntax -which is illustrated by formalizing
the example above introduced- and semantics of our ba-
sic language. In the third section an extended language
and semantics to handle uncertainty is presented. In
section 4 we present an inference system and prove its
soundness. Finally, we sketch future lines of work.

2 The Basic Temporal Language

We start out from a language where the temporal and
the atemporal parts are neatly separated. The atempo-
ral part is simply made over a set of classical crisp propo-
sitions. The temporal part is based on fuzzy temporal
constraints over a set of temporal propositions. It con-
sists of the introduction of a single predicate FuzzDIST
which states a fuzzy temporal constraint between a pair
of time points. Whereas in the metric case, a temporal
constraint is represented as an interval, now it is repre-
sented by a (convex) fuzzy set of time points, inducing
a possibility distribution on the set of duration values .
Although this approach is very simple in definition, it is
highly powerful in expressiveness. Some important con-
straint based temporal representations, like point algebra
[Vilain and Kautz, 1986], or the metric pointwise con-
straints [Dechter et al, 1991] turn out to be a particular
case of it. The link between the temporal propositions
and the temporal constraints is performed through the
duration-valued functions BEGIN(P) and END(P) that
specify the initial and final instants of the period the
proposition p holds throughout.

Regarding the underlying time structure, and for the
sake of simplicity, we take a fix interpretation of the set
of duration symbols VU as the set of rational numbers
Q. Accordingly, the set TVU of fuzzy durations will
be taken as the set of fuzzy subsets of Q, i.e. TVU =
Q""" . However, nothing would prevent us to take other
particular either discrete or dense group structures of
time.

2.1 Syntax

The sentences of our propositional language £ are built
up over propositions and fuzzy temporal constraints.
The following symbols are used:
P, & set of primilive atemporal propositional vari-
ables,

Py, a set of primitive temporal propasitional variables,
and

tp, & special time point symbol.
We have two sorts of atomic formulas:
e Atemporal Propositions: the elements of P..

s Temporal constraints: consist of a set of propo-
sitional variables (indexed by P, U {to} x P U {to} x
FDU) of the form

FuzzDisT(t, ¢/, 7),

where t and ¢’ are temporal expressions of the form
BEGIN(p), END(q) or £y, being p and g some tempo-
ral propaositional variables from P,, and = € FDU/
is a fuzzy duration. The symbol t; represents a
common reference time point, BEGIN(p) the initial
instant of the time interval where p holds, END(q)
the ending instant for q, and x represents a soft con-
straint on the dumation temporal variable 4’ —¢”.

The well-formed formulas {wifs) of our basic language
L are of the form:

Bin..B;...AB,,— H

with m > 0, where B; and H are either literals from P,
or temporal constraints.

Like in definite clauses, the conjunction of B, is called
the body or antecedent and H is called the head or con-
clusion. We distinguish between two types of formulae
according to the form of the body:

¢ fact, when m = 0 (empty body) and written simply
H, and

¢ rule, otherwise.

To illustrate the usage of our language in formaliz-
ing domain knowledge let's consider the example in the
introductory section. Figure 1 presents a graphical rep-
resentation of it. Events and properties being part of
the temporal evolution description are taken as primitive
temporal propositional variables. We shall approximate
a soft constraint in FDU by a trapezoidal function char-
acterized by four points >. From a knowledge adquisition
point of view the second and third point determine the
interval of those temporal values which are likely whereas
the first and fourth points determine the interval out of
which the values are absolutely impossible. For example,
both the inoculation event and the initial period state are
conceptualized as temporal propositional variables and
the first statement related to the temporal distance be-
tween the inoculation event and the begin of the initial
period will be formalized as a fuzzy temporal constraint
described by [0, 7, 21, 28] where these values represent
days. The heuristic rule formalizing the whole piece of
knowledge would be as follows:"

’Notice that this approximation is only feasible for uni-
modal fuzzy constraints.
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Figure 1: Brucelosis Evolution Pattern.

