
Space-eff icient inference in dynam ic p robab i l i s t i c ne tworks

John B inder , K e v i n M u r p h y , S tuar t Russell*
Computer Science Division

University of California
Berkeley, CA 94720

Abs t rac t 1 I n t r o d u c t i o n

Dynamic probabilistic networks (DPNs) are a
useful tool for modeling complex stochastic pro
cesses. The simplest inference task in DPNs
is monitoring — that is, computing a poste
rior distr ibut ion for the state variables at each
t ime step given all observations up to that
t ime. Recursive, constant-space algorithms are
well-known for moni tor ing in DPNs and other
models. This paper is concerned wi th hind
sight — that is, computing a posterior distr ibu
t ion given both past and future observations.
Hindsight is an essential subtask of learning
D P N models f rom data. Existing algorithms
for hindsight in DPNs use O(SN) space and
t ime, where N is the total length of the obser
vation sequence and S is the state space size
for each t ime step. They are therefore imprac
t ical for hindsight in complex models wi th long
observation sequences. This paper presents an
0(S log N) space, 0(SN log N) t ime hindsight
a lgor i thm. We demonstrates the effectiveness
of the algor i thm in two real-world DPN learn
ing problems. We also discuss the possibility of
an O(S)-space, 0 (S iV) - t ime algori thm.

'This research was funded by the National Science Foun
dation under grant no. FD96-34215, and by ARO under
the MURI program "Integrated Approach to Intelligent Sys
tems," grant number DAAH04-96-1-0341.

Dynamic probabilistic networks are variants of prob
abilistic (Bayesian) networks designed to represent
stochastic temporal processes. They were first used ex
tensively by Dean and Kanazawa [1989], and have since
become a standard tool in A I . As Figure 1 shows, a DPN
consists of infinitely repeated slices; the variables in the
T th slice represent the state of the process at t ime t.
We assume for the sake of expository simplici ty that the
variables wi th in a slice can be divided into state variables
X t , which are always hidden, and evidence variables E t,
which are always observable. We also assume that only
adjacent t ime slices are connected, and that the topolog
ical structure and conditional distr ibutions are identical
for all t ime slices. That is, the DPN is specified by defin
ing the structure and interconnectivity of the first two
slices, and this is then "unrol led" N t imes, to provide
storage space to hold the Xt and Et values for t € [0, N].

If there is only one hidden variable and one observ
able variable per t ime slice, a DPN is equivalent to a
Hidden Markov Model (HMM) . The main advantage of
DPNs over HMMs arises when the state can be decom
posed into several state variables, as in Figure 2. (Thus,
Ghahramani and Jordan [1995] refer to DPNs as "facto-
rial HMMs.") If each state variable is directly influenced
by at most a constant number of other variables, then the
number of parameters required to specify the DPN wi l l
be linear in the number of state variables, whereas for
standard HMMs it is exponential. This reduction makes
both inference and learning potential ly much more effi
cient.

This paper begins w i th a discussion of the DPN mon
itoring task—that is, computing a posterior distr ibut ion
for the state variables at each t ime step given all obser
vations up to that t ime. Recursive, constant-space algo
r i thms are well-known for monitor ing in DPNs and other
models. We then discuss the problem of hindsight—that
is, computing a posterior distr ibut ion given both past
and future observations. Hindsight is an essential sub-
task of learning DPN models f rom data. Exist ing al
gorithms for hindsight — which simply unrol l the DPN
and treat it like a static network — use O(SN) space
and t ime, where N is the total length of the observation
sequence and S is the state space size for each t ime step.

1292 PROBABILISTIC: REASONING

PROCESS MODEL
/

Figure 1: The generic structure of a dynamic probabilistic network, showing the state variables X and the evidence
variables E schematically. The sensor model describes and the process model describes

Figure 2: A fragment of an actual DPN, showing the internal structure of each time slice. This was used to model
the behavior of cars dr iv ing on the freeway [Forbes et ai, 1995].

Agogino, 1996]. We note that DPNs can handle a much
larger variety of processes than Kalman filters.

Standard arguments (see e.g., [Russell and Norvig,
1995, p.509]) show that monitoring corresponds to the
following recursive update equation

(1)

where is a normalizing constant. For future reference,
we represent this equation more abstractly as

(2)
where we have introduced the forward probabilities

We assume the init ial "boundary condition"
Fo is known.

