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Abst rac t 

A principal problem of auditory scene analy­
sis is stream segregation: decomposing an in­
put acoustic signal into signals of individual 
sound sources included in the input. While 
existing signal processing algorithms cannot 
properly solve this inverse problem, a mul t i -
agent-based architecture has been considered to 
be a promising methodology in its modularity 
and scalability. However, most attempts made 
so far depend on subjectively defined rules to 
deal wi th variabil ity of sounds. Here we pro-
pose a quantitatively principled architecture in 
agent interaction by formulating the problem 
as least-squares optimization. In this architec­
ture, adaptation of the agents is the essential 
idea. We have developed two kinds of pro­
cessing to realize adaptivity: template filtering 
and phase tracking. These mechanisms enable 
each agent to optimally, in the least-squares 
sense, track the individual sound. As an ex­
ample application of the proposed architecture, 
we have built a music recognition system that 
recognizes instrument names and pitches of the 
notes included in ensemble music performances. 
Experimental results show that these adaptive 
mechanisms significantly improve the recogni­
tion accuracy. 

1 In t roduc t i on 
In recent years scene analysis based on acoustic infor­
mation, termed auditory scene analysis, has received a 
renewal of interest. Recognizing external events based 
on acoustic information is an essential function for sys­
tems that work in the real world. 

A principal problem toward auditory scene analysis is 
stream segregation [Bregman, 1990]. This segregation 
means decomposing an input signal into signals of in­
dividual sound sources included in the input. However, 
once mult iple acoustic signals are mixed up, their segre­
gation is, so far, considered very difficult because it is an 
ill-posed inverse problem. 

Nevertheless, technical and applicational importance 
has attracted researchers to this field of study. Specifi­
cally, works intended to model integration of bottom-up 
and top-down processing includes [Lesser et a/., 1993], 
[Nakatani, et a/., 1995], and [Ellis, 1996]. These works 
are characterized by their architectures based on process­
ing modules wi th simplified functions and communica­
tions between these modules, which we call a multi-agent 
architecture. While the architecture intrinsically enjoys 
modularity and scalability, quantitative background for 
behavior of agents is not yet established. Practically, the 
multi-agent based systems mentioned above require sub­
jectively defined rules to control interaction schemes or 
to adjust parameters for modules in order to deal wi th 
variations of sounds. 

Here we propose a quantitatively principled architec­
ture, called Ipanema, designed to solve the stream segre­
gation problem for sound mixtures. The essential idea is 
adaptation of agents to cope with variation of a sound. 
We have developed two kinds of processing in order to 
realize adaptivity: template filtering and phase tracking. 
These mechanisms enable each agent to optimally, in the 
least-squares sense, track the individual sound. As an ex­
ample application of the proposed architecture, a music 
recognition system has been bui l t . The evaluation tests 
show that the adaptive mechanisms have significantly 
improve the recognition accuracy in comparison to a con­
ventional signal-detection/separation method based on 
the matched filtering. 

In the following part of this paper, Section 2 focuses 
the discussion on the adaptive processing, which is an es­
sential part of the architecture. Section 3 then describes 
general configuration of the Ipanema architecture. After 
Section 4 introduces evaluation results of the recognition 
accuracy, Section 5 discusses implications of the present 
work in the context of existing related approaches. F i ­
nally Section 6 concludes the paper wi th the expected 
future work. 

2 Adap ta t i on of Templates 
2.1 Template Fi l ter ing 
We consider representing an input acoustic signal z{k) 
with a sum of template waveforms yn(k), where n is 
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ber of unknown parameters (h n (m) ) , the problem is re-
duced to calculation of the inverse matr ix, which is a 
simple algebraic operation. 

2.2 Phase Track ing 
The condition for the above optimization scheme to be 
effective is that the fundamental frequency of each tem­
plate r is exactly the same as the one included in z. This 
is because a linear filter, H, cannot change the frequency 
of an input signal. Therefore we need a phase tracking 
(i.e. instantaneous frequency tracking) method, which 
changes the phase of template r in accordance with the 
phase of the corresponding sound source signal included 
in the input signal z. 

If the input signal is not a mixture of multiple sounds 
but a single sound, adaptive pitch tracking methods al­
ready invented can be used [Nehorai and Porat, 1986]. 
However, such signal processing methods are not directly 
applicable to a sound mixture where multiple pitches are 
present. Thus we have devised a simple algorithm to re­
alize the phase adaptation. The algorithm consists of 
the following six steps. 