FuzzDist(BeGIN(I), BEGIN(IP), [0, 7, 21, 27])
F{\UZZDIST(BEGIN(IP), EnD(iP), [0, 1, 3,15])
FAUZZDIST( BEGIN(OFP), END(OFP), 4, 20, 25, 45))
I:'\UZZDIST(BEGIN(IP), BEGIN(OFP), [0, 0, +00, +00])
F:UZZDIST(BEGIN(IA), END(1A), {40, 3m, 6m, 12m)|)

FuzzDisT(BEGIN(OFP), BEGIN(IA), [0, 15, 20, 22m])}
== Bruecelosis

where m stands for month (Xm can be taken as a short
hand of the value X * 30).

2.2 Semantics

The semantics of our propositional language C involves,
for each model, first the assignment of intervals of time
points to the temporal propositional variables, and sec-
ond the interpretation in terms of truth-values of the
formulas of the language. Atemporal propositional vari-
ables can be directly assigned to either 1 (True) or 0
(False), while temporal constraints expressions are as-
signed truth-values of [0,1) via the fuzzy duration func-
tion they contain ®>. As for compound formulas, we
have chosen to interpret conjunction by the min func-
tion and implication by the Godel's many-valued impli-
cation function (see Definition 2). The choice of min for

'"Without gain of complexity we could allow the atemporal
propositions to be fuzzy as well and thus to have a more
general language but, for the sake of clarity we prefer to only
allow fuzziness in the temporal expressions, which is the focus
of the paper.
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conjunction is the usual one in fuzzy logics and Gédel’s
implication is its corresponding residuum. In doing so,
we assure a correct behaviour of the implication with
respect to a suitable notion of logical consequence (aee
Proposition 1, next Section) and later on with respect to
modus ponens (see Proposition 5, Section 4).

Definition 1 An L-model is a pair w = (W, we),
where

we : Pr — PAIRS(DU), where PAIRS(DU) is the set of
ordered pairs (x,y) from DU such that 2 < y, and
Woo : Poo — {0,1}
Definition 2 Let ? denote the sei of L-models. The
salisfaction relation = is a mapping

= QOx £—0,1]
defined as:

}= (w,P) = woo(P)r ifpeE Py

Ew,p)=1~we(p), ifp € Poo

= (w, FuzzDisT(L,t', 7)) = 7( M, {2') — M, (1)),
where M, is the interpretation function of temporul
terms defined as

M, (BEGIN(p)) = t1, f wi(p) = (21, ¢2)
M.(END(p)) = ta2, if we(p) = (21,12)
M,(t) =0

E (w, B = H) = To(w(B),E (w, H)), where I is the

Godel’s many-valued implication function:
1 z<5y

Zotew) ={ ) 25

and, if B = By A ... A By then w(B) = min(f
(w,B1),..., | (w, Ba)).

From now on, and for the sake of a simpler notation, we
will write w(¢) for = (w, ¢).

2.3 Fuzzy Temporal Constraint Inference
Rules

Now, we are interested in presenting a set of inference
rules that deal exclusively with temporal constraints and
that capture the completion operations performed in
temporal constraint networks, Actually, they are the ex-
tension for fuzzy constraints of those proposed in [Vila
and Escalada-Imaz, 1994] that, together with modus po-
nens, were proved to be complete for crisp constraints.
We will show their soundness w.r.t. the following notion
of logical consequence in accordance to the well-known
Zadeh’s entailment principle in fuzzy logic [Zadeh, 1979].

Definition 3 A well-formed formula ¢ is valid, written
= ¢, if w(p) =1 for allw & Q.

Definition 4 A well-formed formula ¢ ts a logical
consequence of a sel of other well-formed formulas

¢1_,...,¢,,,, written {¢1,...,¢n} = ¢ iff for any w € 1,
min(w(é1), ..w(dn)) < w(e).