The process of computing the forward probabilities
can be implemented in a variety of ways. Kjaeruhlff [1992]
describes dHugin, an extension of the Hugin package
that handles DPNs via direct manipulation of the jo in
tree. Russell and Norvig [1995] describe the roll-up
method, which operates directly on the DPN. Finally,
one can implement Equation 1 simply by enumerating
over the possible states Xt.

The space and t ime complexity of monitoring can be
expressed in terms of N, the total number of time steps;
|E|, the number of evidence variables per time step; |X| ,
the number of state variables per time step; and 5, the
space required to store the probability distribution over

They are therefore impractical for hindsight in complex
models w i th long observation sequences. As an example
of the severity of the space problem, we note that the net
work in Figure 2 has and, during model learn
ing, may require Therefore, we present a sim
ple divide-and-conquer algori thm that reduces the space
requirements f rom O(SN) to 0 (5 log N), thus making
such applications feasible in practice. We present exper-
imentals results to validate our claims. We also briefly
discuss a possible way of reducing the space requirements
even more dramatical ly, namely to use only O(S) space.
This would be part icularly useful for online learning al
gorithms.

2 Monitor ing in DPNs
The most common use of DPNs is for monitoring, i.e.,
comput ing. where we use the notation as
shorthand for the variables . In this capacity,
a DPN allows one to keep track of the state of a process
given part ia l , noisy observations. For example, one could
estimate the progress of a disease in a patient from clin
ical observations over t ime, or estimate the position of
a missile f rom a sequence of radar observations. In con
trol theory, this task is called filtering. The well-known
Kalman filter [Kalman, I960] can be viewed as a special
case of a continuous-variable DPN in which the sensor
model is restricted to be Gaussian and the process model
is restricted to be linear wi th Gaussian noise [Alag and

BINDER, MURPHY, & RUSSELL 1293

X* . In the worst case, which corresponds to a
completely connected network, even if the original DPN
was only sparsely connected. This is because condition
ing on past evidence causes variables in the current slice
to become directly dependent.1 Storing all the input (Et
for all i) and output (Ft for all t) takes 0(7V|E|) and
O(NS) space respectively. However, it is reasonable to
assume that the input is available as a stream from the
environment or is read in sequentially f rom secondary
storage, and similarly for the output. That is, we assume
that there are "producer" and "consumer" processes for
the input and output ; we just focus on the amount of
temporary working space required by the montoring al
gor i thm itself, namely 0 (5) . The t ime required is of
course 0{SN).

The related task of prediction, computing
for t > N, can be performed by running a monitor ing
algori thm w i th no evidence beyond N, and hence also
requires O(S) working space.

3 H inds igh t in D P N s
In some settings, we may wish to take "future" evidence,
as well as past and present evidence, into account e.g.,
where the t index does not refer to t ime, but is simply
an index into a static sequence. The observations after
t may help to eliminate uncertainty about the state at
t. For example, one can deduce who was in the house at
the t ime of the murder by subsequent observation to see
who leaves the house, even if one neglected to observe
the house prior to the murder. The process of comput
ing is called smoothing in
control theory, where it is often used to reduce the ap
parent wiggliness in a trajectory computed by fi l tering.
In A I , perhaps the most important use of hindsight is in
learning. In order to learn a DPN model f rom observa
t ion sequences, it is necessary to compute likelihoods for
the hidden variables given all available data [Lauritzen,
1995; Russell et al., 1995], hence hindsight is an integral
part of DPN learning.

The most obvious algor i thm for hindsight is to perform
monitor ing in the forwards and backwards directions,
and to combine the information at each t ime step, as
follows:

(3)

where we have introduced the combination operator and
the quanti ty to denote the back
wards probabilit ies. These can be updated as follows:

(4)
1 Technically, the joint distribution has only the indepen

dences present in the stationary distribution of the Markov
chain represented by the DPN.

Again, we assume the boundary condit ion BN is known.
We can think of this method as propagating the for
wards and backwards "messages" Ft and Bt f rom both
ends towards slice t (which takes O(SN) t ime and O(S)
working space), combining them, and then repeating for
each t. Hindsight for the complete sequence therefore
requires 0(N2S) t ime and O(S) working space.

By storing Ft and Bt at each t ime step (i.e., caching
intermediate results), we get an algori thm that is es
sentially identical to Pearl's message-passing algo
r i thm for chains, to the join-tree algori thm operating on
an explicit ly represented DPN wi th N slices, or to the
forward-backward H M M algori thm (see also [Smyth et
al., 1996]). A l l these approaches require O(SN) t ime,
but unfortunately require O(SN) space, which is im
practical. We now go on to discuss a simple divide-and-
conquer algorithm that requires 0(SN log N) t ime and
O(S log N) space.