(1) Perform frequency analysis to the input z, to extract 
fundamental-frequency components. Because z may 
be a mixture of multiple sound signals, there may 
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Figure 4: Configuration of Ipanema architecture. 

Therefore it is a natural idea to bui ld a stream segrega­
tion system by accumulating processing modules, each of 
which tries to extract a specific target sound as a "sig­
nal" in its charge, regarding other sounds as "noises". 
In addit ion, it is obvious that the modules should affect 
each other in order to create a valid interpretation of 
scenes. 

Thus we propose a system architecture based on the 
multi-agent scheme, as shown in Figure 4. As an input, 
the system is fed wi th a sound signal that is a mixture of 
signals from multiple sound sources. The current version 
of the system assumes that the input is an ensemble 
music signal. As outputs, the system creates a symbolic 
representation that is similar to the musical scores, and 
waveforms produced by agents. 

The system consists of the following elements: 
init iator, promoter, agent network, mediator of agents; 
therefore we call the architecture Ipanema. There is also 
a post-processing module called an information integra­
tor. 

3 .2 P r o c e s s i n g M o d u l e s 

I n i t i a t o r 
The init iator cuts an input signal into frames and sends 
the waveform of each frame to succeeding processing. 
The frame length is variable; when an input signal is 
available, the init iator tries to find an onset of the sound. 
Every time it finds the onsets, the ini t iator creates a new 
frame. 

P r o m o t e r 
The promoter performs frequency analysis on the wave-
form sent from the init iator and extracts possibly-
mult iple fundamental-frequency- components included 
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in the frame. Then it outputs the fundamental frequen­
cies to P-Bus (promotion bus), which is observed by all 
the agents. 

Agen t s 
In our architecture, each agent in the "agent network" is 
a processing module that corresponds to a single sound 
source (flute, for example). Each agent has a bank of 
raw-template waveforms, each of which corresponds to a 
specific pitch and expression. 

Each agent examines the P-Bus information to check 
the possibility that the sound source corresponding to 
the agent is included in the input or not. If the agent 
infers that there is a possibility of being included, the 
agent suggests waveform ri, applying the adaptive phase 
tracking method described in Section 2 to one of the raw-
template waveforms. If the agent finds l i t t le possibility of 
presence of the corresponding sound, it just keeps silence. 

Waveforms rt are writ ten to the common place called 
M-Bus (mediation bus) and passed to the mediator. 
Then the agents wait for the mediator to feed back an­
swers. The answers from the mediator are sets of filter 
coefficients that optimally modify r i Each agent reads 
the answer from the mediator via M-Bus and then cal­
culates an F IR filter wi th the answered coefficients to 
obtain a waveform y{. The final output of the agent is 
waveform yi, its average power E\y2

i) as activity level, 
and an information label that the agent is given; for ex­
ample, "Flute C4". 

In the current implementation, the agents in the agent 
network only communicates wi th the mediator. How­
ever, we expect that the extension of processing scheme 
would enable communication among the agents them­
selves in the agent network through M-Bus. 

M e d i a t o r 
Here mediation of agents is formulated and reduced to 
the problem of matrix calculation, as discussed in Section 
2. Thus the mediator first receives the r, via M-Bus from 
agents. Then it calculates the optimal filter coefficients 
for each agent, using Equation (4). Finally the mediator 
sends the coefficients back to each agent using M-Bus. 

I n f o r m a t i o n I n t e g r a t o r 
The information integrator is a post processing module 
that revises the symbolic output of the system. It re­
ceives an information label (e.g. Flute C4) and activity 
level from each agent, and basically, the label wi th the 
highest activity level for each note composes a symbolic 
version of output of the system. It is inevitable, however, 
that noises occasionally appear without higher-level in­
formation such as temporal or simultaneous relations be­
tween sounds. Thus the Bayesian networks are employed 
here in order to integrate multiple sources of information. 