An immediate consequence of this definition of logical
consequence is the following proposition which is a kind
of restricted deduction theorem.



rroposition 1 Let ¢1,..., ¢, and ¢ be facts.
halds

Then it

{91, wtnlEe if EdiA. Ad, = g

The definition of the inference rules make use of the
following two special fuzzy duration sets:

Null duration funcition,

07 =93 0 otherwise

Universal duration funciion,
gy =1

and of the following three operations on the set of luzzy
durations:

Symmetrization: 7 (x) = 7(—x)
Conjunction: (7w N ')(z) = min{n(z), '(x)}
Composition: (7 & n'){(x) = sup, {min{m(y), 7' (2)}}

Next we present the inference rules.

FUZZD ST, | Reflexivity}

FUZZDIST(, 5 7 LU iversal constraint}

FuzzDIsT(t, t2,74,,)
FUzzDIsT(ta 4, ,«jﬁ) {Symmetry}

FUZZDIST(t),t2,74,, ), FUZZDIST (15,15,

Mdza) S
FUZZDIST(t, 25,74, ®7a,,) { Transitivity}

FuzzDIsT(t, 2,74, ). FUZZDIST () a7y

) ,
FUZZDIST(t;,t;,wdwmw;w) {Intersection}

FUZZDIST(tI ta .7&]2)
FuUzzDIsT( ta,m) ), T wayp <7

dyg

{Inclusion}

Proposition 2 The above inference rules are sound
w.r.t. the previous semantics.

Proof: See [Godo and Vila, 1995 O

3 The Possibilistic Temporal Language

To fully exploit the use of fuzzy expressions for tem-
poral durations in the language, it seems very natu-
ral to also allow for partial degrees of matching be-
tween fuzzy expressions. As a matter of example, con-
sider the following piece of knowledge: the duration of
the Ondulating Fever Period of a patient has been be-
tween 2 and 3 weeks, but it is known that in any case
it has been not less than 17 days and not more than
32. This knowledge can be represented by the proposi-
tion FUZZDIST(BEGIN(OFP),END(OFP),7T), being
the trapezoidal possibility distribution corresponding to
the parameters [17, 22, 27, 32] and presented graphically
in figure 2.

On the other hand, the example rule in Section
2.1, codifying the Brucelosis evolution pattern, has
FuzzDIST(BEGIN(OFF), END(OFP), [4, 20,25,45]) as

) +rme——sse.

327 45 Duration (days)

Figure 2: Partial matching of fuzzy constraints.

one of conditions, being the membership function A
of the fuzzy duration represented by the tuple [4, 20, 25,
45] also shown in the figure 2. Of course I < uA, and
thereforeFUZZDIST(BEGIN(OFP),END(OFP),M)does
not entail FUZZDIST(BEGIN(OFP), END(OFP),/ia), in
the sense of Definition 4, but one would say that it
nearly entails it. In such a context, if we want to use
the above mentioned rule to conclude about the possi-
bility for that patient of having Brucelosis, it makes
sense to think of a way to measure at what extent n
is included in uA ANd use this measure as a certainty
degree with which that condition of the rule is satisfied
* . Therefore, in reasoning with fuzzy constraints one
is led to deal with partial degrees of certainty, mainly
of propositions involving fuzzy duration constraints but
also non-fuzzy propositions. On the other hand, many
Al domains, being the medical one a good example, re-
quire the management of uncertainty from a knowledge
representation language. Possibility theory (Dubois and
Prade, 1988] offers a unified framework where to model
both uncertainty and fuzziness. We would like to stress
here again that the kind of uncertainty the possibilistic
model deals with comes from the use of imprecise knowl-
edge modelled by a fuzzy set, and differs from other kinds
of uncertainty, like probability, which are of different na-
ture. We present below an extension of the language
decribed in the previous section where lower bounds of
a necessity-like degree are attached to formulas, with a
semantics based on ideas in [Dubois and Prade, 1990;
1992] and extending the Dubois, Lang and Prade's Pos-
sibilistic Logic semantics [Dubois et a/., 1994] for crisp
propositions.

