
Discovering Interesting Holes in Data 

B i n g L i u , L i a n g - P i n g K u a n d W y n n e H s u 

Department of In fo rmat ion Systems and Computer Science 
Nat iona l Un ivers i ty o f Singapore 

Lower Kent Ridge Road 
Singapore 119260 

Ema i l : { l i ub , ku lp , whsu}@iscs.nus.sg 

Abstract 
Current machine learning and discovery tech
niques focus on discovering rules or regularities 
that exist in data. An important aspect of the re
search that has been ignored in the past is the 
learning or discovering of interesting holes in the 
database. If we view each case in the database as 
a point in a it-dimensional space, then a hole is 
simply a region in the space that contains no data 
point. Clearly, not every hole is interesting. 
Some holes are obvious because it is known that 
certain value combinations are not possible. 
Some holes exist because there are insufficient 
cases in the database. However, in some situa
tions, empty regions do carry important informa
tion. For instance, they could warn us about some 
missing value combinations that are either not 
known before or are unexpected. Knowing these 
missing value combinations may lead to signif i
cant discoveries. In this paper, we propose an al
gorithm to discover holes in databases. 

1 Introduction 
Current machine learning and machine discovery techniques 
mainly focus on finding rules or formulas in data. They typi
cally analyze each case (or tuple) in the database to induce or 
discover regularities that exist in the data cases. For example, 
a typical classification rule learning system (e.g., C4.5 
[Quinlan, 1992]) induces a set of characteristic descriptions 
(or classification rules) from the cases in the database for 
some given classes. A clustering system (e.g., COBWEB 
[Fisher, 1987]) groups cases in the database into various 
similarity classes and derives a concept hierarchy. A scien
tific discovery system (e.g., BACON [Langley et al., 1987]) 
typically discovers, among other things, mathematical for
mulas that fit the data. In this paper, we show that an impor
tant aspect of the research that has been ignored in the past is 
the discovering of large empty areas (or holes) in databases. 
If we view each case (or tuple) in the database as a point in a 
k-dimensional space, then a hole is simply a region in the 
space that contains no data point. In a continuous space, 
there always exist a large number of holes because it is not 
possible to f i l l up the continuous space with data points. The 

existence of large holes is, however, mainly due to the fol
lowing two reasons: 
1. The data cases collected are insufficient, resulting in some 

regions having no data point. 
2. Certain value combinations are not possible. For example, 

in a particular domain, we have a database with two con
tinuous attributes X and Y. Both X and Y can take values 
from 1 to 10. However, when X > 5, Y is always less than 
4. In other words, there exists an empty area, i.e., a rec
tangular region defined by 5 < X < 10 and 4 < Y < 10. 

Clearly, learning or discovering associative relationships 
(e.g., rules, formulas, etc.) that exist in data is important. In 
this paper, we argue that discovering the missing associations 
is also significant. For example, in a disease database we 
may find that certain symptoms and/or test values do not 
occur together, or when a certain medicine is used, some test 
values never go beyond certain range. Discovery of such 
information can be of great importance in medical domains 
because it could mean the discovery of a cure to a disease or 
even some biological laws. 

It must be stressed that in many applications, producing 
the discovered rules alone does not provide the user with the 
complete information. For example, a particular organization 
has used a learning system to generate a set of rules from 
their database. One of the rules is: 

If Compy_Size > 2 then Service = Yes. 
This rule says that if the Compy_Size (company size) is 
greater than 2, the company uses the service provided by the 
organization. Assume the company size is partitioned into 10 
categories. A close inspection of the database may reveal that 
no company, whose size is in the range of 4-8, uses the serv
ice. Hence, there is a hole in the data. Realizing the existence 
of this hole may lead this organization to probe into the pos
sibilities of modifying its service or of doing more promotion 
to attract the medium size companies to use its service. In the 
case of one dimensional dataset, discovering the hole is sim
ple. However, when the number of dimensions increases, the 
problem quickly becomes rather complex. To the best our 
knowledge, there is no existing technique that is able to per
form this task. This paper proposes such a technique. 

