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A b s t r a c t 

This paper presents a network model of the 
mental lexicon and its formation. Models of 
word meaning typically postulate a network 
of nodes wi th connection strengths, or dis­
tances, that reflect semantic similarity, but sel­
dom explain how the network is formed or 
how it could be represented in the brain. The 
model presented here is an attempt to ad­
dress these questions. The network organizes 
semantically similar words into clusters when 
exposed to sequentially presented text. Lexi­
cal co-occurrence information is calculated and 
used to create a hierarchical semantic repre­
sentation. The output is similar to semantic 
networks first described by [Collins and Loftus, 
1975], but is created automatically. 

1 I n t r o d u c t i o n 

The mental lexicon refers to the representations that al­
low word recognition on the basis of auditory and vi­
sual st imul i . The lexicon is understood as two linked 
levels of representation: The first level consists of form-
based representations that reflect a word's phonological 
or graphemie properties. The second level contains se­
mantic representations that reflect its meaning relations 
with other words [Marslen-Wilson, 1989], 

Pr iming studies are an important source of evidence 
for the semantic organization of the lexicon. When sub­
jects are presented briefly wi th a letter string, followed by 
another, and asked to decide whether the latter is a real 
word, the response t ime when both strings are related 
is reliably faster than when they are unrelated. Priming 
effects can be found using st imul i that are graphemically, 
morphologically, or semantically related ([Taft, 1991] for 
a review). 
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Substantial progress has been made modelling the 
form-based lexical representations in the light of 
graphemie or phonological similarity [Plaut et a/., 1994], 
but there is currently no principled measure of seman­
tic similarity. Word meaning is much more difficult to 
quantify. 

The network described here is an attempt to address 
this problem. It is inspired by two relatively indepen­
dent approaches to semantic representation from cog­
nitive psychology and computational linguistics. After 
considering each approach I describe the network's im­
plementation and present results. The next section de­
scribes the structure and development of semantic repre­
sentations, and how the model relates to previous work. 
Finally 1 consider the model's psychological relevance 
with reference to developing categorizations and seman­
tic priming. 

2 L e x i c a l - s e m a n t i c N e t w o r k s 

A highly influential theory of lexical-semantic represen­
tation from cognitive psychology is based on the seman­
tic network. A semantic network consists of a set of 
nodes and connections of varying strengths, or lengths, 
between them [Collins and Loftus, 1975]. Each concept 
is assigned a node, and connection strengths reflect the 
amount of conceptual relevance each node has to its part­
ner. The stronger, or shorter, connections represent a 
high level of similarity. Weaker, or longer, connections 
hold between less related nodes. In a lexical-semantic 
network (LSN), each node represents a word and the 
distance between nodes reflects the amount of semantic 
similarity between each word. The Logogen model [Mor­
ton, 1979], Interactive-activation model and spreading 
activation accounts, are all types of LSN [Neely, 1991]. 

LSN accounts explain semantic pr iming effects in the 
following way: Each node has an activation level. When 
a stimulus is presented it activates all nodes in the net­
work to some degree. If one node is activated strongly 
enough its activation wi l l pass a threshold and fire. The 
stimulus wi l l be recognized as that word. Each*time a 
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word is presented, activation spreads from the most acti­
vated node to nearby nodes, decaying over time. For ex­
ample, i f 'doc tor ' is presented shortly before 'nurse', the 
node associated wi th 'nurse' wi l l reach threshold faster 
and fire sooner. Its resting activation level is raised 
by activation spreading from 'doctor' during the inter-
stimulus interval. 

3 Data- intensive Semantics 
Recent work in computational linguistics suggests that 
large amounts of semantic information can be extracted 
automatically from large text corpora on the basis of 
lexical co-occurrence information [Lund et al., 1995; 
Schiitze, 1993]. This approach is particularly well suited 
to neural network implementation [Finch, 1993] because 
co-occurrence statistics track conditional probabilities, 
and neural networks have straightforward interpreta­
tions as statistical models [Bishop, 1995]. 

