
Probabilistic Partial Evaluation: 
Exploiting rule structure in probabilistic inference* 

David Poole 
Department of Computer Science 
University of British Columbia 

2366 Main Mall, Vancouver, B.C., Canada V6T 1Z4 
poole@cs.ubc.ca 

http://www.cs.ubc.ca/spider/poole 

Abstract 
Bayesian belief networks have grown to promi­
nence because they provide compact representa­
tions of many domains, and there are algorithms to 
exploit this compactness. The next step is to allow 
compact representations of the conditional proba­
bility tables of a variable given its parents. In this 
paper we present such a representation in terms of 
parent contexts and provide an algorithm that ex­
ploits this compactness. The representation is in 
terms of rules that provide conditional probabili­
ties in different contexts. The algorithm is based on 
eliminating the variables not needed in an answer in 
turn. The operations for eliminating a variable cor­
respond to a form of partial evaluation, where we 
are careful to maintain the probabilistic dependen­
cies necessary for correct probabilistic inference. 
We show how this new method can exploit more 
structure than previous methods for structured be­
lief network inference. 

1 Introduction 
Probabilistic inference is important for many applications 
in diagnosis, perception, and anywhere there is uncertainty 
about the state of the world from observations. Belief 
(Bayesian) networks [Pearl, 19881 are a representation of in­
dependence amongst random variables. They are of interest 
because the independence is useful in many domains, they al­
low, for compact representations of problems of probabilistic 
inference, and there are algorithms to exploit the compact rep­
resentations. 

Recently there has been work to extend belief networks 
by allowing more structured representations of the condi­
tional probability of a variable given its parents. This has 
been in terms of either causal independencies [Heckerman and 
Breese, 1994; Zhang and Poole, 1996] or by exploiting finer 
grained contextual independencies inherent in stating the con­
ditional probabilities in terms of rules [Poole, 1993] or trees 

•This work was supported by Institute for Robotics and Intelli­
gent Systems, Project IC-7 and Natural Sciences and Engineering 
Research Council of Canada Research Grant OGP0044121. Thanks 
to Holger Hoos and Mike Horsch for comments. 

[Boutilier et al, 1996]. In this paper we show how algorithms 
for efficient inference in belief networks can be extended to 
also exploit the structure of the rule-based representations. 

In the next section we introduce belief networks, a rule-
based representation for conditional probabilities, and an al­
gorithm for belief networks that exploits the network struc­
ture. We then show how the algorithm can be extended to ex­
ploit the rule-based representation. We present an example in 
detail and show how it is more efficient than previous propos­
als for exploiting structure. 

2 Background 
2.1 Belief Networks 
A belief network [Pearl, 1988] is a DAG, with nodes labelled 
by random variables. We use the terms node and random vari­
able interchangeably. Associated with a random variable x is 
its frame, val(x), which is the set of values the variable can 
take on. For a variable x, let be the parents of x in the be­
lief network. Associated with the belief network is a set of 
probabilities of the form , the conditional probability 
of each variable given its parents (this includes the prior prob­
abilities of those variables with no parents). 

A belief network represents a particular independence as­
sumption: each node is independent of its non-descendents 
given its parents. Suppose the variables in a belief network 
are x1,..., xn where the variables are ordered so that the par­
ents of a node come before the node in the ordering. Then the 
independence of a belief network means that: 

By the chain rule for conjunctions we have 

This is often given as the formal definition of a belief network. 

Example 2.1 Consider the belief network of Figure 1. This 
represents a factorization of the joint probability distribution: 

1284 PROBABILISTIC REASONING 



This looks like the definition of belief network, but which 
variables act as the parents depends on the values. The num­
bers required are the probability of each variable for each of 
its minimal parent contexts. There can be many fewer mini­
mal parent contexts that the number of assignments to parents 
in a belief network. 

Before showing how the structure of parent contexts can be 
exploited in inference, there are a few properties to note: 

The set of minimal parent contexts is covering, in the sense 
that for each assignment of values to the variables before xi, 
in the ordering with non-zero probability, there is a minimal 
context that is a subset. 

The minimal parent contexts are not necessarily pairwise 
incompatible: it is possible to have two minimal parent con­
texts whose conjunction is consistent. This can only occur 
when the probability of the variable given the compatible con­
texts is the same, in which case it doesn't matter which parent 
context is chosen in the above formula. 

