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Abstract

A principal problem of auditory scene analy-
sis is stream segregation: decomposing an in-
put acoustic signal into signals of individual
sound sources included in the input. While
existing signal processing algorithms cannot
properly solve this inverse problem, a multi-
agent-based architecture has been considered to
be a promising methodology in its modularity
and scalability. However, most attempts made
so far depend on subjectively defined rules to
deal with variability of sounds. Here we pro-
pose a quantitatively principled architecture in
agent interaction by formulating the problem
as least-squares optimization. In this architec-
ture, adaptation of the agents is the essential
idea. We have developed two kinds of pro-
cessing to realize adaptivity: template filtering
and phase tracking. These mechanisms enable
each agent to optimally, in the least-squares
sense, track the individual sound. As an ex-
ample application of the proposed architecture,
we have built a music recognition system that
recognizes instrument names and pitches of the
notes included in ensemble music performances.
Experimental results show that these adaptive
mechanisms significantly improve the recogni-
tion accuracy.

1 Introduction

In recent years scene analysis based on acoustic infor-
mation, termed auditory scene analysis, has received a
renewal of interest. Recognizing external events based
on acoustic information is an essential function for sys-
tems that work in the real world.

A principal problem toward auditory scene analysis is
stream segregation [Bregman, 1990]. This segregation
means decomposing an input signal into signals of in-
dividual sound sources included in the input. However,
once multiple acoustic signals are mixed up, their segre-
gation is, so far, considered very difficult because it is an
ill-posed inverse problem.
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Nevertheless, technical and applicational importance
has attracted researchers to this field of study. Specifi-
cally, works intended to model integration of bottom-up
and top-down processing includes [Lesser et a/., 1993],
[Nakatani, et a/., 1995], and [Ellis, 1996]. These works
are characterized by their architectures based on process-
ing modules with simplified functions and communica-
tions between these modules, which we call a multi-agent
architecture. While the architecture intrinsically enjoys
modularity and scalability, quantitative background for
behavior of agents is not yet established. Practically, the
multi-agent based systems mentioned above require sub-
jectively defined rules to control interaction schemes or
to adjust parameters for modules in order to deal with
variations of sounds.

Here we propose a quantitatively principled architec-
ture, called Ipanema, designed to solve the stream segre-
gation problem for sound mixtures. The essential idea is
adaptation of agents to cope with variation of a sound.
We have developed two kinds of processing in order to
realize adaptivity: template filtering and phase tracking.
These mechanisms enable each agent to optimally, in the
least-squares sense, track the individual sound. As an ex-
ample application of the proposed architecture, a music
recognition system has been built. The evaluation tests
show that the adaptive mechanisms have significantly
improve the recognition accuracy in comparison to a con-
ventional signal-detection/separation method based on
the matched filtering.

In the following part of this paper, Section 2 focuses
the discussion on the adaptive processing, which is an es-
sential part of the architecture. Section 3 then describes
general configuration of the Ipanema architecture. After
Section 4 introduces evaluation results of the recognition
accuracy, Section 5 discusses implications of the present
work in the context of existing related approaches. Fi-
nally Section 6 concludes the paper with the expected
future work.

2 Adaptation of Templates
2.1 Template Filtering

We consider representing an input acoustic signal z{k)
with a sum of template waveforms y,(k), where n is
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Figure 1: A sound source model that consists of a tem-
plate r and an FIR filter #. Here, H modifies the wave-
form of the original template r to cope with variation of
u sound.

the index that corresponds to each sound source and k
enumerates sampling time sequences. Qur problem can
be formulated as minimization of J in the equation:

N-1 2
J=E {z(k)-—z:yn(k)} ) (1)

=0

where NV is the estimated number of sound sources, which
is not predefined, and F denotes average over time. For
yn(k}, we employ one of the simplest models as depicted
in Figure 1. Mathematically, the model can be written

as
M-1

Yalk) = Y Bo(m) ralk-m) , (2)
m={
where h is an impulse response of the filter ¥, r is a
template waveform, and M is the length of the impuise
response, that is, the number of taps when one use the
FIR filter as H.