In general, a database contains a large number of holes 
because each case in the database is only a point in a k-
dimensional space. Even if each attribute takes discrete or 

930 LEARNING 



nominal values, it may be still quite difficult to f i l l the whole 
space. However not all holes are interesting. Most of them 
are not. The following types of holes are not interesting: 

1. Small holes: they exist because there is only a limited 
number of cases in the database. 

2. Known impossible value combinations: they exist because 
certain value combinations are not possible and this fact is 
known previously. 

However, certain types of holes can be of great importance: 
1. holes that represent impossible value combinations that 

are not known previously. 
2. holes that indicate that the data collected within those ar

eas are insufficient. 
3. holes that are suspected by the user and need confirma-

.tion. 
This paper proposes an algorithm that is able to find the 
holes in a k-dimensional continuous space, and sort them 
according to their sizes. 

2 Pre l iminar ies 
The database that our algorithm works with is a normal data
base, which consists of the descriptions of N cases in the 
form of tuples. Each case in the database is described by w 
distinct attributes, A1 ..., Ai ..., Aw, so that in an instantiation 
of case description, an attribute Ai takes on the value v, e 
domain(Ai). Some attributes take continuous or ordinal val
ues, and we call these attributes continuous attributes. Other 
attributes take nominal values, and we call them dis
crete/nominal attributes. 

Since the focus of this paper is on the space formed by 
continuous attributes, the proposed algorithm only uses the 
continuous attributes in its discovering process. In many 
situations, the user may not be interested in the holes that 
exist in the whole database, but only a segment of the data
base that satisfies certain requirements. Then, some pre-
processing can be performed to extract the segment of the 
database. Assume the resulting segment of the database has k 
continuous attributes. The user then needs to specify the 
bounding (minimum and maximum) values for each attribute, 
denoted by mini and maxi for 1 < i <, k. With these attributes 
and their bounding values, a it-dimensional continuous space 
S is defined, within which the data tuples (or points) in the 
segment of the database are contained. 

In theory, a hole can be of any shape. In this paper, we re
stricts the shape to hyper-rectangles (holes of this shape are 
easily understood by the user). In particular, we are inter
ested in the so-called maximal hyper-rectangles (MHR). 
Definit ion: Given a it-dimensional continuous space 5, 

where each dimension i (1 <, i <, k) is bounded by a mini
mum and maximum value (denoted by mm, and maxi). 
There exist n(n<N) data points (or tuples) in S. A maxi
mal hyper-rectangle (MHR) is an empty hyper-rectangle 
that has no data point within its interior and has at least 
one data point on each of its 2k bounding surfaces. We 
call these points the bounding points of the hyper-
rectangle. Each side i of the MHR is parallel to one axis of 
5 and orthogonal to all the others. 

The number of MHRs in a continuous space can be huge. 
However, we are only interested in those MHRs that are suf
ficiently large (or significant). The user can specify how to 
measure the size of a MHR and what size is considered suffi
ciently large. These are all application dependent. A simple 
way of measuring the size of a MHR is by its volume. As for 
what size is considered sufficiently large, we may use a 
threshold volume or a minimal length for each side of the 
MHR, or a combination of both. 

Our objective is to find all the MHRs in the user-specified 
k-dimensional continuous space that satisfy the sufficiently 
large criterion and to rank them according to their sizes. 

3 The Proposed A l g o r i t h m 

3.1 Overview of the algor i thm 
The main idea is as follows. Given a k-dimensional continu
ous space S, and n points (or data cases) in S, we first start 
with one MHR, which occupies the entire space S. Then each 
point is incrementally added to S. At each insertion, we up
date the set of MHRs that have been found this far. The up
date is done as follows. When a new point is added, we 
identify all the existing MHRs that contain this point. These 
hyper-rectangles are no longer MHRs since they now contain 
a point within their interiors. Using the newly added point as 
reference, a new lower and upper bound for each dimension 
are formed to result in 2 new hyper-rectangles along that 
dimension. If these new hyper-rectangles are found to be 
sufficiently large, they are inserted into the list of existing 
MHRs, otherwise they are discarded. 