Let us make more precise the above claim. Temporal
constraint inference rules provide the tightest constraints
between durations of events entailed by a given set of
temporal facts. Such constraints can be used as inputs
in heuristic rules that may help in turn to obtain addi-
tional temporal facts. Therefore, when trying to apply
heuristic rules, we are interested in certainty qualifying
the conditions of such rules given for granted the con-
straints provided by the temporal facts. Next subsection
is devoted to discuss how such certainty evaluation can
be performed.

*Such certainty degrees should not be confused with the
truth degrees arising from the many-valued approach intro-
duced in the previous section to evaluate fuzzy temporal ex-
pressions. There, L-models evaluate the truth degree of for-
mulas in a purely functional way. This is not the case with
the certainty degrees we propose in the possibilistic temporal
extension.
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3.1 Certainty evaluation of fuzzy
constraints

In technical terms, for a given duration variable X on
DU, we aim at finding the certainty evaluation of a fuzzy
proposition XisA (the condition of a rule), being A a
fuzzy subset of DU, knowing that the values of X are
restricted by a possibility distribution (the constraint
induced by the temporal fact base). Dubois and Prade
[1992] have discussed this issue and they propose to use
the following measure:

Epalm) = inf TE(n(w), pa(w)

where Ig is the reciprocal of the Godel's implication,

i.e.:
I8(z.y) =ZIe(1-y,1 - )

and HA is the membership function of the fuzzy set
A. It is remarkable to notice that E(malm) — 1 iff
pa >, and that E(ua|m) reduces, when A is non-fuzzy,
to N, (A) = inf{l — w(u)|u ¢ A}, the necessity measure
of A based on TT and used in Possibilistic Logic . In fact,
Dubois and Prade [1990,1992] discuss the inverse prob-
lem, that is, which possibility distribution corresponds
to the semantical interpretation of the qualified proposi-
tion "(XisA) is a — certain”, and to which evaluation of
A is identified. This is also of much interest since it will
allow us to use uncertain constraints derived from a set
of heuristic rules as inputs in the temporal fact base. An
interesting line of argumentation leads them to represent
the above qualified proposition by the following family
of inequalities

n(w) < maz(pa(u),1 ~ o), Yu € DU
which, as expected, turns to be equivalent to
E(ualr) 2 a.

However, the certainty degree £{jz4|m) provides not very
natural results in very common situations. In particular,
the existence of only one element u in the domain for
which n(u) — 1 and ma(u) < 1 causes the certainty
degree £{pa|m) to be 0, independently whether the value
pia(u) is close to 0 or close to 1. For instance, this is the
case depicted in Figure 2 where an easy computation
shows that E(palr) = 0 while 7 is very close to entail A.

This counter-intuitive behaviour has led us to look for
an alternative definition of the certainty degree. If one
wants to keep the property that E{(ualm) = 1 iff TT < n,,
one is forced to stay either with residuated many-valued
implications ° or with their reciprocals. Residuated im-
plications, in general, share the problem that the result-
ing certainty degree does not collapse to the necessity de-
gree in the non-fuzzy case (actually it becomes a trivial
{0,1}-valued measure), and thus the resulting semantics
is not an extension of that of Possibilistic Logic. On the

°Residuated many-valued implications are binary opera-
tions in [0,1] defined as I{z,y) = Sup{c € [D,1])j]z®c < ¥y},
where @ stands for a t-norm, i.e. a a binary operation in
[0,1] which is associative, commutative, non-decreasing in
each variable, with 1 as neutral element and 0 as absorbent
element.
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other hand, the reciprocal implications, in general again,
share the above mentioned problem of the Godel's recip-
rocal implication. However, among these two families
of implication functions, there is one exception (up to
isomorphisms), the well-known Lukasiewicz implication

Ip(r,y) =min(l,1 —x +y),
that avoids the above problems. Namely, defining

E(palr) = inf Tj (w(u), pa(v))

we keep most ofthe interesting properties of the previous
definition while solving the main problem with it. Now
the interpretation of "givenm, (X is A) is (at least) cx-
certain" as E(ualm) 2 e is semantically equivalent to

n(u) < T (o, palu)), Yu € DU

This representation can be provided with practically the
same argumentation used in [Dubois and Prade, 1992] to
justify their proposal, only a slight modification in one
step is needed. The agreement of this proposal with the
original one in the non-fuzzy case is easy to establish by
noticing that If (o, pa(u)) = maz(l — e, pa(u)) when
A is non-fuzzy.