In this formulation, one cannot predetermine the fixed
sets of h and r, because there is a diversity of waveforms
even for one specific sound source. For the example of
musical instruments, both top two waveforms, {a) and
(b}, in Figure 2 are piano sounds. Even if we ignore the
phase information and consider only spectral power rep-
resentations, the sitnation is essentially the same because
thete are a variety of spectrum patterns for one sound
source. Therefore we need an adaptive mechanism. Here
we would change h,(m). Equation {1) is rewritten using
Equation (2) as

1

N-
J=E {z{k) -3
n=0

The necessary condition for J to hald the minimum
value over h,{m) is that the values of partial derivative
8J {Bh,(mn) are O for all n and m. Using this condition, it
is straightforward to derive N x M pieces of simultanecus
linear equations as follows,

M—-1 2
3 ha(m) ra(k - m)} . (3)
m=0

N-1M-1

Y S Btk - ) ralk = m)] ha(m)

n=0 m=0

= E[ri(k —m) z(k)] , (4)

where i = {0,1,---,N — 1} and j = {0,1,---,M - 1}.
Since the pumber of equations (¥ x M} equals the num-
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Figure 2: Template filtering. (a): an input signal, which
is an F4 note of Yamaha's piano, from 160ms through
195tns from its onset. (b): the original piano template,
which is Boesendolfer’s, with the same pitch and the
same time portion as (a). Though both {a) and (b) are
piano sounds, their waveforms are different. (c), {d), and
(e): piano(=(b)), flute, and violin templates processed
by the template filtering (Number of filter taps = 160,
sampling frequency =48 kHz). The filtering modifies the
(b) to yield the waveform (¢}, which has higher correla-
tion with {a), than correlation between (d) and (a), and
correlation between (e) and (a).

ber of unknown parameters (h,(m)), the problem is re-
duced to calculation of the inverse matrix, which is a
simple algebraic operation.

2.2 Phase Tracking

The condition for the above optimization scheme to be
effective is that the fundamental frequency of each tem-
plate r is exactly the same as the one included in z. This
is because a linear filter, H, cannot change the frequency
of an input signal. Therefore we need a phase tracking
(i.e. instantaneous frequency tracking) method, which
changes the phase of template r in accordance with the
phase of the corresponding sound source signal included
in the input signal z.

If the input signal is not a mixture of multiple sounds
but a single sound, adaptive pitch tracking methods al-
ready invented can be used [Nehorai and Porat, 1986].
However, such signal processing methods are not directly
applicable to a sound mixture where multiple pitches are
present. Thus we have devised a simple algorithm to re-
alize the phase adaptation. The algorithm consists of
the following six steps.

(1) Perform frequency analysis to the input z, to extract
fundamental-frequency components. Because z may
be a mixture of multiple sound signals, there may
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Figure 3: Waveforms demonstrating function of adap-
tive phase tracking. Top: input waveform z; middle:
template without adaptive phase tracking; and bottom:
template with adaptive phase tracking. The waveform
in the bottom panel is used as ri{k) in Equation (4).

be multiple fundamental-frequency components.

{2) For each fundamental {frequency component, choose
r; that is a posesible template of a sound included in
z

(3) Apply a narrow-band bandpass filter to r;, using av-
erage fundamental frequency of each r; as the center
frequency of the bandpass filter. For each time sam-
ple, store the phase of the output waveform of the
bandpaass filter. Let p, ;(k) denote the phase at time
k.

{4) Apply the same bandpass filter, as applied to r,,
to the input 2z, and store the phase information for
each fundamental frequency as p, (k).

(5) Calculate the required time shift Ak, (k). Because
the phase difference Ap, (k) is given as

Ap,,i(k) = p, (k) = pri(K), {5)
the time shift Ak, ;(k) is calculated by
Skeu(k) = g H) (6)

where f, is the sampling frequency and f.; is the
center frequency of the applied bandpass filter.