The minimal parent contexts can often, but not always, be 
represented as a decision tree [Boutilier et al, 1996] where 
the contexts correspond to the paths to the roots in the tree. 
The operations we perform don't necessarily preserve the tree 
structure. Section 4.1 shows how we can do much better than 
the analogous tree-based formulation of the algorithm. 

POOLE 1285 

In the belief network, the parents of e are a, b, c, d, and would, 
in the traditional representation, require 24 = 16 numbers in­
stead of the 6 needed above. Adding an extra variable as a 
parent to e doubles the size of the table representation, but if 
it is only relevant in a very restricted context it may only in­
crease the size of the rule based representation by one. 

For each variable and for each assignment 
of values to its preceding vari­

ables, there is a parent context Given this, the 
probability of an assignment of a value to each variable is 
given by: 



These trees can be translated into rules: 

Figure 2: A tree-structured representation of the conditional 
probability function for e given its parents. 

In the first, this rule simply means the conditional probabil­
ity assertion: 

The second interpretation [Poole, 1993] is as a set of defi­
nite clauses, with "noise" terms in the body. The noise terms 
are atoms that are grouped into independent alternatives (dis­
joint sets) that correspond to random variables. In this inter­
pretation the above rule is interpreted as the clause: 

where is a noise term, such that, for each tuple of 

values the noise terms for different values for 
v are grouped into ah alternative, and the different alternatives 
are independent. This interpretation 

may be helpful as the operations we consider can be seen as 
instances of resolution on the logical formula. One of the main 
advantages of rules is that there is a natural first-order version, 
that allows for the use of logical variables. 

Example 2.6 Consider the belief network of Figure 1. Figure 
2 gives a tree-based representations for the conditional prob­
ability of e given its parents. In this tree, nodes are labelled 
with parents of e in the belief network. The left hand child cor­
responds to the variable being true, and the right hand node to 
the variable being false. The leaves are labelled with the prob­
ability that e is true. For example 
irrespectively of the value for c or d. 

Lemma 2.8 If the bodies for the rules are exclusive the prob­
ability of any context on {x\,..., xn} is the product of the 
probabilities of the rules that are applicable in that context. 

For each xi, there is exactly one rule with xi, in the head that is 
applicable in the context. The lemma now follows from equa­
tion (1). 

In general we allow conjunctions on the left of the arrow. 
These rules have the obvious interpretation. Section 3.2 ex­
plains where these rules arise. 

2.4 Bel ief ne twork inference 

The aim of probabilistic inference is to determine the poste­
rior probability of a variable or variables given some obser­
vations. In this section we outline a simple algorithm for be­
lief net inference called VE [Zhang and Poole, 1996] or bucket 
elimination for belief assessment, BEBA [Dechter, 1996], that 
is based on the ideas of SPI [Shachter et al., 1990]. This is 
a query oriented algorithm that exploits network structure for 
efficient inference, similarly to clique tree propagation [Lau-
ritzen and Spiegelhalter, 1988; Jensen et al, 1990]. One dif­
ference is the factors represent conditional probabilities rather 
than the marginal probabilities the cliques represent. 

Suppose we want to determine the probability of variable 
x given evidence e which is the conjunction of assignments 
to some variables namely 

2We only specify the positive rules on our examples. For each 
rule of the form: 

we assume there is also a rule of the form 

We maintain both as, when we have evidence (Section 3.3), they may 
no longer sum to one. 

1286 PROBABILISTIC REASONING 



Then: 

Here is a normalizing factor. The 
problem of probabilistic inference can thus be reduced to the 
problem of computing the probability of conjunctions. Let 

and sup­
pose that the yi's are ordered according to some elimination 
ordering. To compute the marginal distribution, we sum out 
the yi's in order. Thus: 

where the subscripted probabilities mean that the associated 
variables are assigned the corresponding values in the func­
tion. 

Thus probabilistic inference reduces to the problem of sum­
ming out variables from a product of functions. To sum out a 
variable y, from a product, we distribute all of the factors that 
don't involve the variable out of the sum. Suppose 
are some functions of the variables that are multiplied together 
(initially these are the conditional probabilities), then 

where are those functions that don't involve yi's and 
are those that do involve y,. We explicitly con­

struct a representation for the new function 
and continue summing out the remaining variables. After all 
the yi 's have been summed out, the result is a function on x 
that is proportional to x's posterior distribution. 

