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Abs t rac t 

We propose a solution technique for schedul­
ing and constraint satisfaction problems that 
combines backtracking-free constructive meth­
ods and local search techniques. Our technique 
incrementally constructs the solution, perform­
ing a local search on part ial solutions each time 
the construction reaches a dead-end. Local 
search on the space of partial solutions is guided 
by a cost function based on three components: 
the distance to feasibility of the partial solu­
t ion, a look-ahead factor, and (for optimization 
problems) a lower bound of the objective func­
t ion. In order to improve search effectiveness, 
we make use of an adaptive relaxation of con­
straints and an interleaving of different look-
ahead factors. The new technique has been 
successfully experimented on two real-life prob­
lems: university course scheduling and sport 
tournament scheduling. 

1 I n t r oduc t i on 
The solution techniques for scheduling and constraint 
satisfaction problems appearing in the recent AI litera­
ture can be roughly divided into two main branches. On 
one side, constructive methods build the solution step 
by step by adding at each step a new piece to the partial 
solution constructed so far. Each step generally con­
sists in assigning a value to a variable out of its domain. 
On the other side, selective methods explore the search 
space composed only by complete solutions, in which all 
variables are assigned a value. 

Constructive algorithms usually involve some heuris­
tics for making the most promising choice at each step; 
such heuristics generally include some form of look-ahead 
mechanism, which takes into account the possible reper­
cussions of the current choice on future steps. If the 
construction reaches a dead-end, i.e. there is no possible 
value for the current variable, a different part ial solution 
is considered. In particular, backtracking-based meth­
ods, e.g. forward checking and backjumping [Prosser, 
1993], may involve the exhaustive exploration of the 

search space and are usually complete] that is, they al­
ways find a solution, if it exists, and they find the op­
t imal one, for optimization problems. Backtracking-free 
constructive algorithms instead make use only of some 
limited change in the partial solution, based on heuris­
tics, in order to go around dead-end situations. 

Among selective methods, one main branch of inves­
tigation concerns local search techniques. A local search 
algorithm, starting from an init ial solution, which can 
be obtained wi th some other technique or generated at 
random, enters in a loop that navigates the search space, 
stepping from one solution to one of its neighbors. The 
neighborhood is composed by the solutions that can be 
obtained by a local change from the current solution. 
Changes, called moves, are selected based on the num­
ber of violated constraints, i.e. the so-called distance to 
feasibility, and —for optimization problems— based also 
on the objective function of the problem. The structure 
of moves depends on the specific problem; for example it 
can be the change of the value of one single variable or 
the swap of the values of two different variables. Most 
common local search procedures are hill climbing, simu­
lated annealing, and tabu search. 

In this paper, we propose a technique that com­
bines constructive backtracking-free algorithms and local 
search methods. Our technique acts like a constructive 
one unti l a dead-end is reached. At this point, it per­
forms a local search phase which makes local changes on 
the current partial solution. Thereafter, the construction 
continues up to the next dead-end. The whole procedure 
stops either when a full solution is reached (positive an­
swer) or when a predetermined number of local search 
phases have being accomplished (negative answer). 

The idea of revising the solution while constructing it 
is definitively not new. In fact, it is both long-standing 
and well established; for example, it is known in expert 
system literature under the name of propose and revise. 
Nevertheless, our approach differs from previous ones in 
at least two aspects: 

1. It revises the part ial solution by making use of a 
ful l run of local search, instead of a fixed number of 
changes. In addit ion, it relies on well-studied search 
procedures, whose good behavior has been verified 
in various applications, rather than using only ad 
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hoc rules, designed only for a specific problem. 

2. Local changes are selected wi th the additional ob­
jective of improving the possibility of the partial 
solution to be completed. That is, local search is 
driven not only by the feasibility (and optimality) 
of the current partial solution, but also by what we 
call the look-ahead factor. Furthermore, in order 
to make local search effective, the respective weight 
given to the three different components of the cost 
function that guides local search —feasibility, opti­
mality, and look-ahead— is dynamically changed. 

The paper is organized as follows. Section 2 intro­
duces our search technique and its relevant features. 
Sections 3 and 4 il lustrate our case studies, namely the 
course t imetabling problem and the tournament schedul­
ing problem; moreover, they discuss the application of 
the technique to these problems and the related experi­
mental results. Section 5 discusses related work. Finally, 
conclusions are drawn in Section 6. 

2 The technique 

We assume, for simplicity, that the problem consists in 
assigning to a set of variables , wi th as­
sociated domains (for 
i = 1 , . . . , n ) , subject to a set of constraints. The prob­
lem may also include an objective function to minimize. 
Thus, our technique is applicable to both search and op­
timization problems. 