In the current system, note transition information has 
been introduced. The information integrator first con­
structs the Bayesian networks where nodes encode prob­
abilities for the information labels and links represent 
temporal relation between the nodes. The integrator 
then updates the probabilities for the labels based on 

Figure 5: Test patterns used in note-recognition bench­
mark tests. Note that each chord includes a perfect fifth 
interval (i.e. 2:3 fundamental frequencies), making the 
recognition more difficult than a completely-random in­
terval pattern. 

the probability propagation scheme [Pearl, 1986], inte­
grating note transition statistics stored in advance. This 
paper, however, focuses on the adaptive mechanisms and 
the details on the information integrator wi l l be reported 
in a separate article [Kashino and Murase, 1997]. 

4 Evaluations 
We performed two kinds of tests to evaluate the system: 
a benchmark test for musical note recognition and a sam­
ple song recognition test. In both tests, the information 
integrator was turned off (i.e. the note transition infor­
mation was not integrated) in order to evaluate basic 
performances of the adaptive mechanisms. 

4 . 1 B e n c h m a r k T e s t 
To evaluate the advantages of adaptive processing de­
scribed in Section 2, we tried to conduct the benchmark 
test of note recognition used in [Kashino, et a/., 1995a; 
1995b]. 

The test signal was a three-simultaneous-notes pat­
tern, as shown in Figure 5. The pattern was composed 
and created by a computer using digitized acoustic sig­
nals (16bit, 48kHz) of natural musical instruments (flute, 
piano, and violin). We first recorded the single notes of 
those instruments at a recording studio and stored the 
waveforms on a computer. We then mixed the stored 
waveforms, selecting a designated number of notes. The 
selection of the notes were programmed to produce the 
Class-2 note pattern, which is the term of [Kashino, et 
a/., 1995b], where the interval between at least two si­
multaneous notes is a perfect fifth. 

We defined the recognition rate, R, as 

where right is the number of correctly identified and 
correctly source-separated notes, wrong is the number 
of spuriously recognized (surplus) notes and incorrectly 
identified notes, and total is the number of notes in 
the input; this is the same definition as in the above 
mentioned papers. From preliminary experiments, num­
ber of taps of the F IR filter was chosen to be 40 for 
the template-adaptation-on condition. The template-
adaptation-off means that the number of taps of the F IR 
filter was fixed to 1. 

In this test, if one use the same waveforms as the 
templates as the ones used for test signals, these wave-
forms wil l completely match and results wi l l become in-
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Table 1: Results of a benchmark test indicating that 
both kinds of adaptive processing discussed in Section 2 
have improved the note recognition accuracy. 

Table 2: Results of a music recognition test. 

appropriate. Therefore we used different manufactur­
ers' instruments, for example, Boesendolfer's piano and 
Yamaha's piano, in making test signals and templates, 
respectively. 

The results are listed in Table 1, which clearly show 
advantages of the processing scheme developed in Sec­
tion 2. The condition where both template adaptation 
and phase tracking are turned off is equivalent to the 
matched filtering, which is a conventional signal process­
ing method for signal identification. 

4.2 Mus i c Recogn i t ion Tests 
We have evaluated the system using music sound signals. 
Table 2 lists the note recognition rates for a sample mu­
sic: a live recording of a chamber ensemble "Auld Lang 
Syne", arranged in three parts and performed by viol in, 
flute, and piano. A part of output of the agents network 
and a part of score-like data produced by the system are 
shown in Figures 6 and 7. 

5 Related Work and Discussions 
For the acoustic signal separation task, much work has 
been done since as early as 1970's. The approach us­
ing microphone arrays has been one of major research 
streams [Mitchell et a/., 197l] [Bell et a/., 1995], and the 
harmonic selection is another major method [Parsons, 
1976] [Nehorai and Porat, 1986]. These approaches have 
been principally based on a single cue (localization of 
sources or harmonicity). On the other hand, works t ry­
ing to integrate multiple cues for stream segregation are 

Figure 6: A part of output from agents. Ordinate: pitch 
and abscissa:time. Each square stands for a recognized 
note. Bars in each square denote the average powers of 
the activated agents. 

Figure 7: A part of results yielded by the implemented 
system. A note value recognition (e.g. quarter notes, 
half notes, ...) is not considered here and all the notes 
are displayed as quarter notes wi th a real-time scale. 

recently emerging. The most closely related works to the 
presented architecture are the IPUS project [Lesser et 
a/., 1993], Nakatani et al. [1995], Kashino et al. [1995a] 
and Ellis [1996]. 