3.2 Possibilistic Semantics

Now, we are prepared to define our Possibilistic Tempo-
ral Language and show that captures the above require-
ments.

Definition 5 The set of possibilistic temporal formulas
18 the sel L1 = {P|all¢ € L and a € [0, 1]}.

Definition 6 A Possibilistic Temporal model Il is
a possibility distribution over the set Q of C-models, |l

0 —[0,1] &

Definition 7 (Possibilistic Entailment) A possi-
bilistic temporal model Il satisfies a wff ¢ with a certainty
degree a, written 1 =7 @|a], iff

E($ITT) = inf T (M), b)) 2

where we have identified the £ -formula ¢ with its corre-
sponding fuzzy subset of the set of £ -models §} defined
as pg(w) = w(d). The notion of logical consequence is
the natural one, ie. a possibilistic temporal formula G
is a logical consequence of a set of possibilistic temporal
formulas  Fq,...,Fn, written {Fy,....F.} =1 G, iff for
any possibilistic ~ model I1, Il =1 F1,...,I1 =7 F, imply
MeErG.

The possibilistic entailment [=7- in £7- is related to the
entailment relation [= of the basic language C (without
uncertainty) as follows.

Proposition 3 Let ¢1,..,¢n and ¢ well-formed  for-
mulas of C.  Then it holds that {¢1,....,¢a} | ¢ Iff

{61{1}, ..., all]} =7 ¢[1]

®These possibilistic models differ from those of Possibilis-
tic Logic in that the possibility distributions are defined
on [0, lI]-valued *-models, rather than on {0, I}-valued L-
models.



This proposition shows that the possibilistic entail-
ment (=r actually extends (= in a natural way, as it
could be expected. In particular, the set of inference
rules for fuzzy constraints presented in section 2.3 are
then also sound w.r.t. for \=T once the fuzzy tempo-
ral constraints appearing in those rules are attached the
certainty value 1.

A possibilistic temporal knowledge base is a pair KB =
(FB, HB) of a set of weighted facts TB and a set of
weighted rules RB. The temporal fact base will be rep-
resented as a network of fuzzy temporal constraints.

4 Inference

In this section we supply the set of inference rules which
compose the deductive system of our logic. The sepa-
ration between the non-temporal and the temporal part
also holds for them: we distinguish between rules specific
for temporal propositions and rules applied to arbitrary
well-formed forms in the KB.

Since temporal inference rules deal exclusively with
temporal constraints which certainty degree is 1, for
the sake of completeness, additional inference rules are
needed to state the degree offulfilment for a temporal
proposition and viceversa.

Fuzzy Constraint Inference Rules. As already
mentioned, the Reflexivity, Universal Constraint, Sym-
metry, Transitivity, Intersection and Inclusion inference
rules, with the certainty value [1) attached to premises
and conclusions, are sound rules w.r.t. to the possibilis-
tic semantics, and they capture constraint network pro-
cedures.

Constraint Certainty Inference Rules. The fol-
lowing inference rules show how uncertainty influences
fuzzy temporal constraints, and thus how they provide
a kind of bridge between knowledge from the temporal
constraint network and knowledge from a heuristic rule
set. In other words they provide a way to infer certain
fuzzy constraints from uncertain ones, and viceversa.