Our algorithm is shown in figure 1. Intuitively, it is a 
backtracking-free constructive method which performs a 
local search whenever it reaches a dead-end. 

A concrete form of the algorithm is obtained by spec­
ifying: (i) the variable ordering procedure (SelectVari-
able), (ii) the value selection procedure (AssignValue), 
(iii) the local search procedure and the neighborhood re­
lation (SelectMove), and (iv) the score function that we 
use to drive the local search (SelectMove and Improves). 

The choices involved at points (i)-(iv) depend on the 
problem under investigation. We now discuss some gen­
eral guidelines which can be stated for all problems. 

2.1 Score Func t i on 
In general, local search techniques rely on a score func­
tion that assesses the quality of each solution. In search 
problems, such function counts the number of constraint 
violations, thus measuring the distance to feasibility. For 
optimization problems, it also takes into account the ob­
jective function of the problem. Therefore, in the gen­
eral case, the score function consists of a weighted sum 
of these two components. 

In our case, the function also includes a look-ahead 
factor (see Section 2.3). Furthermore, being computed 
on partial solutions, only constraints regarding the in­
stantiated variables are taken into account. For the same 
reason, the objective function is not computed exactly, 
but it is generally estimated using a lower bound (in a 
similar way as branch-and-bound procedures). 

Figure 1: The abstract algorithm 

Therefore, our score function is a weighted sum of 
three components: the number of violations of con­
straints associated with the instantiated variables, the 
upper bound of the objective function, and the look-
ahead factor. 

2.2 Adap t i ve Re laxa t ion of Const ra in ts 
The choice of the weights of the score function is crucial 
for the effectiveness of local search. For instance, the 
use of a very high weight for constraint violations en­
sures that the number of infeasibility is never increased. 
However, such a choice has the drawback of making the 
search to be easily trapped on local minima. To over­
come this problem, Gendreau et al. [1994] employ an 
adaptive relaxation of constraints. That is, the weight of 
constraints is adjusted based on the number of their vi­
olations in the most recent iterations. More specifically, 
for each kind of constraints, if there are no violations of 
constraints of that kind for a given number of iterations 
its weight is reduced; conversely, if all solutions have that 
kind of infeasibility, then its weight is increased. 

With in our framework, assigning a fixed high value 
to feasibility would result in moving on feasible partial 
solutions, since search starts from a feasible one. Ex­
periments show that the navigation through only feasi­
ble partial solutions does not effectively visit the search 
space, and the problem on being trapped on local min­
ima is extremely critical. Therefore, we employ the 
above idea for our local search phase, and we dynam­
ically adjust the weight of the constraint violations com­
ponent of the score function. In details, if all solutions 
are feasible w.r.t. that component for k consecutive it-
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erations, then the weight of the component is halved; 
conversely, if all k consecutive solutions are infeasible, 
then the weight is doubled (k = 10 in our experiments). 

2.3 L o o k - A h e a d Factor 
Many constructive techniques guide variable selection 
and/or value assignment by using a look-ahead mech­
anism which estimates the likelihood of the remaining 
subproblem to be solvable (see e.g. [Gent et a/., 1996]). 

Frost and Dechter [1995] experiment wi th four dif­
ferent look-ahead heuristics, and they show that min-
conflicts (MC) is the most effective one. MC consists in 
simply summing up the number of available values for 
all the uninstantiated variables. 

We consider MC and a variant of i t , in which the sum 
is not extended to all the remaining variables, but only 
to a l imited number of them, specifically those that are 
going to be scheduled in the immediate future. We call 
this heuristics short-term min-conflicts (SMC). 

We therefore consider two forms of look-ahead factor: 
MC and SMC. Our experiments in Section 3.3 show that 
the interleaving of the two heuristics gives the most ef­
fective results. Intuit ively, we start each local search 
phase by using the "broad-minded" MC, and we move 
to the "narrow-minded" SMC if the previous one does 
not succeed to find a value for the next variables to be 
scheduled. 

3 Course T ime tab l i ng Prob lem 
The course t imetabling problem consists in the weekly 
scheduling for all the lectures of a set of university 
courses in a given set of classrooms, avoiding the overlaps 
of lectures having common students. We consider the ba­
sic search problem (see [Schaerf, 1997]) which has an in­
teger programming formulation wi th linear constraints. 
Many variants of this problem have been proposed in the 
l i terature, which involve more complex constraints and 
usually consider an objective function to minimize. 

