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Dynamic probabilistic networks (DPNs) are a 
useful tool for modeling complex stochastic pro
cesses. The simplest inference task in DPNs 
is monitoring — that is, computing a poste
rior distr ibut ion for the state variables at each 
t ime step given all observations up to that 
t ime. Recursive, constant-space algorithms are 
well-known for moni tor ing in DPNs and other 
models. This paper is concerned wi th hind
sight — that is, computing a posterior distr ibu
t ion given both past and future observations. 
Hindsight is an essential subtask of learning 
D P N models f rom data. Existing algorithms 
for hindsight in DPNs use O(SN) space and 
t ime, where N is the total length of the obser
vation sequence and S is the state space size 
for each t ime step. They are therefore imprac
t ical for hindsight in complex models wi th long 
observation sequences. This paper presents an 
0(S log N) space, 0(SN log N) t ime hindsight 
a lgor i thm. We demonstrates the effectiveness 
of the algor i thm in two real-world DPN learn
ing problems. We also discuss the possibility of 
an O(S)-space, 0 (S iV ) - t ime algori thm. 

'This research was funded by the National Science Foun
dation under grant no. FD96-34215, and by ARO under 
the MURI program "Integrated Approach to Intelligent Sys
tems," grant number DAAH04-96-1-0341. 

Dynamic probabilistic networks are variants of prob
abilistic (Bayesian) networks designed to represent 
stochastic temporal processes. They were first used ex
tensively by Dean and Kanazawa [1989], and have since 
become a standard tool in A I . As Figure 1 shows, a DPN 
consists of infinitely repeated slices; the variables in the 
T th slice represent the state of the process at t ime t. 
We assume for the sake of expository simplici ty that the 
variables wi th in a slice can be divided into state variables 
X t , which are always hidden, and evidence variables E t, 
which are always observable. We also assume that only 
adjacent t ime slices are connected, and that the topolog
ical structure and conditional distr ibutions are identical 
for all t ime slices. That is, the DPN is specified by defin
ing the structure and interconnectivity of the first two 
slices, and this is then "unrol led" N t imes, to provide 
storage space to hold the Xt and Et values for t € [0, N]. 

If there is only one hidden variable and one observ
able variable per t ime slice, a DPN is equivalent to a 
Hidden Markov Model (HMM) . The main advantage of 
DPNs over HMMs arises when the state can be decom
posed into several state variables, as in Figure 2. (Thus, 
Ghahramani and Jordan [1995] refer to DPNs as "facto-
rial HMMs." ) If each state variable is directly influenced 
by at most a constant number of other variables, then the 
number of parameters required to specify the DPN wi l l 
be linear in the number of state variables, whereas for 
standard HMMs it is exponential. This reduction makes 
both inference and learning potential ly much more effi
cient. 

This paper begins w i th a discussion of the DPN mon
itoring task—that is, computing a posterior distr ibut ion 
for the state variables at each t ime step given all obser
vations up to that t ime. Recursive, constant-space algo
r i thms are well-known for monitor ing in DPNs and other 
models. We then discuss the problem of hindsight—that 
is, computing a posterior distr ibut ion given both past 
and future observations. Hindsight is an essential sub-
task of learning DPN models f rom data. Exist ing al
gorithms for hindsight — which simply unrol l the DPN 
and treat it like a static network — use O(SN) space 
and t ime, where N is the total length of the observation 
sequence and S is the state space size for each t ime step. 
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Figure 1: The generic structure of a dynamic probabilistic network, showing the state variables X and the evidence 
variables E schematically. The sensor model describes and the process model describes 

Figure 2: A fragment of an actual DPN, showing the internal structure of each time slice. This was used to model 
the behavior of cars dr iv ing on the freeway [Forbes et ai, 1995]. 

Agogino, 1996]. We note that DPNs can handle a much 
larger variety of processes than Kalman filters. 