Unfortunately space precludes a more detailed description; 
see [Zhang and Poole, 1996; Dechter, 1996] for more details. 

3 Probabilistic Partial Evaluation 
Partial evaluation [Lloyd and Shepherdson, 1991] is a tech­
nique for removing atoms from a theory. In the simple case for 
non-recursive theories, we can, for example partially evaluate 
6, in the clauses: 

by resolving on b resulting in the clause: 

The general idea of the structured probabilistic inference algo­
rithm is to represent conditional probabilities in terms of rules, 
and use the VE algorithm with a form of partial evaluation to 
sum out a variable. This returns a new set of clauses. We have 
to ensure that the posterior probabilities can be extracted from 
the reduced rule set. 

The units of manipulation are finer grained than the factors 
in VE or the buckets of BEBA; what is analogous to a factor 
or a bucket consists of sets of rules. Given a variable to elim­
inate, we can ignore (distribute out) all of the rules that don't 
involve this variable. 

The input to the algorithm is: a set of rules representing 
a probability distribution, a query variable, a set of observa­
tions, and an elimination ordering on the remaining variables. 

At each stage we maintain a set of rules with the following 
program invariant: 

The probability of a context on the non-eliminated 
variables can be obtained by multiplying the prob­
abilities associated with rules that are applicable in 
that context. Moreover for each assignment, and for 
each non-eliminated variable there is only one ap­
plicable rule with that variable in the head. 

The algorithm is made up of the following primitive opera­
tions that locally preserve this program invariant:3 

POOLE 1287 

3To make this presentation more readable we assume that each 
variable is Boolean. The extension to the multi-valued case is 
straightforward. Our implementation uses multi-valued variables. 

such that there are no other rules that contain e in the body 
whose context is compatible with b. For each rule for e: 



Combining Heads. If we have two rules: 

(19) 
(20) 

such that a and 6 refer to different variables, we can combine 
them producing: 

(21) 

Thus in the context with a, 6, and c all true, the latter rule can 
be used instead of the first two. We show why we may need 
to do this in Section 3.2. 

In order to see the algorithm, let's step through some exam­
ples to show what's needed and why. 

Example 3.1 Suppose we want to sum out b given the rules 
in Example 2.6. b has one child e in the belief network, and so 
6 only appears in the body of rules for e. Of the six rules for 
e, two don't contain b (rules (4) and (7)), and so remain. The 
first two rules that contain b can be treated separately from the 
other two as they are true in different contexts. VPE of rules 
(2) and (3) with rule (8), results in: 

Summing out 6 results in the following representation for the 
probability of e. (You can ignore these numbers, it is the struc­
ture of the probability tables that is important.) 

Thus we need 16 rules (including rules for the negations) to 
represent how e depends on its parents once 6 is summed out. 
This should be contrasted with the table of size 64 that is cre­
ated for VE or in clique tree propagation. 

3.1 Compatible Contexts 
The partial evaluation needs to be more sophisticated to han­
dle more complicated cases than summing out 6, which only 
appears at the root of the decision tree and has only one child 
in the belief network. 

Example 3.2 Suppose, instead of summing out 6, we were to 
sum out d where the rules for d were of the form: 

(22) 
(23) 
(24) 

The first three rules for e (rules (2)-(4)) don't involve d, and 
remain as they were. Variable partial elimination is not di­
rectly applicable to the last three rules for e (rules (5)-(7)) 
as they don't contain identical contexts apart from the vari­
able being eliminated. It is simple to make the variable par­
tial elimination applicable by splitting rule (7) on b resulting 

in the two rules: 

(25) 
(26) 

Rules (25) can be used with rule (5) in a variable partial eval­
uation, and (26) can be used with rule (6). The two rules cor­
responding variable partial evaluation with rule (22) are: 

Four other rules are created by combining with the other rules 
for d. 

In general, you have to split rules with complementary liter­
als and otherwise compatible, but not identical, contexts. You 
may need to split the rules multiple times on different atoms. 
For every pair of such rules, you create the number of rules 
equal to the size of the union of the literals in the two rules 
minus the number of literals in the intersection. 

3.2 Multiple Children 
One problem remains: when summing out a variable with 
multiple children in the belief network, using the technique 
above, we can't guarantee to maintain the loop invariant. 
Consider the belief network of Figure 1. If you were to sum 
out y, the variables a, 6, c, and d become mutually dependent. 
Using the partial evaluation presented so far, the dependence 
is lost, but it is crucial for correctness. 