4 The space-efficient a l g o r i t h m
The essential idea of our space-efficient method is to
store the F t and B t messages at k — 1 intermediate
"checkpoints" or "islands", thereby div id ing the origi
nal sequence into k segments; we then recursively ap
ply the hindsight algori thm to each smaller segment,
making use of the boundary conditions stored at each
checkpoint. For example, if N = 24 and k = 2, we
compute F1 , F 2 , . . . , F 2 4 and B 2 3 , B 2 2 , ■ • •, B0 by itera-
tively applying the forward and backward operators to
the boundary conditions Fo and B 2 4 respectively, but
we only store Ft and Bt for t = 12. We compute

= Combine pass it to the
consumer2, and then recursively apply the hindsight al
gor i thm to the sub-sequences for t = 1 . . . 11, using Fo
and B12 as boundary conditions, and for t = 13 . . .23,
using F 1 2 and B 2 4 as boundary conditions.

The total working space required by this approach is
determined by two parameters: k, the number of check
points we store at each level, and D, the number of lev
els of recursion before we invoke the base case algorithm
(which uses linear t ime and linear space). If we treat k
as a fixed parameter, and recurse "all the way to the bot
tom" (i.e., apply the base case only to segments of length
1), we have D = logk N. The working space is then
0(kS \ogk N), since we store k checkpoints, each of size
25, at each level of recursion, and there are D = logk N
levels of recursion. The t ime required by this approach,
T(N), is the t ime taken to propogate the messages across
k segements of length roughly N/k each, plus the t ime
to solve the k subproblems:
so T(N) = N logk N. We can decrease the running t ime,
and increase the space requirements, either by increas
ing k f rom 2 to N, or by decreasing D f rom logk, N to I.

2The consumer might store on secondary
storage, or it might use it in a learning algorithm to perform
an in-place update of the model parameters, before discard
ing it.

1294 PROBABILISTIC REASONING

An interesting compromise is which takes only
twice as long as the standard algori thm and needs only

space.

5 Expe r imen ta l results
We have implemented the abstract operators FwdOp,
BackOp, and CombineOp in terms of a modified version
of the Jensen jo in tree algori thm [Jensen et a/., 1990].
The details wi l l be presented in another paper, but the
basic idea is to modify the tr iangulation heuristic to en
sure that the resulting jo in tree has a repeating structure.
This repeating block may span two slices in the original
network (i.e., it might contain cliques which have nodes
from adjacent slices), so that F t and B t now refer to the
forwards and backwards messages associated wi th the
J'th repetit ion of this block, rather than the t ' th t ime
slice.

In Figure 4, we show how much space is required to
do inference on the simple network shown in Figure 3
as a function of the length of the sequence. It is clear
that by increasing the depth of recursion, D, we can
reduce the space requirements dramatically. The t ime
taken for D = 1 w i th N = 100 was 1.5 seconds, for
D = 2 it was 1.96 seconds, and for D = 3 it was 2.6
seconds.3 In Figure 5, we plot a similar curve for the
more complicated network shown in Figure 2.

6 Fur ther work : Constant space?
We have shown how to avoid the otherwise crippling
space requirements for hindsight in DPNs, giving an al
gor i thm whose space complexity grows logarithmically
wi th the length of the sequence. This has allowed us to
address far more complex DPN learning problems than
previously possible.

An analogous technique could be applied to cope wi th
cases where S (and not just N) is very large. The idea
would be to store check points for only some of the nodes
wi th in a slice. For example, in the jo in tree algori thm,
instead of storing messages at every node in the repeat
ing tree structure, we could store messages at only some
of them, recomputing the others on demand.4 This could
of course be combined wi th the current approach to yield
an 0 (\ o g N l o g S-space algori thm.

A more ambitious goal would be to find a constant-
space algor i thm, that is, one having space requirements
which are independent of N. This would be particu
larly useful in the context of online learning, in which a
continuous stream of evidence is arriving (and hence N
grows indefinitely). We currently only know how to do
this in restricted circumstances. The idea is as follows.
According to Equation 4, we can compute the posterior
at t ime step t given F t and B t. We can filter forward

3Experiments were run on a Pentium Pro 200MHz PC
with 64 Megabytes of RAM, using Linux and gcc.

4 The key requirement is that the set of nodes at which
we choose to store checkpoint information d-separate the
evidence.

