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Abs t rac t 

Current inductive logic programming systems 
are l imited in their handling of noise, as they 
employ a greedy covering approach to con­
structing the hypothesis one clause at a t ime. 
This approach also causes difficulty in learning 
recursive predicates. Addit ional ly, many cur­
rent systems have an impl ici t expectation that 
the cardinality of the positive and negative ex­
amples reflect the "proport ion" of the concept 
to the instance space. 

A framework for learning from noisy data and 
fixed example size is presented. A Bayesian 
heuristic for finding the most probable hypoth­
esis in this general framework is derived. This 
approach evaluates a hypothesis as a whole 
rather than one clause at a t ime. The heuristic, 
which has nice theoretical properties, is incor­
porated in an I LP system, L I M E . Experimen­
tal results show that L I M E handles noise better 
than FOIL and PROGOL. It is able to learn 
recursive definitions from noisy data on which 
other systems do not perform well. L I M E is also 
capable of learning from only positive data and 
also from only negative data. 

1 I n t r o d u c t i o n 
Most I LP systems like G O L E M [Muggleton and Feng, 
1990] and FOIL [Quinlan, 1990] employ a greedy cover­
ing heuristic to bui ld hypotheses. They t ry to f ind the 
clause that covers maximum number of positive exam­
ples wi thout covering any or few negative examples. A 
new set of positive examples is created by removing the 
covered positive examples and the process is repeated 
w i th this new set of positive examples and the negative 
examples unt i l there are no uncovered positive examples 
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left. Whi le this approach has lead to efficient learning in 
many applications, there are situations in which it fails 
to perform well. 

Consider the problem of noise handling. G O L E M 
[Muggleton and Feng, 1990] has a rudimentary noise 
handling facil ity as each clause is allowed to cover a 
fixed number of negative examples in addit ion to as 
many positive examples as possible. This approach is 
inflexible as it requires adjusting the noise parameter 
w i th changes in sample size and noise level. Inflexi­
bi l i ty aside, handling of noise at the clause level, in 
many cases, appears to result in a poor overall hy­
pothesis, mainly because of overfitt ing. FOIL [Quin­
lan, 1990] employs an M D L / M M L [Rissanen, 1978; 
Wallace and Freeman, 1987] like approach to noise han­
dling. While this is better than an ad hoc approach, its 
greedy covering strategy of bui lding the hypothesis one 
clause at a t ime can lead to overfitt ing in the presence 
of noise (for example, see Figure 2 that describes FOIL's 
performance on a simple predicate PlUS2).1 A single 
clause only yields information about overgeneralization 
errors, information about data not covered by the hy­
pothesis requires looking at the complete hypothesis. 

Another problem wi th current I LP systems arises 
while learning predicates that require recursive defini­
tions. In these situations, for successful learning to take 
place, a system has to be provided w i th a complete ini­
t ia l sequence of the data, including the base case. How­
ever, if the data is sparse, it becomes very difficult for 
these systems to learn hypotheses w i th recursive clauses. 
Again, an approach that evaluates complete hypotheses 
instead of individual clauses does a better job of over­
coming such deficiencies in the data. 

Apar t f rom the above mentioned difficulties, many ap­
plications of M D L / M M L like heuristic have an implici t 
expectation that the distr ibut ion of examples received by 

1mFOIL [Lavrac et o/., 1996] has an improved noise han­
dling capability, but it still suffers from the greedy covering 
approach. Noise handling in LINUS [Lavrac and Dzeroski, 
1992] is more about taking advantage of noise handling tech­
niques from attribute value learning. 
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the learner matches the true "proport ion" of the under­
lying concept to the instance space. However, in many 
learning situations this assumption is unjustified. Usu­
ally the cardinality of positive and negative examples is 
fixed and independent of the concept being learned. As 
an example, consider a learner presented wi th a set of 100 
positive and 100 negative examples of cancer patients. It 
is very unlikely that this set of examples is representative 
of the population from where the examples are drawn. 
Moreover, many systems require a minimum number of 
positive and negative examples. 