The data-intensive approach to semantics is consistent 
wi th , and inspired by theories of meaning that empha­
size the importance of use [Wittgenstein, 1958] (see also 
[Church and Mercer, 1993]). Lexical co-occurrence in­
formation reflects a word's distributional profile, which 
is a reflection of its use. 

The success of the data-intensive semantics research 
shows that, wi th a large enough sample, there is suf­
ficient information in a strictly linguistic environment 
to recover much semantic structure. It seems plausible, 
therefore, to investigate the possibility that the brain 
makes use of such information. The recent discovery that 
semantic and associative priming effects in the lexical de­
cision task are significantly correlated with co-occurrence 
statistics [Lund et al, 1995; Spence and Owens, 1990] 
support this possibility. Lund et al. constructed a high-
dimensional space on the basis of lexical co-occurrence 
counts. Words that were close together in the space gave 
larger pr iming effects than those further away. 

4 Mode l l i ng the Lexicon 
LSN theories provide an intuit ive way to understand 
word meaning and its relation to priming. However, 
there is no theory of how the nodes of a network are 
formed, or how the distance (or strength) relations be­
tween them become organized. 

The data-intensive approach to semantics is an ef­
fective predictor of semantic priming, and reflects an 
influential approach to understanding word meaning. 
However, the approach requires an extremely high-
dimensional co-occurrence space for lexical-semantic rep­
resentation. It is not obvious how such a space could be 
represented in the brain. 

The model presented below is a first attempt at ex­
plaining how the semantic level of the lexicon could be 

organized, consistent with the LSN and data-intensive 
semantics approaches, in a way that is computationally 
tractable and biologically reasonable. 

4 . 1 O v e r v i e w o f t h e M o d e l 

The model consists of an input layer that picks out 
words from a text stream, a dynamic proto-lexicon 
which records co-occurrences between the present target 
word and words either side of i t , and a self-organizing 
map. The proto-lexicon is init ial ly empty and the self-
organizing map weights are set to random values. 

4 .2 I m p l e m e n t a t i o n 

P ro to - l ex i con 
The proto-lexicon represents each word in terms of the 
number of times it has been seen to co-occur directly be­
fore and after each other word in the vocabulary. Specifi­
cally, in an n—word vocabulary each word Wi 

is associated with the vector normal­
ized to unit length, where denotes the 
frequency with which Wj has preceded wi, before t, and 

denotes the frequency with which Wk 

has succeeded wi,. Thus at each time step, xi represents 
the model's best guess for the conditional probabilities 

(1) 

and 
(2) 

for all words j, k and time t. Each successive x i is an 
improved estimation of the true distributional profile of 
each word. 

In large-scale applications it is usual to distinguish 
a fixed subset of high-frequency words to serve as con­
text (see [Church and Mercer, 1993] for a review). 
Co-occurrence vectors calculated using high-frequency 
words are less sparse and provide better samples. This 
technique complicates the relation between the co­
occurrence vectors and quantities (1) and (2), though 
the results are robust to approximation. The model is 
presented without approximation. 

Sel f -organiz ing M a p 
The self-organizing map is presented wi th the current 
proto-lexical representation for each word as it is en­
countered in the text stream. The winning unit is the 
unit i* with weight vector wi*such that 

(3) 

for all Output unit weights are updated after 
each word presentation using a variation of Kohonen's 
self-organizing map algorithm [Kohonen, 1982]: 

(4) 
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Input 
Input consists of words taken sequentially from a 20,000 
word corpus generated by a stochastic context-free gram­
mar described in [Elman, 1990]. A sample section of 
input is shown below. 

man l i k e boy l i o n eat mouse 

Each t ime a word is recognized in the text stream, its 
representation in the proto-lexicon is updated and pre­
sented to the self-organizing net as an training item. 

4.3 Resul ts 
After moving through the corpus once, clusters of seman-
tically related words emerge. Each word is presented to 
the network the winning output unit is recorded and la­
belled. Figure 1 shows the winning unit for each word 
after 20,000 word presentations. 