To overcome this, we allow multiple variables in the head 
of clauses. The rules imply different combinations of the truth 
of the variables in the heads of clauses. 

Example 3.3 Consider a belief network with a and 6 are the 
only children of y, and y is their only parent, and y has a single 
parent z. Suppose we have the following rules involving a, 6, 
and y: 

(27) 

(28) 

(29) 

(30) 

(31) 
We could imagine variable partial elimination on the rules for 
a with rule (31), and the rules for 6 with rule (31), resulting in: 

However, this fails to represent the dependency between a and 
b that is induced by eliminating y. 

We can, however, combine rules (27) and (29) resulting in 
the four rules: 

(32) 

(33) 

(34) 

(35) 

1288 PROBABILISTIC REASONING 



Similarly, we can combine rules (28) and (30), resulting in 
four rules including: 

(36) 
which can be combined with rule (32) giving 

(37) 
Note that the rules with multiple elements in the head follow 
the same definition as other rules. 

3.3 Evidence 
We can set the values of all evidence variables before sum­
ming out the remaining non-query variables (as in VE). Sup­
pose is observed. There are three cases: 

• Remove any rule that c o n t a i n s w h e r e in 
the head or the body. 

• Remove any term in the body of a rule. 

• Replace any in the head of a rule by true. 

Rules with true in the head are treated as any other rules, but 
we never resolve on true. When combining heads containing 
true, we can use the equivalence: true a = a. 

Example 3.4 Suppose d is observed. The rules for e become: 

(38) 

(39) 

(40) 

(41) 

The rules (22)-(24) for d become: 

(42) 
(43) 
(44) 

d doesn't appear in the resulting theory. 

3.4 Ex t rac t i ng the answer 
Once evidence has been incorporated into the rule-base, the 
program invariant becomes: 

The probability of the evidence conjoined with a 
context c on the non-eliminated variables can be ob­
tained by multiplying the probabilities associated 
with rules that are applicable in context c. 

Suppose x is the query variable. After setting the evidence 
variables, and summing out the remaining variables, we end 
up with rules of the form: 

The probability of x e is obtained by multiplying the rules 
of the first two forms. The probability of is obtained by 
multiplying the rules of the last two forms. Then 

3.5 The A l g o r i t h m 

We have now seen all of the components of the algorithm. It 
remains to put them together. We maintain the loop invariant 
of Section 3.4. 

The top-level algorithm is the same as VE: 

To compute 
given elimination ordering y 1 , . . . , yk: 

1. Set the evidence variables as in Section 3.3. 
2. Sum out in turn. 
3. Compute posterior probability as in Section 3.4 

The only tricky part is in summing out variables. 

To sum out variable yi: 
1. {Rule splitting for combining heads) 

for each pair of rules : p1 and 
such that &i and b2 both contain y, 
and and are compatible, 

but not identical 
split each rule on variables in body of the other rule. 

{Following I, all rules with yi in the body that are applicable 
in the same context have identical bodies.} 
2. { Combining heads} 

for each pair of rules and 
such that b contains yi 
and and are compatible 

replace them by the rule 
{Following 2, for every context, there is a single rule with yi 

in the body that is applicable in that context.} 
3. { Rule splitting for variable partial evaluation } 

for every pair of rule of the form 
and 
and b\ and b2 are comparable and not identical 

split each rule on atoms in body of the other rule. 
{Following 3, all rules with complementary values for the 
yi, but otherwise compatible bodies have otherwise identical, 
bodies and identical heads] 
4. { Variable partial evaluation } 

for each set of rules: 
where the vk are all of the values for y, 

for each set of rules 
such that and are compatible 

create the rule 
5. {Clean up} 

Remove all rules containing yi,. 

4 Comparison with other proposals 
In this section we compare standard belief network algo­
rithms, other structured algorithms and the new probabilistic 
partial evaluation algorithm. Example 2.6 is particularly i l lu­
minating because other algorithms do very badly on it. 

Under the elimination ordering b, , c, a, y, z, to find the 
prior on e, the most complicated rule set created is the rule set 
for e given in Example 3.1 with 16 rules (including the rules 
for the negations). After summing out d there are also 16 rules 
for e. After summing out c there are 14 rules for e, and after 
summing out a there are 8 rules for e. Observations simplify 
the algorithm as they mean fewer partial evaluations. 