3.2 The deta i ls of the a l g o r i t h m 

Given a point X, we denote X(i) as the value of X along the ith 

dimension. A MHR, H, is denoted as: 

where Li, and Ui, are respectively the sets of lower and upper 
bounding points of H along the ith dimension. Note that the 
lower (or the upper) bound of H is bounded by a set of lower 
(or upper) bounding points, rather than a single value. Let T 
denote a data structure that stores a collection of MHRs, and 
T supports the following functions: 

1. Insert(T, H): it inserts the MHR H into T. 
2. Deleted (T,H): it deletes the MHR H from T. 
3. ContainmentSearch(T, X): it returns a list of MHRs 

from T that contain the point X. 
The data structure T can be implemented by first transform
ing the MHRs into 2k-dimensional points [Preparata and 
Shamos, 1985] and then storing them in a Pseudo 2k-d tree 
[Overmars and Leeuwen, 1982]. 

We also define a function BigEnough(H) which returns 
TRUE if the MHR H is considered to be sufficiently large 
(or significant). Note that BigEnough() must satisfy the fol
lowing: if BigEnough(H') is true, then BigEnough(H) must 
be true for all H that contain H'. 

For simplicity of notation in the algorithm, we let S/i, and 
Sui (for each dimension i) to be "points", where Sli,(i) = mini , 

L I U KU, & HSU 931 



932 LEARNING 



3.4 Proof of correctness 
A sketch of the proof of the correctness of the algorithm is 
presented next. We prove that the algorithm FindMHR pro
duces all possible MHRs that have sizes accepted by the 
BigEnoughO function. Hence, we need to show that any hy
per-rectangle reported by FindMHR must be maximal and 
accepted by BigEnough(), and any given MHR that is ac
cepted by BigEnoughO in the space S must be reported. The 
former is easy to show as our algorithm checks each hyper-
rectangle before it is inserted into T, Hence we focus our 
attention on proving the latter. 

The detailed proof is too long to be presented here, instead 
we give an outline of the proof (interested reader may refer 
to [Ku et a/., 1997] for the detailed proof). Let us first as
sume that BigEnoughO accepts MHR of all sizes, i.e., no 
pruning is done. Our task is to prove that the algorithm 
FindMHR finds all possible MHRs, i.e., the data structure T 
stores all possible MHRs. The proof wi l l proceed in an in
ductive manner, showing at the base case, when there is no 
point inserted, there is only 1 MHR which occupies the 
whole space. Then at each iteration, if T already stores all 
MHR before the next point X is inserted, by inserting X and 
performing all the necessary updates, T contains all resultant 
MHRs. This in turn is decomposed into several parts: 

L I U KU, & HSU 933 



1. Show that those MHRs in T not containing X wil l not be 
affected (which justifies the use of the function Contain-
mentSearchO). 

2. Show that those MHRs in T containing X wil l not be 
maximal anymore (which justifies why they are deleted). 

3. Show that the new MHRs must be inside the union of the 
MHRs found by ContainmentSearchi) (which justifies 
why the new MHR are generated only from these MHR 
found). 

4. Show that the new MHRs must touch X and all possible 
MHRs that touch X will be reported (which justifies the 
way the new MHRs are constructed). 

5. Show that no identical MHRs can be generated using this 
algorithm (which justifies why we do not check for dupli
cates). 

A final point is that in our algorithm, the newly generated 
MHR is always contained within the MHR from which it is 
derived from, hence it is safe to discard any MHR that is not 
accepted by BigEnough() (by the definition of BigEnough()). 
With this, the correctness of the algorithm FindMHR is 
proved. 

periments on 3 different datasets. The lower and upper 
bounds for X and Y in all the three datasets are 0.00-23.00 
and 0.00-17.00 respectively. The bounds for Z are 0.00-
20.00, 0.00-70.00 and 0.00-150.00 respectively for the three 
datasets. The planted empty areas are of the same size, 9, 6 
and 9 along X, Y and Z dimensions respectively. Table 1 
summarizes the run time results of the three datasets (running 
on Digital Alpha 8400 under normal loading conditions). 
Note that T (which stores all the MHRs) is currently imple
mented as a linked list. 