FuzzDIST(t,,t3,74,,) )]
FUZZDIST(t: 82,7}, )lal, Where a=E(rq,ir)

S(R1)

And the converse inference rule is defined as follows:

) FuzzDIST(t, ,t2,my,.)la] {R2
WIFAAP I1ST (v, taly Ol where oy =2, (@ Md1a)

Taking back the example of the beginning of Sec-
tion 3 and applying the R/ inference rule, from
FUZZDIST(BEGIN(OFP), END(OFP), [4, 20,25, 45]),
with certainty 1, we can derive the fuzzy constraint
FuzzDIST(BEGIN(OFP), END(OFP), [17, 22, 27, 32]),
with certainty E(am) = 0.9 (see Figure 2). This cer-
tainty value could be used after to conclude Brucelosis
from the rule when applying the modus ponens inference
rule introduced below.

Proposition 4 The above two inference rules R1 and
R2 gre sound.

Proof: See [Godo and Vila, 1995]. O

General Inference Rule, General inference is per-
formed through a single inference rule which is a sort
of possibilistic modus ponens (PMP) and extends the
one for necessity-valued formulas in Possibilistic Logic
[Dubois et al., 1994]:

BiA...ABp 33 H,
Bl[allw--anlam]

Hia'], where o = min{o, o, ..

3 {PMFP}

.y Oty

Proposition 5 (soundness) The above possibilistic
modus ponens inference rule PMP is sound

Proaf: For simplicity, we take m = 1. Thus we will show
that Hlmin(8, @) is a logical consequence of {(B —=>
H)le|, B|3]}. Suppose then E(B =3 H|I} > a and
E(B|IT) > 8. This implies, for all w € §2, that

%’L(I'l(w),l'g(w(B),w(H)) > a and

L (W), w(B)) > 8.

Therefore, since 7y, is non-decreasing in the second vari-
able, we have
min(ca, 8) < Iy (I1(w), min(Zg(w{ B), w(H)), w(B))).
and since the inequality min(z,Zs(z,y)) < y always
holds, we also have min(a, 8) < Ij (TI(w),w(H)). Fi-
nally, taking infimum w.r.t. w, we get

min(a, ) < infuealy, (Mw), w(H)) = E(HTI)
which ends the prool. O

It is interesting to observe that in the above proof,
concerning the certainty degrees, we only make use of
the monotonicity of Zj , and so, the possibilistic modus
ponens rule would be valid also for other definitions
of E(.|.) using other implications, in particular for the
reciprocal of Gédel’s implication —used in [Dubois et
al., 1994] to define an extended resolution-like inference
rule—, largely discussed in a previous section.

5 Concluding Remarks

We have presented a propositional temporal language
based on fuzzy temporal constraints, and able to deal
also with uncertainty within the possibilistic framework.
Although this is a very restricted language, it turns out
to be expressive enough for a large set of applications
in the medical domain and, eventually, in other domains
where knowledge is of propositional nature, yet explicit
account of temporallity and uncertainty are required.
This language is provided with:

1. A formal semantics based on possibilistic models to
account for the uncertainty issued by the fuzziness
of our temporal constraints.

2. A sound inference system composed of a set of fuzzy
temporal constraint inference rules, a possibilistic
modus ponens and a pair of constraint certainty in-
ference rules. An overall picture of the way this in-
ference system can operate is graphically presented
in figure 3.
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Figure 3: Steps of the uncertain fuzzy temporal Inference:
1. fuzzy temporal constraint inference, 2. constraint cer-
tainty evaluation (RI), 3. possibilistic modus ponens, and 4.
constraint certainty update (R2).

We are currently studying the completeness of our
logic. Previous results on the non-fuzzy case [Vila and
Escalada-lmaz, 1994] seem to be a guarantee on the way
to proving it. We are also working in developing correct
and efficient deductive algorithms to make our language
operational.

The approach we have presented here allows for fur-
ther work on two main lines. First the extension to first-
order Horn clauses, incorporating relations on the Fuzzy
Duration functions, and second, to involve more general
types of constraint networks which will be a matter of
study for fuzzy networks as well.
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