POOLE 1289 



Figure 3: Exemplar for a node with multiple children: e to 
•eliminate. 

In contrast, VE requires a functor with table size 64 after b is 
summed out. Clique tree propagation constructs two cliques, 
one containing y, z, a, 6, c, d of size 26 = 64, and the other 
containing a, b, c, d, e of size 32. Neither takes the structure 
of the conditional probabilities into account. 

Note however, that VE and clique tree propagation manip­
ulate tables which can be indexed much faster than we can 
manipulate rules. There are cases where the rule-base expo­
nentially is smaller than the tables (where added variables are 
only relevant in narrow contexts). There are other cases where 
we require as many rules as there are entries in the table (we 
never require more), in which case the overhead for manipu­
lating rules wi l l not make us competitive with the table-based 
methods. Where real problems lie in this spectrum is still an 
open question. 

Boutilier et al. [1996] present two algorithms to exploit 
structure. For the network transformation and clustering 
method, Example 2.6 is the worst case; no structure can be ex­
ploited after triangulation of the resulting graph. (The tree for 
e in Example 2.6 is structurally identical to the tree for X (1) 
in Figure 2 of [Boutilier et al, 1996]). The structured cutset 
conditioning algorithm does well on this example. However, 
if the example is changed so that there are multiple (discon­
nected) copies of the same graph, the cutset conditioning al­
gorithm is exponential in the number of copies, whereas the 
probabilistic partial evaluation algorithm is linear. 

This algorithm is most closely related to the tree-based al­
gorithms for solving MDPs [Boutilier et al, 1995], but these 
work with much more restricted networks and with stringent 
assumptions on what is observable. 

4.1 W h y no t trees? 

It may be thought that the use of rules is a peculiarity of the 
author and that one may as well just use a tree-based repre­
sentation. In this section I explain why the rule-based version 
presented here can be much more efficient than a tree-based 
representation. 

Figure 3 shows an exemplar for summing out a variable 
with multiple children. The ancestors of c, d, f, g, and h are 

not shown. They can be multiply connected. Similarly the de-
scendents of a and 6 are not shown. 

Suppose we were to sum out e. Once e is eliminated, a and 
b become dependent. In VE and bucket elimination we form 
a factor containing all the remaining variables. This factor 
represents P(a, b\c,d, f,g,h). One could imagine a version 
of VE that builds a tree-based representation for this factor. 
We show here how the rule-based version is exploiting more 
structure than this. 

Suppose e is only relevant to a when d is true, and e is only 
relevant to b when / is true. In this case, the only time we need 
to consider the dependence between a and 6 is when both d 
and / are true. For all of the other contexts, we can treat a 
and b as independent. The algorithm does this automatically. 
Consider the following rules for a: 

1290 PROBABILISTIC REASONING 

The first thing to note is that the rules that don't mention e are 
not affected by eliminating e. Thus rules (47), (48), (51), and 
(52) remain intact after eliminating e. 

Rules (45) and (49) are both applicable in a context with a, 
d,e,b and / true. So we need to split them, according to the 
first step of the algorithm, creating: 



Finally we can now safely replace e by its rules; all of the 
dependencies have been eliminated. The resultant rules en­
code the probabilities of {a , 6} in the contexts and 
u .. „ , (8 rules). For all other contexts we can consider 
a and 6 separately. There are rules for a in the contexts 
(rule (47)), with the 
last two resulting from combining rule (56), and an analogous 
rule created by splitting rule (46), with rules (53) and (54) for 
e). Similarly there are rules for b in the contexts 

The total number of rules (including 
rules for the negations) is 24. 

One could imagine using VE or BEBA with tree-structures 
probability tables. This would mean that, once e is eliminated, 
we need a tree representing the probability on both a and 6. 
This would entail multiplying out the rules that were not com­
bined in the rule representation, for example the distribution 
on a and b the contexts This results in a tree 
with 72 probabilities at leaves. Without any structure, VE or 
BEBA needs a table with 27 = 128 values. 

Unlike VE or BEBA, we need the combined effect on a and 
6 only for the contexts where e is relevant to both a and b. 
For all other contexts, we don't need to combine the rules for 
a and 6. This is important as combining the rules is the pri­
mary source of combinatorial explosion. By avoiding com­
bining rules, we can have a huge saving when the variable to 
be summed out appears in few contexts. 