3.1 P r o b l e m D e f i n i t i o n 
There are q courses K1,,..,Kq, and each course Ki con­
sists of ki lectures, and p periods l..p. For all 
all lectures must be assigned to a period k in 
such a way that the following constraints are satisfied: 

Con f l i c t s : There are c curricula S 1 , . . . ,SC , which are 
groups of courses that have common students. Lec­
tures of courses in must be all scheduled at dif­
ferent times, for each 

A v a i l a b i l i t i e s : There is an availability binary matrix 
A of size q x p. If =1 then lectures of course i 
cannot be scheduled at period j. 

R o o m s : There are r rooms available. At most r lectures 
can be scheduled at period k, for each 

The problem can be shown NP-complete through a 
simple reduction from the graph coloring problem. 

3.2 Application of the Technique 
In order to apply our technique to this problem, we con­
sider each lecture as a variable whose value represents 
the period at which the lecture takes place. The number 
of variables is therefore equal to and they all 
have the same domain I..p. 

Each constructive step consists in assigning a lecture 
to a period. A local move consists in rescheduling a 
lecture in a different period to which no other lecture 
of the same course is assigned. During construction we 
enforce all constraints, whereas during search we include 
the count of all their violations in the score function. 

Courses are ordered statically based on predetermined 
criteria. In particular, they are grouped based on the 
curricula, and groups are ordered by their size and their 
number of availabilities. We do not use any specific strat­
egy for value selection, but we simply assign the first fea­
sible one, thus delegating all look-ahead activity to the 
local search phase. Moreover, being a search problem, 
there is no objective function to minimize. 

Regarding the look-ahead factor, the MC heuristic re­
sults in counting the number of available periods for all 
unscheduled lectures, whereas SMC counts them only for 
the next course to be scheduled. 

In addition, if a lecture of a given course cannot be 
scheduled, all lectures of that course are removed and 
the search works on the part ial solution made only by 
the lectures of the courses completely scheduled. 

3.3 Experimental Results 
We experiment on problems of two different sizes. We 
created two test examples: Test 1 has 20 courses (130 lec­
tures), 5 rooms and 30 periods; Test 2 has 100 courses 
(580 lectures), 10 rooms and 30 periods. Conflicts among 
courses in the test examples are taken from real cases. 
In order to create different problem instances, availabili­
ties and some other conflicts are assigned randomly, sti l l 
keeping the problem solvable. 

We have implemented three versions of our technique 
based on three different local search techniques: random 
hil l climbing (RHC), steepest hi l l climbing (SHC), and 
min-conflict hi l l climbing (MCHC) [Minton et a/., 1992]. 

RHC draws at each iteration a random move, SHC vis­
its at each iteration the whole neighborhood looking for 
the move that gives the best improvement (arbitrari ly 
breaking ties), MCHC looks randomly for a lecture that 
causes at least one conflict and moves it to the period in 
which it creates the minimum number of conflicts (arbi­
trar i ly breaking ties). A l l three methods accept the se­
lected move only if the cost function is improved or is left 
at the same value. This means that they never perform 
worsening moves, although they can perform sideways 
moves. Therefore, they have the capability of navigat­
ing plateaus, whereas they are all trapped by strict local 
minima. For all three of them the stop criterion is based 
on the number of iterations without improving the value 
of the best solution. SHC stops also when it reaches a 
strict local minimum, the other two methods don't do it 
because they do not recognize such a situation. 
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We experiment wi th both the pure local search meth­
ods and our technique that combines them with con­
structive methods. We make use of adaptive relaxation 
of constraints, in such a way that, the three types of 
constraints —availabilities, conflicts, and rooms— are 
associated wi th an independent dynamic weight which 
varies as explained in Section 2.2. 

More sophisticated local search techniques, like tabu 
search [Schaerf, 1996b], also accept worsening moves and 
allow one to escape from local minima (without resort­
ing to relaxation). We do not discuss their use in this 
paper because their study is sti l l on-going; however, pre­
l iminary results wi th tabu search did not give any im­
provement on those presented in this section. 

We have also implemented two complete backtrack­
ing methods: a basic chronological backtracking (CB) 
and a forward checking wi th dynamic variable selection 
mechanisms (FC). 

We create 1000 solvable instances for Test 1 and 100 
for Test 2. We fix the running time (10 seconds for in­
stances of Test 1 and 200 seconds for instances of Test 
2), and we performe as many iterations as possible in 
that time-frame. 

For the look-ahead factor, we use an interleaving of 
the two methods, as mentioned in Section 2.3. In par­
ticular, we use MC for the first time the construction 
stops at a level; if after local search it is sti l l not possi­
ble to schedule all lectures of the next course, for all the 
subsequent runs at the same level we use SMC. 