{8) The amplitude value r; at time k is given as
ri(k) = ri( k — Ak, (k) ). (7}
Figure 3 shows how this algorithm works.

3 Ipanema Architecture

This section introduces the configuration of the sys-
tem architecture designed for calculating the scheme de-
scribed in the previous section.

3.1 Overview

A specific feature of the stream segregation problem here
is that “signals” or “noises” are not uniquely defined in
advance; that is, a stream segregation system is required
to handle multiple kinds of “signals” simultaneously®.

YThis is a contrast to speech recognition systems where it

in defined that the “signal” is & buman speech and “noises”
are the sounds other thap the speech.

1128 NEURAL NETWORKS

Ageut Nptwork
P.Bus
1T
agem & agentN
k| wes oy
Bt
i
L 2 1] J
M-Bus
I’| - ’..ﬂ.
Information Lakel
and Astivicy Lavel
—{ Imiormation  Imegriior ]
Output Symbols / Siguals / Rasidum

Figure 4: Configuration of Ipanema architecture.

Therefore it is a natural idea to build a stream segrega-
tion system by accumulating processing modules, each of
which tries to extract a specific target sound as a "sig-
nal" in its charge, regarding other sounds as "noises".
In addition, it is obvious that the modules should affect
each other in order to create a valid interpretation of
scenes.

Thus we propose a system architecture based on the
multi-agent scheme, as shown in Figure 4. As an input,
the system is fed with a sound signal that is a mixture of
signals from multiple sound sources. The current version
of the system assumes that the input is an ensemble
music signal. As outputs, the system creates a symbolic
representation that is similar to the musical scores, and
waveforms produced by agents.

The system consists of the following elements:
initiator, promoter, agent network, mediator of agents;
therefore we call the architecture Ipanema. There is also
a post-processing module called an information integra-
tor.

3.2 Processing Modules

Initiator

The initiator cuts an input signal into frames and sends
the waveform of each frame to succeeding processing.
The frame length is variable; when an input signal is
available, the initiator tries to find an onset of the sound.
Every time it finds the onsets, the initiator creates a new
frame.

Promoter

The promoter performs frequency analysis on the wave-
form sent from the initiator and extracts possibly-
multiple fundamental-frequency- components included



in the frame. Then it outputs the fundamental frequen-
cies to P-Bus (promotion bus), which is observed by all
the agents.

Agents

In our architecture, each agent in the "agent network" is
a processing module that corresponds to a single sound
source (flute, for example). Each agent has a bank of
raw-template waveforms, each of which corresponds to a
specific pitch and expression.

Each agent examines the P-Bus information to check
the possibility that the sound source corresponding to
the agent is included in the input or not. If the agent
infers that there is a possibility of being included, the
agent suggests waveform r;, applying the adaptive phase
tracking method described in Section 2 to one of the raw-
template waveforms. If the agent finds little possibility of
presence of the corresponding sound, itjust keeps silence.

Waveforms r; are written to the common place called
M-Bus (mediation bus) and passed to the mediator.
Then the agents wait for the mediator to feed back an-
swers. The answers from the mediator are sets of filter
coefficients that optimally modify r; Each agent reads
the answer from the mediator via M-Bus and then cal-
culates an FIR filter with the answered coefficients to
obtain a waveform y{. The final output of the agent is
waveform vy;, its average power E\yzi) as activity level,
and an information label that the agent is given; for ex-
ample, "Flute C4".

In the current implementation, the agents in the agent
network only communicates with the mediator. How-
ever, we expect that the extension of processing scheme
would enable communication among the agents them-
selves in the agent network through M-Bus.

Mediator

Here mediation of agents is formulated and reduced to
the problem of matrix calculation, as discussed in Section
2. Thus the mediator first receives the r, via M-Bus from
agents. Then it calculates the optimal filter coefficients
for each agent, using Equation (4). Finally the mediator
sends the coefficients back to each agent using M-Bus.