Motivated by the above problems with existing ILP 
systems, the present paper introduces a general frame-
work for noise handling in learning systems, and derives 
a Bayesian heuristic for inducing a hypothesis wi th the 
maximum posterior probability. The framework assumes 
that the number of examples is fixed independent of the 
concept (and certainly not representative of the actual 
proport ion of the concept to the instance space). Hence, 
the heuristic can be employed to learn from only pos­
itive data and from only negative data in addition to 
the usual combination of positive and negative data. 
An interesting theoretical result about the framework 
is that it formalizes the intuit ive importance of an ex­
t ra positive example over an extra negative example for 
concepts that are "small" w i th respect to the instance 
space. A similar result for the importance of negative 
examples over positive examples holds for concepts that 
are "large" w i th respect to the instance space. Empir i ­
cal evidence in keeping wi th these theoretical results are 
presented. 

The heuristic is adapted for ILP and implemented in 
the LlME system that considers complete candidate hy­
potheses rather than single clauses. We would like to 
note that another system that looks at complete hy­
potheses instead of single clauses is T R A C Y [Bergadano 
and Gunett i , 1994]. A theoretical bound is derived that 
yields a bound on the search space for the most prob­
able hypothesis. It is shown that L I M E equipped wi th 
this heuristic handles noise better than FOIL and PRO-
GOL. Empirical results also show the effectiveness of this 
heuristic in handling recursive definitions from sparse 
data. Addit ional results are presented to show that this 
heuristic is capable of learning from only positive data 
and from only negative data. 

2 Noise model and the Bayesian 
Heuristic 

We describe a framework of learning for modeling noise 
and fixed example size. Wi th in this framework, we de­
rive a Bayesian heuristic for the opt imal hypothesis. 

Let X denote a countable class of instances. Let Dx 

be a distr ibut ion on the instance space X. Let 
2X be a countable concept class. Let Dc represent the 

Figure 1: Model of positive example generation 

distribution on C. Let H be a hypothesis space and P be 
the distribution (prior) over H. The concept represented 
by a hypothesis h is referred to as the extension of h 
(writ ten: ext(h)). Further, let C and H be such that: 

• for each there is an such that C = 
ext(h); and 

• for each 

Let denote the "proport ion" of the concept C 
with respect to the instance space A', that is, 

We assume that a concept C is chosen wi th the distr i­
bution Dc- Let be the level of noise. Suppose 
we want to generate m positive examples and n negative 
examples (the reader should note that in the fixed noise 
model, m and n are independent of the concept C). 

Now, each of the m positive examples are generated 
as follows: W i t h probabil i ty a instance is randomly 
choose from X and made a positive example (this could 
possibly introduce noise). W i t h probabil i ty an in­
stance is repeatedly selected randomly from X unt i l the 
instance is an element of the concept. This instance is 
the positive example generated. Figure 1 illustrates this 
process. The generation of negative examples is done 
similarly2. 

The fixed example size aspect of the framework makes 
it more flexible than other frameworks that have an im­
plicit expectation that the proportion of positive and 
negative examples reflects the concept. The reader 
should note that this allows learning to take place from 
only positive data and from only negative data in addi­
t ion to the usual combination of positive and negative 
data. 

We now derive a Bayesian heuristic for finding the 
most probable hypothesis h given the example set E.3 

2 The level of noise e can be made different for the positive 
and negative examples, but for simplicity we take it to be the 
same. 

3 All references to example sets are actually references to 
example multisets. 
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This induction can be formally expressed as follows.4 Substitut ing 3 and 4 into 5 and using T P , T N , and 
F P N , we get the following. 