Standard arguments (see e.g., [Russell and Norvig, 
1995, p.509]) show that monitoring corresponds to the 
following recursive update equation 

(1) 

where is a normalizing constant. For future reference, 
we represent this equation more abstractly as 

(2) 
where we have introduced the forward probabilities 

We assume the init ial "boundary condition" 
Fo is known. 

The process of computing the forward probabilities 
can be implemented in a variety of ways. Kjaeruhlff [1992] 
describes dHugin, an extension of the Hugin package 
that handles DPNs via direct manipulation of the jo in 
tree. Russell and Norvig [1995] describe the roll-up 
method, which operates directly on the DPN. Finally, 
one can implement Equation 1 simply by enumerating 
over the possible states Xt. 

The space and t ime complexity of monitoring can be 
expressed in terms of N, the total number of time steps; 
|E|, the number of evidence variables per time step; |X| , 
the number of state variables per time step; and 5, the 
space required to store the probability distribution over 

They are therefore impractical for hindsight in complex 
models w i th long observation sequences. As an example 
of the severity of the space problem, we note that the net
work in Figure 2 has and, during model learn
ing, may require Therefore, we present a sim
ple divide-and-conquer algori thm that reduces the space 
requirements f rom O(SN) to 0 ( 5 log N), thus making 
such applications feasible in practice. We present exper-
imentals results to validate our claims. We also briefly 
discuss a possible way of reducing the space requirements 
even more dramatical ly, namely to use only O(S) space. 
This would be part icularly useful for online learning al
gorithms. 

2 Monitor ing in DPNs 
The most common use of DPNs is for monitoring, i.e., 
comput ing. where we use the notation as 
shorthand for the variables . In this capacity, 
a DPN allows one to keep track of the state of a process 
given part ia l , noisy observations. For example, one could 
estimate the progress of a disease in a patient from clin
ical observations over t ime, or estimate the position of 
a missile f rom a sequence of radar observations. In con
trol theory, this task is called filtering. The well-known 
Kalman filter [Kalman, I960] can be viewed as a special 
case of a continuous-variable DPN in which the sensor 
model is restricted to be Gaussian and the process model 
is restricted to be linear wi th Gaussian noise [Alag and 
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X* . In the worst case, which corresponds to a 
completely connected network, even if the original DPN 
was only sparsely connected. This is because condition
ing on past evidence causes variables in the current slice 
to become directly dependent.1 Storing all the input (Et 
for all i) and output (Ft for all t) takes 0(7V|E|) and 
O(NS) space respectively. However, it is reasonable to 
assume that the input is available as a stream from the 
environment or is read in sequentially f rom secondary 
storage, and similarly for the output. That is, we assume 
that there are "producer" and "consumer" processes for 
the input and output ; we just focus on the amount of 
temporary working space required by the montoring al
gor i thm itself, namely 0 ( 5 ) . The t ime required is of 
course 0{SN). 

The related task of prediction, computing 
for t > N, can be performed by running a monitor ing 
algori thm w i th no evidence beyond N, and hence also 
requires O(S) working space. 

3 H inds igh t in D P N s 
In some settings, we may wish to take "future" evidence, 
as well as past and present evidence, into account e.g., 
where the t index does not refer to t ime, but is simply 
an index into a static sequence. The observations after 
t may help to eliminate uncertainty about the state at 
t. For example, one can deduce who was in the house at 
the t ime of the murder by subsequent observation to see 
who leaves the house, even if one neglected to observe 
the house prior to the murder. The process of comput
ing is called smoothing in 
control theory, where it is often used to reduce the ap
parent wiggliness in a trajectory computed by fi l tering. 
In A I , perhaps the most important use of hindsight is in 
learning. In order to learn a DPN model f rom observa
t ion sequences, it is necessary to compute likelihoods for 
the hidden variables given all available data [Lauritzen, 
1995; Russell et al., 1995], hence hindsight is an integral 
part of DPN learning. 