Information Integrator
The information integrator is a post processing module
that revises the symbolic output of the system. It re-
ceives an information label (e.g. Flute C4) and activity
level from each agent, and basically, the label with the
highest activity level for each note composes a symbolic
version of output of the system. It is inevitable, however,
that noises occasionally appear without higher-level in-
formation such as temporal or simultaneous relations be-
tween sounds. Thus the Bayesian networks are employed
here in order to integrate multiple sources of information.
In the current system, note transition information has
been introduced. The information integrator first con-
structs the Bayesian networks where nodes encode prob-
abilities for the information labels and links represent
temporal relation between the nodes. The integrator
then updates the probabilities for the labels based on

Figure 5: Test patterns used in note-recognition bench-
mark tests. Note that each chord includes a perfect fifth
interval (i.e. 2:3 fundamental frequencies), making the
recognition more difficult than a completely-random in-
terval pattern.

the probability propagation scheme [Pearl, 1986], inte-
grating note transition statistics stored in advance. This
paper, however, focuses on the adaptive mechanisms and
the details on the information integrator will be reported
in a separate article [Kashino and Murase, 1997].

4 Evaluations

We performed two kinds of tests to evaluate the system:
a benchmark test for musical note recognition and a sam-
ple song recognition test. In both tests, the information
integrator was turned off (i.e. the note transition infor-
mation was not integrated) in order to evaluate basic
performances of the adaptive mechanisms.

4.1 Benchmark Test

To evaluate the advantages of adaptive processing de-
scribed in Section 2, we tried to conduct the benchmark
test of note recognition used in [Kashino, et a/., 19953;
1995b].

The test signal was a three-simultaneous-notes pat-
tern, as shown in Figure 5. The pattern was composed
and created by a computer using digitized acoustic sig-
nals (16bit, 48kHz) of natural musical instruments (flute,
piano, and violin). We first recorded the single notes of
those instruments at a recording studio and stored the
waveforms on a computer. We then mixed the stored
waveforms, selecting a designated number of notes. The
selection of the notes were programmed to produce the
Class-2 note pattern, which is the term of [Kashino, et
al., 1995b], where the interval between at least two si-
multaneous notes is a perfect fifth.

We defined the recognition rate, R, as

right —wrong 1 1
R =100 ( total 2+2) e
where right is the number of correctly identified and
correctly source-separated notes, wrong is the number
of spuriously recognized (surplus) notes and incorrectly
identified notes, and total is the number of notes in
the input; this is the same definition as in the above
mentioned papers. From preliminary experiments, num-
ber of taps of the FIR filter was chosen to be 40 for
the template-adaptation-on condition. The template-
adaptation-off means that the number of taps of the FIR
filter was fixed to 1.
In this test, if one use the same waveforms as the
templates as the ones used for test signals, these wave-
forms will completely match and results will become in-
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Table 1: Results of a benchmark test indicating that
both kinds of adaptive processing discussed in Section 2
have improved the note recognition accuracy.

Template Filtering

On Off
On | T3 % 2405 | 64.7T% z49%
Phase
Tracking | OFf { 610 % 2 es% | 578D 245%

+ : 95 % confidence intervmly

Table 2: Results of a music recognition test.

Template Filtering
On Off
On 66.3 % 61.0%
Phase
Tracking | Off 52.7 % 523 %

appropriate. Therefore we used different manufactur-
ers' instruments, for example, Boesendolfer's piano and
Yamaha's piano, in making test signals and templates,
respectively.

The results are listed in Table 1, which clearly show
advantages of the processing scheme developed in Sec-
tion 2. The condition where both template adaptation
and phase tracking are turned off is equivalent to the
matched filtering, which is a conventional signal process-
ing method for signal identification.

4.2 Music Recognition Tests

We have evaluated the system using music sound signals.
Table 2 lists the note recognition rates for a sample mu-
sic: a live recording of a chamber ensemble "Auld Lang
Syne", arranged in three parts and performed by violin,
flute, and piano. A part of output of the agents network
and a part of score-like data produced by the system are
shown in Figures 6 and 7.