Table 1. Results of the first Set of Experiments. 

Column 1 indicates the dataset number. Column 2 shows 
the number of data points in each dataset. Column 3 gives the 
running times for finding all the MHRs that satisfy the mini
mal length requirements along the 3 dimensions. This col
umn is further divided into two sub-columns. One of them 
shows the running times when the minimal lengths along X, Y 
and Z dimensions of the MHRs are 8, 4 and 8 respectively 
(i.e., the bounds used by BigEnoughQ). The other shows the 
running times when the minimal length is reduced by half 
along each dimension (i.e., 4-2-4). Column 4 gives the num
ber of MHRs discovered by the algorithm in each of the two 
situations. From the table, we see that when the minimal size 
of the MHR decreases, the time taken to find all the suffi
ciently large MHRs increases. We also see that as the num
ber of data points increases, the time taken to find all the 
large MHRs also increases. In general, however, the relation
ship between the number of data points and the time taken to 
find all the large MHRs is complex because there are other 
factors that play a role, e.g., the density and/or the distribu
tion of the data points, and the number of large MHRs that 
exist in the dataset. In all experiments, the running times are 
reasonable. In spite of the large number of discovered MHRs 
(both planted and unknown), many of them actually represent 
the same general regions with slight variations (slightly dif
ferent sets of bounding points). In practice, post-processing 
can be performed to extract those general empty regions. 

In the second set of experiments, we use a real-life disease 
dataset. This dataset has 7 continuous attributes, and 713 
data points. The algorithm is run 8 times using different at
tribute combinations, i.e., combining 2, or 3 or 4 attributes. 
The minimal size of the MHRs in each experiment is speci
fied by a doctor. The running times of all the tests are within 
1 or 2 seconds. 

In these experiments, a number of interesting holes are 
discovered. For example, it is suspected that if the systolic 
blood pressure (SBP) of a subject is high, then his/her di-
systolic blood pressure (DBP) is also high. A hole is discov
ered in the region of high SBP and low DBP. This hole con
firms the suspected fact. Some holes are quite unexpected. 

934 LEARNING 



For instance, the doctor has a strong belief that the higher the 
SBP, the more likely the subject wil l get the disease. How
ever, it is found that between the age of 18-50 (the upper 
bound of age is 69), there is no subject whose SBP is higher 
than 145 (the upper bound is 231) and is diagnosed to have 
the disease. 

5 Related Work 
To the best of our knowledge, no existing algorithm is able 
to find interesting holes in a multi-dimensional database. 
Although there are algorithms in geometry [Chazelle et al, 
1986; Orlowski, 1990] that can find empty rectangles in the 
2D space, these algorithms cannot be extended to the multi
dimensional space. 

Most current research in machine learning and machine 
discovery focuses on finding rules or formulae that exist in 
data. Our work is different from rule induction [e.g., Quinlan, 
1992] because rule induction is not concerned with empty 
areas. It typically groups the empty areas with the data areas 
in order to arrive at some generalized rules. 

Typical existing scientific discovery systems discover 
qualitative and numeric laws from data. Examples of well-
known systems include ABACUS [Falkenhainer and Michal-
ski, 1986], BACON [Langley et al, 1987], FAHRENHEIT 
[Zytkow, 1990], and IDS [Nordhausen and Langley, 1993]. 
They are different from our work because our algorithm is 
targeted at discovering those empty areas, which may repre
sent impossible value combinations. 

Conceptual clustering systems [e.g., Fisher, 1987] typi
cally partition the data cases into similar classes and form 
concept hierarchies. Again, they are not concerned with those 
empty areas that do not contain any data. 