Consistent wi th the LSN approach, the network clus­
ters each word wi th other words that are used in similar 
contexts. Similar words tend to be nearer to one another 
than to dissimilar words. Verbs have been represented 
together on the right side: Psychological verbs 'see' and 
'smell ' are represented together, as are destructive verbs 
'smash' and 'break' wi th in the main verb group. On 
the left side, categorial similarity among the nouns is 
equally well preserved - human and animal nouns group 
separately, adjacent to one another. 

However, figure 1 does not reflect the ful l extent of 
the net's categorization. 'Man ' is equidistant from 'boy' 
and from 'book', but is related much more closely to one 
than the other. This fact is represented by the network, 
not in the pattern of winning units, but by the pattern 
of activation across all output units. Figures 2,3 and 4 
show activation plots for 'man' , and for 'boy' and 'book' 
wi th the unit specialized for 'man ' marked. 'Boy' is asso­
ciated much more strongly wi th 'man' , than wi th 'book' 
because 'boy' is the highest unit on a plateau contain­
ing all the human nouns, whereas 'book' is in a separate 
region shared by inanimate nouns. 

Figures 5 and 6 also show how the network creates 
a hierarchical semantic representation: 'See' and 'smell ' 

dragon monster 

lion 

man 

woman 

girl 

mouse cat 

rock 

car 

book 

boy 

dog 

like move 

chase 

think 

exist 

sleep 

plate 

glass 

bread 

cookie sandwich 

see 

smell 

smash 

break 

eat 

F igure 1 : O u t p u t m a p af ter 20,000 wo rd presentat ions. 

Figure 2: Activation plot for the word 'man' . 

Figure 3: Activation plot for the word 'boy' wi th 'man' 
marked. 
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Figure 4: Activation plot for the word 'book' with 'man' 
marked. 

Figure 5: Activation plot for the psychological verb 
'smell'. 

Figure 6: Activation plot for the psychological verb 'see'. 

share an activated region but this region is a section of 
the larger region that covers all verbs. 

5 Structure and Development of 
Semantic Representat ion 

S t r u c t u r e 
Although figure 1 resembles a classical semantic net 
(without connections), unlike many other LSN models, 
it uses a distributed coding scheme; the activation lev­
els of all units are used to express semantic relation­
ships among words. Distributed coding is both more 
reliable and more biologically realistic than classical lo-
calist coding. It is more reliable because representations 
need not be compromised by the loss of single units. 
In topographic maps, if a unit specialized to some in­
put pattern is lost, one of its neighbours wil l become 
the winner for that pattern on subsequent tests, but the 
shape of the output map wil l remain largely intact due 
to graded transitions in feature-specificity across neigh­
bouring units. Graded transitions between cell response 
profiles due to topographic organization have been re­
ported in many brain regions [Knudsen et a/., 1988]. 

In the model graded transitions between winning units 
also allow uncommitted units to capture new words wi th 
distributions similar to more than one word in the init ial 
vocabulary. 

The data-intensive approach to semantics explains se­
mantic similarity in terms of points in a high-dimensional 
space. By the end of training, the proto-lexical repre­
sentations define such a space. Here 29 words create a 
58-dimensional space. In order to form an output repre­
sentation of the type required by the LSN approach, and 
to explain how such a space could be represented in the 
more limited dimensions of the brain, this space must 
be reduced to a more manageable size. Two properties 
of the self-organizing map algorithm make it especially 
well-suited to this task: 

1. The self-organizing map algorithm creates a non­
linear projection from a collection of data points in a 
high dimensional space defined by each input vector 
to a one or two-dimensional grid of output units. 
The projection attempts to preserve the topology 
of the input space in the lower dimensional output 
space. Thus the algorithm performs precisely the 
data-reduction necessary. 

2. The algorithm has a straightforward physiological 
interpretation: it models the development of fea­
ture selectivity due to lateral inhibit ion among cor­
tical nerve cells [Sirosh and Miikkulainen, 1993; 
Kohonen, 1993] 

It is possible to pinpoint cell groups relevant to nam­
ing and semantic memory tasks using electrode map­
ping techniques during neurosurgery [Ojemann, 1983; 
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1991]. In a review of language localization studies, 
[Bradshaw and Mattingley, 1995] conclude that lexi­
cal representation probably depends on many areas dis­
tr ibuted across the cerebral cortex. This is consistent 
wi th the structure of the model. 