We wi l l apply Occam's razor in computation of P (h ) , 
the prior probabil i ty of the hypothesis h, thereby assign­
ing higher probabilities to simpler hypotheses, 
the probabil i ty of the examples E given that hypoth­
esis h represents the target cpncept, can be calculated 
by taking the product of the conditional probabilities of 
the positive and negative example sets. As each posi­
tive example is generated independently, may 
be calculated by taking the product of the conditional 
probabilities of each positive example. the con­
dit ional probabil i ty of a positive example e given hypoth­
esis h, is computed as follows. 

A few words about the above equation are in order. 
Given that h represents the target concept, the only 
way in which ext(h) is if the right hand path in 
Figure 1 was chosen. Hence, in this case the conditional 
probabil i ty of e given h is On the other hand, if 

then either the left or r ight hand paths in Fig­
ure 1 could have been chosen. The contr ibution of the 
right hand path to is then If the left 
hand path is taken, then the instance drawn is guaran­
teed to be f rom the target concept; hence is 
divided by the proport ion of the target con­
cept to the instance space. By a similar reasoning we 
compute the conditional probabil i ty of a nega­
tive example e given hypothesis h. 

Now substitut ing 6 into 2 and 2 into 1 and perform­
ing addit ional arithmetic manipulat ion, we obtain the 
final where Q(h) is defined 
as follows. 

Hence, in our inductive framework, a learning system 
attempts to maximize Q(h) (referred to as the quality of 
the hypothesis h). A number of theoretical results can be 
shown about this heuristic. For example, the following 
theorem formalizes the intui t ive expectation that if the 
proport ion of a concept to the instance space is small, 
then positive examples are more useful than negative 
ones. 

3 L I M E System 
The above heuristic has been incorporated in an induc­
tive logic programming system, L I M E , as briefly describe 
in this section. We first define the standard setting for 
I LP and discuss how the heuristic can be adapted to this 
setting. We then discuss the architecture of L I M E , end­
ing the section w i th a few words on how L I M E estimates 
prior probabi l i ty of hypotheses. 
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to this setting, we need to interpret h in Equations 1-6 
as 

L I M E ' S functioning may be described in three stages: 
(a) preprocessing of the background knowledge, (b) gen­
eration of candidate clauses, and (c) search for the most 
probable hypothesis. 

L I M E preprocesses the backgound knowledge to iden­
t i fy functional dependencies, type information, and re­
dundancies [McCreath and Sharma, 1995]. This step is 
very helpful in reducing the search space. Most ILP sys­
tems require such information to be explicitly provided 
together w i th data. 

The second phase then uses the above information to­
gether w i th the examples and the background knowledge 
to construct a large set of candidate clauses. These can­
didates are selected on the basis of their potential to form 
part of the most probable hypothesis. Subsets of this set 
are searched for a set of clauses, h, such that the value of 
Q(h) is maximized. Clearly, it is infeasible to examine 
all subsets, although, an exhaustive, but finite, search 
wi l l f ind an opt imal hypothesis. So, we digress a l i t t le 
to describe the following theorem that gives a bound on 
the search space for the most probable hypothesis. 

PROOF: We omit the proof. 
The above result is useful because once the value of 

Q(h) is known for any h H, the system has a bound 
on the prior probabil i ty of the most probable hypoth­
esis, thereby restricting search to a finite well defined 
set of hypotheses. Since there are at least three such 
readily available hypotheses—the hypothesis that entails 
the entire instance space, the hypothesis that entails no 
memebr of the instance space, and the hypothesis that 
exactly entails the positive examples—such a bound can 
be determined. 

The above discussion notwithstanding, it is easy to see 
that the bound sti l l leaves an infeasible amount of search 
to be done. However, these sets form a lattice under 
the subset operation in such a way that the more gen­
eral elements of the latt ice have both lower prior proba-
bl i ty and are more general in terms of the instances they 
cover. This property gives structure to the search space, 
and allows each element in the lattice to be assigned a 
value that estimates an upper bound on the heuristic-
value of more general elements in the lattice. An A*-
like search of this latt ice produces the final hypothesis. 