5 Related Work and Discussions

For the acoustic signal separation task, much work has
been done since as early as 1970's. The approach us-
ing microphone arrays has been one of major research
streams [Mitchell et a/., 1971] [Bell et a/., 1995], and the
harmonic selection is another major method [Parsons,
1976] [Nehorai and Porat, 1986]. These approaches have
been principally based on a single cue (localization of
sources or harmonicity). On the other hand, works try-
ing to integrate multiple cues for stream segregation are
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Figure 6: A part of output from agents. Ordinate: pitch
and abscissa:time. Each square stands for a recognized
note. Bars in each square denote the average powers of
the activated agents.
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Figure 7: A part of results yielded by the implemented
system. A note value recognition (e.g. quarter notes,
half notes, ...) is not considered here and all the notes
are displayed as quarter notes with a real-time scale.

recently emerging. The most closely related works to the
presented architecture are the IPUS project [Lesser et
al., 1993], Nakatani et al. [1995], Kashino et al. [1995a]
and Ellis [1996].

The IPUS is an acoustic signal understanding project
based on the blackboard architecture[Lesser et a/., 1993],
seeking adaptive processing according to the input to the
system. IPUS realized its adaptivity basically in a rule-
based strategy while the Ipanema architecture does not
employ symbolic rules for adaptation.

Nakatani et al. invented a speech segregation system
that consists of multiple processing modules called a gen-
erator and tracers [Nakatani, et a/., 1995]. The function
of the tracer is to trace harmonic structure, which is
similar to the function that the promoter in our archi-
tecture performs. However, their system does not have
an explicit mechanism to identify sound sources; it only



segregates harmonic or localized sound into signals. Our
main point is the adaptive processing to trace the specific
sound sources, investigating what the sources are.

Ellis proposed a prediction-driven architecture for an
auditory scene analysis system [Ellis, 1996], where con-
text sensitivity in scene interpretation is realized. |In
our current implementation of Ipanema, musical context
does not affect the template adaptation scheme; the con-
text is utilized in the information integrator.

The studies toward music recognition includes [Mont-
Reynaud, 1985], [Chafe et a/., 1985] and [Brown and
Cooke, 1994]. However, automatic music transcription
systems or music stream segregation systems which can
deal with given ensemble music played by multiple musi-
cal instruments with a reasonable accuracy have not yet
been realized. A quantitative architecture was proposed
by Kashino et al. [1995a], in which a Bayesian proba-
bility scheme was applied. However, their architecture
does not yet include adaptive processing and has been
applied only to artificial performances synthesized by a
sampler [Kashino, et ai, 1995a]. The system presented
here, on the other hand, was designed for, and tested by,
real performances rather than sampler performances.

6 Conclusion

We have presented a new system architecture designed
for auditory stream segregation. To cope with a variety
of sounds that appear in the real world, two mechanisms,
template filtering and phase tracking, have been devised.
In implementation, we have taken advantage of modu-
larity and scalability of the multi-agents approach. The
adaptivities realized in this paper enable each agent to
optimally, in the least-squares sense, track the individual
sound included in input sound signals.

As an example application of the proposed architec-
ture, we have built a music recognition system that rec-
ognizes instrument names and pitches of the notes in-
cluded in ensemble music performances. Experimental
results show that the adaptive mechanisms significantly
improve the recognition accuracy in comparison to the
matched-filter-based processing, which is a conventional
signal detection/separation method.

This paper has focused on the adaptive mechanisms
and left the information integrator, the post-processing
module, almost untouched. However, information inte-
gration is an important issue to be addressed: our pre-
liminary tests have shown that integration of the statis-
tical information of note transitions improves the note
recognition rate up to approximately 75 % in the same
music recognition test as used here [Kashino and Murase,
1997]. To obtain further accuracy, we anticipate that
sound source models that explicitly model variations of
the sources would be necessary.
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