Table 1 shows the percentage of the instances solved 
for each method. The results highlight a clear dominance 
of combined methods over pure local search ones. They 
also show that the "winning" algorithm for this prob­
lem among local search methods is MCHC, and among 
combined ones is Construction + MCHC. It also shows 
that SHC works quite well for the Test 1, but not for 
Test 2. This is due to the fact that for large instances 
the exploration of the ful l neighborhood is generally too 
time consuming. Both of the backtracking-based meth­
ods weren't able to produce a solution even in 48 hours 
for some instances of Test 1. 

Tables 2 and 3 focus on specific features of the tech­
nique (using Construction + MCHC). 

Table 2 illustrates the importance of two types of look-
ahead mechanisms. The first entry shows the result-
without any look-ahead factor. The subsequent two en­
tries regard each method used in isolation. The last line 
is repeated from Table 1. It emerges that MC perfor­
mances deteriorate increasing the size of the instance, 
whereas performances of SMC are not negatively influ­
enced by the number of courses. 

Table 3 focuses on the importance of adaptive relax­
ation. The first line shows the results without adaptive 
relaxation, wi th a fixed high weight for infeasibilities. 
The second line shows the results using one single dy­
namic weight instead of three independent ones. Ta­
ble 3 shows that adaptive relaxation is absolutely nec­
essary, whereas for this specific problem, using indepen­
dent weight gives only a l imited advantage. 

Table 1: General results 

Table 2: Look-Ahead Strategy Results 

4 Tournament Scheduling 
We consider the problem of scheduling the matches of 
a round robin tournament. The problem consists in as-
signing matches to rounds in such a way that every team 
matches every other one, all teams play every round with 
a different opponent (either home or away), and various 
other constraints are satisfied. 

Constraints involve the availability of stadia in given 
rounds, forbidden rounds for specific matches, and shar­
ing of stadia. For the sake of brevity, we do not 
supply their complete definition, that can be found in 
iSchreuder, 1992]. We just mention that constraints are 
split into hard (requirements) and soft (wishes) ones: 
The former ones must be necessarily satisfied by the so­
lution, the latter ones instead can be violated, and they 
contribute, with their associated penalty, to the objective 
function to minimize. 

This problem is tackled relying on a so-called tour­
nament pattern, which is a complete tournament where 
teams are replaced by numbers. Given a pattern, the 
problem consists in finding the assignment of real teams 
to distinct numbers in the pattern that satisfies hard 
constraints and minimizes the total penalty associated 

Table 3: Adaptive Relaxation Results 
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with soft constraints. This problem has been proved 
NP-complete in [Schaerf, 1996a]. 

Schreuder [1992] developed an incomplete algorithm 
that solves an instance of this problem wi th 18 teams in 
about 2 minutes of cpu t ime. Instances of the same size 
are solved optimally using a diagnostic system in [Bakker 
et a/., 1993] in 25 hours. Using a specialized depth-first 
branch-and-bound algorithm, Schaerf [1996a] solves op­
t imally instances of such size in about 20 minutes. 

Although each instance can be solved optimally in rea­
sonable t ime, in order to solve a real case, the run must 
be repeated several times so as to get sensibility on con­
straints and penalties. Therefore, it is necessary to have 
a fast method, that allows the user to play interactively 
wi th the constraints and the corresponding solutions. 

A local search technique can be used to this aim. How­
ever, we notice that in real cases, there are a few teams 
that are highly constrained, and therefore a few assign­
ments that are crit ical. The problem thus shows a high-
degree of asymmetry. In asymmetric cases a constructive 
method that deals in the beginning wi th the most diffi­
cult assignments is more promising than a local search 
method. In fact, experiments in Section 4.2 confirm that 
our technique outperforms hi l l climbing methods. 

4.1 A p p l i c a t i o n 
Given an instance wi th n teams, a solution to this prob­
lem is an assignment of a distinct number (i.e. a value) 
in l..n to each team (i.e. a variable). A constructive 
step consists in choosing a new team and assigning to 
it an unused number. Numbers are assigned based on 
an upper bound of the objective function, which is ob­
tained summing the penalty associated with the soft con­
straints on already scheduled teams and an estimation of 
the penalty of the other constraints. A local move on a 
complete solution consists in swapping the assignments 
given to two different teams. For partial solutions, a 
move consists in assigning a different unused number to 
the selected team. 

Regarding the look-ahead factor, the MC function is 
the sum of the available numbers among the unused ones 
for each of the remaining teams. The SMC counts only 
the available numbers for the next team. The look-ahead 
factor is assigned a high weight w.r.t. soft constraints. 