5 Conclusion 
This paper has presented a method for computing the poste­
rior probability in belief networks with structured probability 
tables given as rules. This algorithm lets us maintain the rule 
structure structure, only combining contexts when necessary. 

The main open problem is in finding good heuristics for 
elimination orderings. Finding a good elimination ordering 
is related to finding good triangulations in building compact 
junction trees, for which there are good heuristics [Kjaerulff, 
1990; Becker and Geiger, 1996]. These are not directly appli­
cable to probabilistic partial evaluation, as an important crite­
ria in this case is the exact form of the rules, and not just the 
graphical structure of the belief network. 

The two main extensions to this algorithm arc to multi­
valued random variables and to allow logical variables in the 
rules. Both extensions are straightforward. 

One of the main potential benefits of this algorithm is in 
approximation algorithms, where the rule bases allows fine-
grained control over distinctions. Complementary rules with 
similar probabilities can be collapsed into a simpler rule. This 
can lead to more compact rule bases, and reasonable posterior 
ranges [Poole, 1997]. 

References 
[Becker and Geiger, 1996] A. Becker and D. Geiger. A suffi­

ciently fast algorithm for finding close to optimal junction 
trees. In E. Horvitz and F. Jensen, editor, Proc. Twelfth 
Conf. on Uncertainty in Artificial Intelligence (UA1-96), 
pages 81-89, Portland, Oregon, 1996. 

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and 
M. Goldszmidt. Exploiting structure in policy construc­
tion. In Proc. 14th InternationalJoint Conf. on Artificial 
Intelligence (IJCAI-95), pages 1104-1111, Montreal, 
Quebec, 1995. 

[Boutilier et al., 19961 C. Boutilier, N. Friedman, M. Gold­
szmidt, and D. Koller. Context-specific independence in 
Bayesian networks. In E. Horvitz and F. Jensen, edi­
tor, Proc. Twelfth Conf. on Uncertainty in Artificial Intel-
ligence (UAI-96), pages 115-123, Portland, Oregon, 1996. 

iDechter, 1996] R. Dechter. Bucket elimination: A unifying 
framework for probabilistic inference. In E. Horvits and F. 
Jensen, editor, Proc. Twelfth Conf. on Uncertainty in Artifi­
cial Intelligence (UAI-96), pages 211-219, Portland, Ore­
gon, 1996. 

[Heckerman and Breese, 1994] D. Heckerman and J. Breese. 
A new look at causal independence. In Proc. of the Tenth 
Conference on Uncertainty in Artificial Ingelligence, pages 
286-292, 1994. 

[Jensen et al., 1990] F. V. Jensen, S. L. Lauritzen, and K. G. 
Olesen. Bayesian updating in causal probabilistic networks 
by local computations. Computational Statistics Quaterly, 
4:269-282, 1990. 

[Kjacrulff, 19901 U. Kjacrulff. Triangulation of graphs- algo­
rithms giving small total state space. Technical Report R 
90-09, Department of Mathematics and Computer Science, 
Strandvejen, DK 9000 Aalborg, Denmark, 1990. 

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J. 
Spiegelhalter. Local computations with probabilities on 
graphical structures and their application to expert sys­
tems. Journal of the Royal Statistical Society, Series B, 
50(2): 157-224,1988. 

[Lloyd and Shepherdson, 1991] J.W. Lloyd and J.C. Shep-
herdson. Partial evaluation in logic programming. Journal 
of Logic Programming, 11:217-242,1991. 

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA, 1988. 

[Poole, 1993] D. Poole. Probabilistic Horn abduction and 
Bayesian networks. Artificial Intelligence, 64(1 ):81-129, 
1993. 

[Poole, 1997] D. Poole. Exploiting contextual independence 
and approximation in belief network inference. Technical 
Report, 1997. http://www.cs.ubc.ca/spider/ 
p o o l e / a b s t r a c t s / a p p r o x - p a . h t m l . 

[Shachter et al., 1990] R. D. Shachter, B. D. D'Ambrosio, 
and B. D. Del Favero. Symbolic probabilistic inference 
in belief networks. In Proc. 8th National Conference on 
Artificial Intelligence, pages 126-131, Boston, 1990. MIT 
Press. 

[Zhang and Poole, 1996] N.L. Zhang and D. Poole. Exploit­
ing causal independence in Bayesian network inference. 
Journal of Artificial Intelligence Research, 5:301-328, De­
cember 1996. 

POOLE t291 