D e v e l o p m e n t 
During the course of training, output units become in­
creasingly sensitive to a particular input pattern. The 
weight update equation ensures that the weight vector 
of the winning unit and its neighbours are moved toward 
the input pattern. However the input patterns are also 
moving. Representations in the proto-lexicon alter each 
t ime a new word is read. This means that different words 
get different amounts of training devoted to them. Dur­
ing development, the region over which updates occur is 
shrinking. This entails that input patterns that are far 
from one another in the input space are separated first on 
the output map, and patterns that are very close to each 
other are separated later [Kohonen, 1982]. If the algo­
r i thm is interrupted before completion, the final output 
representation provides a usable partial categorization of 
the input data (See also section 7). 

6 Related W o r k 
The self-organizing map algorithm has been used suc­
cessfully to model semantic clustering [Miikkulainen, 
1993], but Miikkulainen's networks require a static set of 
input patterns to be constructed by a separate extended-
backpropagation system wi th theta-role assignments, be­
fore clustering can begin. In contrast, this system oper­
ates wi th raw text, without staged processing, and with­
out supervised components. [Ritter and Kohonen, 1989] 
have also used self-organizing maps, but used heavily 
pre-processed input data, and a much smaller corpus. 

Elman's Simple Recurrent Networks [Elman, 1990] 
also make use of of co-occurrence statistics, represented 
in the hidden node activations. However, in the Simple 
Recurrent Network, hidden unit response profiles must 
be manually extracted and submitted to cluster analysis 
before semantic similari ty information becomes directly 
available: In the model presented here co-occurrence in­
formation is explicit. 

7 Psychological Relevance 
The model presented here illuminates two psychologi­
cal phenomena: learning to distinguish between seman-
tically similar words, and semantic pr iming effects. 

D i s c r i m i n a t i o n 
The shape of the output map reflects the network's in­
creasing abil i ty to distinguish words that are semanti-
cally distinct. The semantic difference between 'mouse' 
and 'sandwich' is greater than between 'mouse' and 'cat'. 

The developmental schedule of the network reflects this, 
by learning to distinguish 'mouse' from 'sandwich' be­
fore distinguishing it from 'cat'. While 'cat' remains 
undistinguished the two words are essentially the same 
to the system. The discriminative capacities of the sys­
tem also depend upon exposure; high frequency words 
are distinguished sooner in general. These observations 
are consistent wi th research into child language acqui­
sition, suggesting that broad semantic distinctions be­
tween frequent items are discovered first [Harris, 1992]. 
[Finch and Chater, 1994] have shown how partial cate­
gorizations may be used to bootstrap more complex rep­
resentational structure during language development. 

Semant ic P r i m i n g 
The network described above is a type of LSN. Conse­
quently it is possible to formulate an account of semantic 
pr iming within this framework. W i t h the current archi­
tecture each word that is encountered activates the out­
put layer independently, via its proto-lexical representa­
t ion. To allow an explanation of pr iming it is necessary 
to relax this restriction and assume that word recogni­
tion advances all unit activations to the levels particular 
to the recognized word in small amounts over a brief t ime 
period, and that unit activations then decay over t ime 
unti l the activation surface is flat. 

The explanation of semantic pr iming is then straight­
forward: If a prime word is presented before activation 
levels have fully decayed, then residual activation wi l l 
sti l l be present in some units. For example, let 'man' be 
the target word, and let the related word 'boy' and the 
unrelated 'book' be primes. 'Man ' (fig. 2) wil l take 
longer to be recognized as a word when preceded by 
'book' (fig. 4) than when it is preceded by 'boy' (fig. 3) 
because the activation surface for 'man ' is almost iden­
tical to that of 'boy', but quite different from the activa­
tion surface for 'book'; fewer increments are necessary to 
convert the activation surface for 'boy' into the surface 
for 'man' than to convert the surface for 'book' into the 
surface for 'man' . 

This account of pr iming is similar to other LSN mod­
els. Priming effects depend on the distance between the 
prime and target words because the the map is organized 
such that activation tends to drop off wi th distance from 
the winning node. 