The IPUS is an acoustic signal understanding project 
based on the blackboard architecture[Lesser et a/., 1993], 
seeking adaptive processing according to the input to the 
system. IPUS realized its adaptivi ty basically in a rule-
based strategy while the Ipanema architecture does not 
employ symbolic rules for adaptation. 

Nakatani et al. invented a speech segregation system 
that consists of multiple processing modules called a gen­
erator and tracers [Nakatani, et a/., 1995]. The function 
of the tracer is to trace harmonic structure, which is 
similar to the function that the promoter in our archi­
tecture performs. However, their system does not have 
an explicit mechanism to identify sound sources; it only 
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segregates ha rmon i c or local ized sound i n t o signals. O u r 
m a i n po in t i s t he adap t i ve processing to t race the specific 
sound sources, i nves t iga t ing w h a t t he sources are. 

E l l i s proposed a p red ic t i on -d r i ven a rch i tec tu re for an 
a u d i t o r y scene analysis system [El l is , 1996], where con­
t e x t sens i t i v i t y in scene i n t e r p r e t a t i o n is real ized. In 
ou r cu r ren t i m p l e m e n t a t i o n o f I panema , mus ica l contex t 
does no t affect t he t emp la te a d a p t a t i o n scheme; the con­
t e x t i s u t i l i zed in t h e i n f o r m a t i o n in tegra to r . 

T h e studies t o w a r d music recogn i t ion inc ludes [Mon t -
R e y n a u d , 1985], [Chafe et a/., 1985] and [B rown and 
Cooke, 1994]. However , a u t o m a t i c music t r ansc r i p t i on 
systems or music s t ream segregat ion systems wh ich can 
deal w i t h g iven ensemble music p layed by m u l t i p l e mus i ­
cal i n s t r u m e n t s w i t h a reasonable accuracy have not yet 
been rea l ized. A q u a n t i t a t i v e a rch i tec tu re was proposed 
by K a s h i n o et al. [1995a], in wh i ch a Bayes ian proba­
b i l i t y scheme was app l ied . However , the i r a rch i tec tu re 
does not ye t inc lude adap t i ve processing and has been 
app l ied on l y to a r t i f i c ia l per formances synthesized by a 
sampler [Kash ino , et ai, 1995a]. T h e system presented 
here, on the o the r h a n d , was designed for , and tested by, 
real per formances ra ther t h a n sampler per formances. 

6 Conclusion 
We have presented a new system a rch i tec tu re designed 
for a u d i t o r y s t ream segregat ion. To cope w i t h a var ie ty 
o f sounds t h a t appear in the real w o r l d , t w o mechanisms, 
t e m p l a t e f i l te r ing and phase t r a c k i n g , have been devised. 
In i m p l e m e n t a t i o n , we have taken advantage o f m o d u ­
l a r i t y and sca lab i l i t y o f t he mu l t i -agen ts approach . T h e 
adap t i v i t i es real ized in th i s paper enable each agent to 
o p t i m a l l y , in t he least-squares sense, t rack t he i n d i v i d u a l 
sound inc luded in i n p u t sound signals. 

As an examp le app l i ca t i on o f the proposed archi tec­
t u r e , we have b u i l t a music recogn i t ion system tha t rec­
ognizes i n s t r u m e n t names and pi tches of the notes i n ­
c luded in ensemble music per formances. E x p e r i m e n t a l 
resul ts show t h a t t he adap t i ve mechanisms s ign i f icant ly 
improve the recogn i t ion accuracy in compar ison to the 
matched- f i l te r -based processing, wh ich is a convent iona l 
s ignal de tec t i on / sepa ra t i on m e t h o d . 

T h i s paper has focused on the adap t i ve mechanisms 
and lef t t he i n f o r m a t i o n in teg ra to r , t he post-processing 
modu le , a lmost un touched . However , i n f o r m a t i o n in te­
g r a t i o n is an i m p o r t a n t issue to be addressed: our pre­
l i m i n a r y tests have shown t h a t i n teg ra t i on o f the stat is­
t i ca l i n f o r m a t i o n o f note t rans i t i ons improves the note 
recogn i t i on ra te up to app rox ima te l y 75 % in the same 
music recogn i t ion test as used here [Kash ino and Murase , 
1997]. To o b t a i n f u r t h e r accuracy, we an t i c ipa te t h a t 
sound source models t h a t exp l i c i t l y mode l var ia t ions o f 
t he sources w o u l d be necessary. 
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