Entire branches of the lattice may be pruned if the esti­
mated upper bound for a branch is less than the heuris­
t i cs value of the best hypothesis so far. This pruning re­
duces expected execution time significantly. Also, before 
a hypothesis replaces the best hypothesis so far, a PRO­
LOG interperator is used to determine the hypothesis' 
exact coverage, thereby providing a more accurate esti­
mate of the heuristic. This step also removes poorly con­
structed recursive hypotheses, thereby enhancing L I M E ' S 
abil i ty to learn recursive logic programs. A detailed de­
scription of L I M E wi l l be given in a more expanded paper. 

We now briefly discuss the computation of Q(h) for a 
hypothesis h. Prom Equation 7, it is clear that compu­
tat ion of Q(h) requires (i) cardinality of T P , T N , and 
FPN; (ii) 0(ext(h)); and (iii) P{h)—the prior probabil­
i ty of the hypothesis h. Each of the items in (i) can 
be estimated from the example sets, h, and a PROLOG 
interpreter. 0(ext(h)) is estimated by randomly gener­
ating a set of instances and finding the proportion in 
this set of the concept represented by h w i th the help of 
a PROLOG interpreter. The computation of the prior 
P(h) is somewhat involved. Each clause in a hypoth­
esis is considered independent and as more clauses are 
added, the prior probabil ity of a hypothesis decreases. 
The prior probability of a clause is computed from prior 
probability of literals, which in tu rn is computed from 
prior probability of variables. Current implementation of 
L I M E uses the geometric distr ibution in the above com­
putations. However, it turns out that as the number of 
examples increases, the prior probabil i ty of a hypothesis 
h becomes less and less important in the computation 
of Q(h). This result can be formally established using 
the Borel-Cantelli lemma. The details of the P(h) and 
the associated theoretical result wi l l be presented in an 
expanded version of the paper. 

4 Empi r i ca l Results 
We present three sets of experiments to il lustrate how 
L I M E achieves its design goals of better noise handling, 
learning from fixed set of examples, and of learning re­
cursive logic programs. Since these goals are our main 
focus here, we have omitted to include the time perfor­
mance of L I M E . It should be noted that L I M E ' S time 
performance is of the same order as that of the other 
systems being compared in this study. 

No ise 
We first demonstrate L I M E ' S superior noise handling ca­
pabil ity for the simple concept p lus2 , which may be rep­
resented by the following logic program: 

In the above i nc denotes the increment predicate avail­
able as background knowledge. A random selection of 
50 positive and 50 negative examples are given to L I M E . 
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Figure 2: Predictive Error vs Noise for p l us2 

Noise 

Figure 3: Predictive error vs Noise for add 

These examples include noise. The predictive error of 
the induced hypothesis is measured against a noise-free 
test set that is generated by taking the "f irst" 20 positive 
examples and a random selection of 20 negative exam­
ples. This process is repeated 100 times to calculate the 
average predictive error. This is repeated w i th different 
noise levels and the results are shown in Figure 2. The 
error bars in the figure indicate the sample standard de­
viat ion. The results show that LlME is able to correctly 
learn the concept w i th noise levels of up to approxam-
atly 70%. The same test is carried out w i th FOIL and 
PROGOL. 5 

L I M E performs better than FOIL and PROGOL for 
noise levels of up to approximately 70%. Here, FOIL 
overgenerizes inducing a less predictive hypothesis. This 
is mainly due to the covering approach which introduces 
unnecessary clauses. However, for noise levels higher 
than 70%, L I M E , PROGOL and FOIL perform poorly. 

We next show L I M E ' S noise handling abil i ty w i th add 
(the addit ion relat ion)—a more complex target predicate 
that requires a recursive definition. The target concept 
may be represented by the hypothesis: 

This t ime we take a random selection of 200 positive and 
200 negative examples but perform only 20 repeations at 
each noise level. Figure 3 shows the relationship between 
noise and predictive error measured against a noise-free 
test set of the "f i rst" 25 positive examples and a random 
set of 25 negative examples. The results show that gap 
between L I M E and other system widens further when the 
target concept requires a recursive definit ion. Experi­
ments w i th FOIL and PROGOL were l imited to 40% 

and 15% noise levels respectively because the quality of 
the programs output by these systems beyond these noise 
levels were difficlut to assess. 