8 Conclusion 
The network presented here models the formation and 
arrangement of the semantic level of the mental lexi­
con. It is consistent wi th the lexical-semantic network 
approaches to lexical arrangement and semantic pr im­
ing, and wi th the data-intensive approach to semantics. 
The network represents semantically similar words to­
gether using lexical co-occurrence information that is 
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calculated as the network moves through a text corpus. 
The network uses a topographic mapping technique that 
is widespread in the brain, and provides a biologically 
reasonable account of mental lexicon. 
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Abs t rac t 
This paper presents an algorithm for extract­
ing propositions from trained neural networks. 
The algorithm is a decompositional approach 
which can be applied to any neural network 
whose output function is monotone such as sig­
moid function. Therefore, the algorithm can 
be applied to multi-layer neural networks, re­
current neural networks and so on. The algo-
rithm does not depend on training methods. 
The algorithm is polynomial in computational 
complexity. The basic idea is that the units of 
neural networks are approximated by Boolean 
functions. But the computational complexity 
of the approximation is exponential, so a poly­
nomial algorithm is presented. The authors 
have applied the algorithm to several prob-
lems to extract understandable and accurate 
propositions. This paper shows the results for 
votes data and mushroom data. The algorithm 
is extended to the continuous domain, where 
extracted propositions are continuous Boolean 
functions. Roughly speaking, the representa­
tion by continuous Boolean functions means 
the representation using conjunction, disjunc­
t ion, direct proportion and reverse proportion. 
This paper shows the results for iris data. 

1 I n t r oduc t i on 
Extract ing rules or propositions from trained neural net­
works is important[1], [6], Although several algorithms 
have been proposed by Shavlik, Ishikawa and others 
[2],[3], every algorithm is subject to problems in that 
it is applicable only to certain types of networks or to 
certain training methods. 

This paper presents an algorithm for extracting propo-
sitions from trained neural networks. The algorithm is a 
decompositional approach which can be applied to any 
neural network whose output function is monotone such 
as sigmoid function. Therefore, the algorithm can be 
applied to multi-layer neural networks, recurrent neural 
networks and so on. The algorithm does not depend 
on training methods, although some other methods[2], 

[3] do. The algorithm does not modify the training re­
sults, although some other methods [2] do. Extracted 
propositions are Boolean functions. The algorithm is 
polynomial in computational complexity. 

The basic idea is that the units of neural networks are 
approximated by Boolean functions. But the computa­
tional complexity of the approximation is exponential, so 
a polynomial algorithm is presented. The basic idea of 
reducing the computational complexity to a polynomial 
is that only low order terms are generated, that is, high 
order terms are neglected. Because high order terms are 
not informative, the approximation by low order terms 
is accurate[4]. 

In order to obtain accurate propositions, when the 
hidden units of neural networks are approximated to 
Boolean functions, the distances between the units and 
the functions are not measured in the whole domain, but 
in the domain of learning data. In order to obtain simple 
propositions, only the weight parameters whose absolute 
values are big are used. 

The authors have applied the algorithm to several 
problems to extract understandable and accurate propo­
sitions. This paper shows the results for votes data and 
mushroom data. 

The algorithm is extended to the continuous domain, 
where extracted propositions are continuous Boolean 
functions. Roughly speaking, the representation by con­
tinuous Boolean functions means the representation us­
ing conjunction, disjunction, direct proportion and re­
verse proportion. This paper shows the results for iris 
data. 

Section 2 explains the basic method. Section 3 
presents a polynomial algorithm. Section 4 describes the 
experiments. Section 5 extends the algorithm to contin­
uous domains and applies it to iris data. 

The following notations are used. x,y,.. stand for vari­
ables. f,g,.. stand for functions. 

2 The basic me thod 
There are two kinds of domains, that is, discrete domains 
and continuous domains. The discrete domains can be 
reduced to {0 ,1 } domains by dummy variables. So only 
{0,1} domains have to be discussed. Here, the domain 
is {0 ,1 } . Continuous domains wi l l be discussed later. 
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