The most obvious algor i thm for hindsight is to perform 
monitor ing in the forwards and backwards directions, 
and to combine the information at each t ime step, as 
follows: 

(3) 

where we have introduced the combination operator and 
the quanti ty to denote the back
wards probabilit ies. These can be updated as follows: 

(4) 
1 Technically, the joint distribution has only the indepen

dences present in the stationary distribution of the Markov 
chain represented by the DPN. 

Again, we assume the boundary condit ion BN is known. 
We can think of this method as propagating the for
wards and backwards "messages" Ft and Bt f rom both 
ends towards slice t (which takes O(SN) t ime and O(S) 
working space), combining them, and then repeating for 
each t. Hindsight for the complete sequence therefore 
requires 0(N2S) t ime and O(S) working space. 

By storing Ft and Bt at each t ime step (i.e., caching 
intermediate results), we get an algori thm that is es
sentially identical to Pearl's message-passing algo
r i thm for chains, to the join-tree algori thm operating on 
an explicit ly represented DPN wi th N slices, or to the 
forward-backward H M M algori thm (see also [Smyth et 
al., 1996]). A l l these approaches require O(SN) t ime, 
but unfortunately require O(SN) space, which is im
practical. We now go on to discuss a simple divide-and-
conquer algorithm that requires 0(SN log N) t ime and 
O(S log N) space. 

4 The space-efficient a l g o r i t h m 
The essential idea of our space-efficient method is to 
store the F t and B t messages at k — 1 intermediate 
"checkpoints" or "islands", thereby div id ing the origi
nal sequence into k segments; we then recursively ap
ply the hindsight algori thm to each smaller segment, 
making use of the boundary conditions stored at each 
checkpoint. For example, if N = 24 and k = 2, we 
compute F1 , F 2 , . . . , F 2 4 and B 2 3 , B 2 2 , ■ • •, B0 by itera-
tively applying the forward and backward operators to 
the boundary conditions Fo and B 2 4 respectively, but 
we only store Ft and Bt for t = 12. We compute 

= Combine pass it to the 
consumer2, and then recursively apply the hindsight al
gor i thm to the sub-sequences for t = 1 . . . 11, using Fo 
and B12 as boundary conditions, and for t = 13 . . .23, 
using F 1 2 and B 2 4 as boundary conditions. 

The total working space required by this approach is 
determined by two parameters: k, the number of check
points we store at each level, and D, the number of lev
els of recursion before we invoke the base case algorithm 
(which uses linear t ime and linear space). If we treat k 
as a fixed parameter, and recurse "all the way to the bot
tom" (i.e., apply the base case only to segments of length 
1), we have D = logk N. The working space is then 
0(kS \ogk N), since we store k checkpoints, each of size 
25, at each level of recursion, and there are D = logk N 
levels of recursion. The t ime required by this approach, 
T(N), is the t ime taken to propogate the messages across 
k segements of length roughly N/k each, plus the t ime 
to solve the k subproblems: 
so T(N) = N logk N. We can decrease the running t ime, 
and increase the space requirements, either by increas
ing k f rom 2 to N, or by decreasing D f rom logk, N to I. 

2The consumer might store on secondary 
storage, or it might use it in a learning algorithm to perform 
an in-place update of the model parameters, before discard
ing it. 

1294 PROBABILISTIC REASONING 



An interesting compromise is which takes only 
twice as long as the standard algori thm and needs only 

space. 

5 Expe r imen ta l results 
We have implemented the abstract operators FwdOp, 
BackOp, and CombineOp in terms of a modified version 
of the Jensen jo in tree algori thm [Jensen et a/., 1990]. 
The details wi l l be presented in another paper, but the 
basic idea is to modify the tr iangulation heuristic to en
sure that the resulting jo in tree has a repeating structure. 
This repeating block may span two slices in the original 
network (i.e., it might contain cliques which have nodes 
from adjacent slices), so that F t and B t now refer to the 
forwards and backwards messages associated wi th the 
J'th repetit ion of this block, rather than the t ' th t ime 
slice. 