L e a r n i n g f r o m p o s i t i v e examp les a n d f r o m 
nega t i ve examp les 

Our second set of experiments shows empirical evidence 
for Theorem 1 which implies that positive examples are 
more useful than negative examples for a target concept 
that is "small" w i th respect to the instance space dis­
t r ibut ion. The experiments also give evidence for the 
converse that negative examples are more useful than 
positive examples for a target concept that is "large" 
w i th respect to the instance space distr ibut ion. These 
experiments also establish that L I M E is capable of learn­
ing from only positive data and from only negative data. 

We consider two concepts, the p l u s 2 and n o t p l u s 2 
(the complement of p lus2—tha t is, no tp lus2 (A , B) 
holds if It is easy to see that under rea­
sonable assumptions, p l us2 is a "smal l" concept and 
n o t p l u s 2 is a "large" concept. L I M E is run on exam­
ples of p l us2 and n o t p l u s 2 w i th identical background 
knowledge. The tota l number of examples is invariant 
over each test, however, the number of positive examples 
is increased as the number of negative examples is de­
creased. Each test is repeated 100 times and the results 
for both p l u s 2 and n o t p l u s 2 are shown in Figure 4. 

Recu rs i ve Log i c P r o g r a m s 

Table l6 summarizes experimental results on L I M E ' S 
abi l i ty to learn a number of predicates that require re-
cursive definitions. It should be noted that the data sets 
used in these experiments are noisy and not contiguous. 
FOIL cannot learn these predicates f rom such data sets. 

5 Al l our experiments are with FOIL, version 6.3 and with 
PROGOL, version 4.1. 

6 The column titled "incorrect" denotes the % of incorrect 
examples given to L I M E . 
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Figure 4: Error vs i (i = number of positive examples & 
8-i = number of negative examples) for the p lus2 and 
n o t p l u s 2 logic programs 

Table 1: Some recursive logic programs 

5 Discussion 

Another approach to modeling noise in learning systems 
is due to [Angluin and Laird, 1987]. Their noise level 
parameter measures the percentage of data wi th the in-
correct sign, that is, elements of the concept being mis­
labeled as negative data and vice versa. In their model 
50% noise level means the data is t ru ly random, whereas 
in our model t ru ly random data is at noise level of 100%. 
Thus, in their model it is not useful to consider noise lev­
els of greater than 50%. Our current model requires that 
the noise level be provided to the system. Although this 
may appear to be a weakness, in practice, a reasonable 
estimate suffices, and it can be shown that wi th increase 
in the example size, the impact of an inaccurate noise es­
t imate diminishes. It should be noted that experiments 
reported in this paper always used a noise parameter of 
10% in computing Q(h) even if the actual noise in the 
data was considerably higher. 

Recently, we have become aware of the work of [Mug-
gleton, 1996] in which he has used a Bayesian heuristic 
for learning from only positive data. Interestingly, if 

we take the noise level to be 0 in our model and only 
consider positive examples, then our heuristic becomes 
identical to Muggleton's. 

Future work wil l attempt to derive stochastic conver­
gence in the l imit results for the noise model presented in 
this paper in the style of Laird's [Laird, 1988] result for 
the Angluin-Laird noise model. Another direction would 
be to do adapt the predicative error analysis of [Mug-
gleton, 1996] for the Bayesian heuristic wi th noise and 
fixed example size. On the empirical front, applicability 
of L I M E on additional real-world domains wi l l be inves­
tigated. To this end we would like to note that ini t ial 
experiments wi th L I M E on protein secondary structure 
data show comparable results to G O L E M . 
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