In data mining research, many techniques have been pro
posed to discover regularities in data [Fayyad et al, 1996]. 
They are similar to those above for machine learning. Here, 
we would like to mention specifically the association rule 
discovery technique in [Agrawal et al, 1993]. This technique 
discovers associations that exist in the database whose attrib
utes are all nominal (or discrete) attributes. For this type of 
databases, the concept of MHR does not apply. The equiva
lent concept of MHR in the nominal case is missing associa
tions. Since the algorithm in [Agrawal et al, 1993] can find 
all the existing value associations in a database. Using a sim
ple technique (e.g., generate and test), it is possible to find all 
the missing associations (without going through the database 
again). However, the problem is the efficiency and the repre
sentation of the missing associations. In our future work, we 
wil l study this problem. This paper only focuses on discov
ering those significant MHRs in a continuous space. 

6 Conclusion 
This paper argues that although discovering rules or regu
larities that exist in data is important, in many situations, 
discovering of large holes in the database is also interesting. 
An algorithm that is able to discover holes in the continuous 
space, also known as maximal hyper-rectangles (MHR), is 
proposed and implemented. We believe this algorithm wil l 
be useful in scientific discovery and data mining. 

Acknowledgments 
We would like to thank Dr. Hing-Yan Lee, Ms. Hwee-Leng 
Ong and Ms. Angline Pang from Information Tehcnology 
Institute, and Dr. Ke-Qing Gong and Dr. King-Hee Ho from 
National University Hospital for many useful discussions, for 
providing us the databases, and for their help in the testing of 
our system. 

References 
[Agrawal et al, 1993] R. Agrawal, T. Imielinski, and A. 

Swami. Mining association rules between sets of items in 
large databases. SIGMOD-1993, pages 207-216,1993. 

[Chazelle et al, 1986] B. Chazelle, R.L. Drysdale, D.T. Lee. 
Computing the largest empty rectangle. SIAM Journal of 
Computing, 15(1):300-315, 1986. 

[Falkenhainer and Michalski, 1986] F. Falkenhainer and R. 
Michalski. Integrating quantitative and qualitative dis
covery: the ABACUS system. Machine Learning, 
1(4):367-401, 1986. 

[Fayyad et al., 1996] U. Fayyad, G. Piatesky-Shapiro & P. 
Smyth. From data mining to knowledge discovery in da
tabases. Al Magazine, pages 37-54, 1996. 

[Fisher, 1987] D. Fisher. Knowledge acquisition via incre
mental conceptual clustering. Machine Learning, 2:139-
172, 1987. 

[Ku et al, 1997]. L. P. Ku, B. Liu, and W. Hsu. Discovering 
large empty maximal hyper-rectangles in multi
dimensional space. Technical Report, Dept. of ISCS, 
National University of Singapore, 1997. 

[Langley et al, 1987] P. Langley, H. Simon, G.Bradshaw, 
and J. Zytkow, Scientific discovery: computational ex
plorations of the creative process, The MIT press, 1987. 

[Liu and Hsu, 1996] B. Liu and W. Hsu, Post-analysis of 
learned rules, AAAI-96, pages 828-834, 1996. 

[Nordhausen and Langley, 1993] B. Nordhausen and P Lan
gley. An integrated framework for empirical discovery. 
Machine Learning 12(1/2/3): 17-48, 1993. 

[Orlowski, 1990] M.Orlowski. A new algorithm for the larg
est empty rectangle problem. Algorithmica, 5:65-73, 
1990. 

[Overmars and Leeuwen, 1982] M. Overmars and J. Leeu-
wen. Dynamic multi-dimensional data structures based on 
Quad- and K-D trees. Acta Informatica, 17:267-285, 
1982. 

[Preparata and Shamos, 1985] F. Preparata and M.I Shamos. 
Computational geometry-An introduction. Springer, 1985. 

[Quinlan, 1992] J. Ross Quinlan. C4.5: program for machine 
learning. Morgan Kaufmann, 1992. 

[Zytkow, 1990] J. Zytkow. Deriving basic laws by analysis 
of processes and equations. In P. Langley & J. Shrager 
(eds.), Computational models of scientific discovery and 
theory formation. Morgan Kaufmann, 1990. 

L IU ,KU,& HSU 935 