Teams are statically split into two groups: (i) top 
teams: the strongest teams, upon whose matches var­
ious kinds of constraints exists; (ii) regular teams, upon 
which regular availability constraints are posed. Inside 
each group, teams are also statically grouped based on 
the effective number of constraints in the instance under 
examination. 

4.2 E x p e r i m e n t a l Resul ts 
In the same way as Section 3, we consider data from a 
real case (18 teams) to which we apply some random 
perturbations in order to obtain different instances. 

Table 4 shows the results for 1000 instances. For each 
method parameters are set in such a way that each run 
lasts for 10 seconds on each instance. 

Table 4: General results 

These results show a clear dominance of our technique 
upon hi l l climbing methods for this problem. It also 
shows, however, that the constructive techniques do not 
necessarily find better solutions. This is due to the fact 
that they focus more on the look-ahead factor, rather 
then on the objective function. 

5 Related Work 
Zhang and Zhang [1996] combine constructive and local 
search methods in a different way. Their method finds 
a partial solution using local search, and then explores 
all its possible completions using a backtracking-based 
algorithm. Therefore, they also make use of local search 
on partial solutions, but they have no notion similar to 
our look-ahead factor. 

Glover et al. [1996] use a similar approach to solve 
the graph coloring problem. Their method starts wi th a 
complete solution, found wi th a high-quality heuristics. 
Thereafter, it alternates a destructive phase, in which 
some nodes are uncolored, and a constructive one, in 
which nodes are colored. The uncoloring is guided by 
an estimation of the depth and the width of the current 
local minimum. 

Solotorevsky et al [1994] employ a propose and revise 
rule-based approach to the course t imetabling problem. 
When the construction reaches a dead-end, the so-called 
Local-Change Rules come into play so as to find a possi­
ble assignment for the activity unscheduled. However, 
they perform only a single step before restarting the 
construction, and their aim is only to accommodate the 
pending activity, without any look-ahead mechanism. 

A common approach is to use a heuristic constructive 
method for finding the ini t ial solution and a local search 
technique to improve i t . For example, Yoshikawa et al. 
[1996] solve a timetabling problem combining a construc­
tive method based on arc-consistency wi th a min-conflict 
hi l l climbing phase. The construction goes all the way 
to the complete solution, accepting also constraint vio­
lations. The hi l l climbing phase improves the objective 
function of the problem reducing the overall penalty. 

Regarding the adaptive relaxation, Selman and Kautz 
[1993] use a similar scheme for the satisfiability problem. 
In their work, an independent dynamic weight is given 
to each single clause in the formula. Such 'fine grain 
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weighting is necessary for dealing wi th problems with 
strong asymmetries. In our technique however, asym­
metries are dealt w i th by variable ordering in the con­
structive phase. Addit ional experiments show that if we 
distribute constraints in the course scheduling problem 
in an asymmetric way among different courses, perfor­
mances of pure local search methods drastically deterio­
rate, whereas performances of combined methods remain 
(if courses are suitably ordered) at a comparable level. 

Morris [1993] and Yugami et al. [1994], use local search 
techniques, relying on relaxing some constraints when a 
local minimum is reached. Differently from their work, 
our adaptive relaxation scheme is not a method to deal 
wi th local minima (which are not necessarily perceived), 
but is a general search guide, which makes the overall 
search more effective. 

6 Discussion and Conclusions 
We have proposed a solution technique for scheduling 
and constraint satisfaction problems based in the combi­
nation of backtracking-free construction and local search 
revision wi th look-ahead capabilities. Our method arises 
from well-established and long-standing ideas, bringing 
them together in a principled way, in order to achieve a 
general purpose technique. The technique turned out to 
be very effective for two NP-complete scheduling prob­
lems. In addit ion, it has shown a good behavior in highly 
asymmetric problem instances, which are generally dif­
ficult to solve for local search methods. 

One of the main advantages of local search techniques 
is that, giving the possibility to start the search from any 
solution, they easily allow for interactive maintenance of 
solutions. In fact, once a solution as been generated, 
it can be used as the starting point for a new search 
after some constraints have been (manually) modified. 
In order to retain such capability, we have included in 
our technique the abil i ty to run local search on complete 
solutions. For the course scheduling problem, we have 
also added the possibility to manually unschedule some 
lectures and restart the process from the such partial 
solution in the new constraint setting. 

For the future, we plan to experiment our technique 
on other problems, in order to better validate the overall 
idea and to gain a clearer understanding on which local 
search strategies f i t best wi thin the construction process 
in our approach. 
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