Figure 4: Space complexity of the Island Algor i thm on
the DNA network. The curve labelled "statically un
rolled network" refers to the results produced by apply
ing the standard linear t ime, linear space algorithm to
the network which has been unrolled a fixed number of
times. On compiling the DNA network, the size of the
repeating clique set, S, is 70,784 bytes (17,696 real num
bers) and the size of the F and B messages are each 1024
bytes (256 real numbers).

all the way to the end to obtain FN, and BN is given.
By backward monitoring, we can now compute If
we can also compute from FN, we are in business.
This can be done by inverting the process model and by
undoing the effects of EN. We then continue this pro
cess all the way back to the beginning of the sequence,
computing posteriors as we go.

The details of the inversion process are best under
stood in terms of matr ix operations, where we consider
Ft as a vector of probabilities over all possible states
Xt of the variables in Xt. Let Ot be the diagonal ma
tr ix whose entries are the probabilities in , and
let M, the transition matr ix, contain the probabilities

for all values and (Note that ac
cording to our assumptions, M is independent of time.)
Equation 1 now becomes the vector equation

From this we can obtain the inverse operation:

Thus, in the generic case where M and O are invertible,
we have a constant-space hindsight algorithm. This al
gorithm wi l l fai l , however, if either matr ix is singular.
Ot wi l l be singular only if some entries in are
zero, that is, if the observations rule out some of the
possible states. M wil l be singular if, for example, two
columns are identical—which could easily occur if transi
tions are independent of one of the state variables. Thus,

BINDER, MURPHY, & RUSSELL 1295

Figure 3: A simple network for learning intron/exon coding behavior in DNA.

Figure 5: Space complexity of the Island Algor i thm on
the car network. S is 920,124 bytes (230,031 real num
bers) and the size of the F and B messages are each
29,568 bytes (7,392 real numbers).

invert ib i l i ty w i l l fai l in many realistic situations where
informat ion is lost as the process proceeds, and in many
others the inversion step wi l l be highly il l-conditioned.
It remains to be seen whether it is possible to somehow
store a small amount (independent of N) of extra infor
mat ion to make the transformation invertible.

Acknowledgments
Thanks to Paul Horton, Geoff Zweig, Nir Friedman, and
the reviewers for useful comments.

References
[Alag and Agogino, 1996] S. Alag and A. Agogino. In

ference using message propagation and topology
transformation in vector gaussian continuous net
works. In Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence (UAI-96), pages
20-27, Port land, Oregon, 1996. Morgan Kaufmann.

[Dean and Kanazawa, 1989] Thomas Dean and Kei j i
Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3): 142-
150, 1989.

[Forbes et a/., 1995] Jeff Forbes, T i m Huang, Kei j i
Kanazawa, and Stuart Russell. The BATmobi le : To
wards a Bayesian automated tax i . In Proceedings
of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), Montreal, Canada,
August 1995. Morgan Kaufmann.

[Ghahramani and Jordan, 1995] Z. Ghahramani and
M. I. Jordan. Factorial hidden Markov models. Tech
nical Report 9502, M I T Computat ional Cognitive Sci
ence Report, 1995.

[Jensen et a/., 1990] Finn V. Jensen, Steffen L. Lau-
ritzen, and Krist ian G. Olesen. Bayesian updating
in causal probabilistic networks by local computa
tions. Computational Statistics Quarterly, 5(4):269-
282, 1990.

[Kalman, I960] R. E. Kalman. A new approach to linear
fi ltering and prediction problems. Journal of Basic
Engineering, pages 35-46, March 1960.

[KjaerulfT, 1992] U. Kjaerulff. A computational scheme
for reasoning in dynamic probabilistic networks. In
Proceedings of the Eighth Conference on Uncertainty
in Artificial Intelligence, pages 121-129, 1992.

[Lauritzen, 1995] S. L. Lauritzen. The EM algori thm
for graphical association models w i th missing data.
Computational Statistics and Data Analysis, 19:191-
201, 1995.

[Russell and Norvig, 1995] Stuart J. Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, New Jersey, 1995.

[Russell et ai, 1995] Stuart Russell, John
Binder, Daphne Koller, and Kei j i Kanazawa. Local
learning in probabilistic networks w i th hidden vari
ables. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-
95), pages 1146-52, Montreal, Canada, August 1995.
Morgan Kaufmann.

[Smyth et al, 1996] P. Smyth, D. Heckerman, and
M. Jordan. Probabilistic independence networks for
hidden Markov probabil i ty models. Technical Re
port MSR-TR-96-03, Microsoft Research, Redmond,
Washington, 1996.

1296 PROBABILISTIC REASONING