In Figure 4, we show how much space is required to 
do inference on the simple network shown in Figure 3 
as a function of the length of the sequence. It is clear 
that by increasing the depth of recursion, D, we can 
reduce the space requirements dramatically. The t ime 
taken for D = 1 w i th N = 100 was 1.5 seconds, for 
D = 2 it was 1.96 seconds, and for D = 3 it was 2.6 
seconds.3 In Figure 5, we plot a similar curve for the 
more complicated network shown in Figure 2. 

6 Fur ther work : Constant space? 
We have shown how to avoid the otherwise crippling 
space requirements for hindsight in DPNs, giving an al
gor i thm whose space complexity grows logarithmically 
wi th the length of the sequence. This has allowed us to 
address far more complex DPN learning problems than 
previously possible. 

An analogous technique could be applied to cope wi th 
cases where S (and not just N) is very large. The idea 
would be to store check points for only some of the nodes 
wi th in a slice. For example, in the jo in tree algori thm, 
instead of storing messages at every node in the repeat
ing tree structure, we could store messages at only some 
of them, recomputing the others on demand.4 This could 
of course be combined wi th the current approach to yield 
an 0 ( \ o g N l o g S-space algori thm. 

A more ambitious goal would be to find a constant-
space algor i thm, that is, one having space requirements 
which are independent of N. This would be particu
larly useful in the context of online learning, in which a 
continuous stream of evidence is arriving (and hence N 
grows indefinitely). We currently only know how to do 
this in restricted circumstances. The idea is as follows. 
According to Equation 4, we can compute the posterior 
at t ime step t given F t and B t. We can filter forward 

3Experiments were run on a Pentium Pro 200MHz PC 
with 64 Megabytes of RAM, using Linux and gcc. 

4 The key requirement is that the set of nodes at which 
we choose to store checkpoint information d-separate the 
evidence. 

Figure 4: Space complexity of the Island Algor i thm on 
the DNA network. The curve labelled "statically un
rolled network" refers to the results produced by apply
ing the standard linear t ime, linear space algorithm to 
the network which has been unrolled a fixed number of 
times. On compiling the DNA network, the size of the 
repeating clique set, S, is 70,784 bytes (17,696 real num
bers) and the size of the F and B messages are each 1024 
bytes (256 real numbers). 

all the way to the end to obtain FN, and BN is given. 
By backward monitoring, we can now compute If 
we can also compute from FN, we are in business. 
This can be done by inverting the process model and by 
undoing the effects of EN. We then continue this pro
cess all the way back to the beginning of the sequence, 
computing posteriors as we go. 

The details of the inversion process are best under
stood in terms of matr ix operations, where we consider 
Ft as a vector of probabilities over all possible states 
Xt of the variables in Xt. Let Ot be the diagonal ma
tr ix whose entries are the probabilities in , and 
let M, the transition matr ix, contain the probabilities 

for all values and (Note that ac
cording to our assumptions, M is independent of time.) 
Equation 1 now becomes the vector equation 

From this we can obtain the inverse operation: 

Thus, in the generic case where M and O are invertible, 
we have a constant-space hindsight algorithm. This al
gorithm wi l l fai l , however, if either matr ix is singular. 
Ot wi l l be singular only if some entries in are 
zero, that is, if the observations rule out some of the 
possible states. M wil l be singular if, for example, two 
columns are identical—which could easily occur if transi
tions are independent of one of the state variables. Thus, 
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Figure 3: A simple network for learning intron/exon coding behavior in DNA. 

Figure 5: Space complexity of the Island Algor i thm on 
the car network. S is 920,124 bytes (230,031 real num
bers) and the size of the F and B messages are each 
29,568 bytes (7,392 real numbers). 

invert ib i l i ty w i l l fai l in many realistic situations where 
informat ion is lost as the process proceeds, and in many 
others the inversion step wi l l be highly il l-conditioned. 
It remains to be seen whether it is possible to somehow 
store a small amount (independent of N) of extra infor
mat ion to make the transformation invertible. 
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