
Abstract 
We analyse the complexity of standard and 
weak model checking for propositional default 
logic; in particular, we solve the open problem 
of complexity in case of normal default theories 
and introduce a new ample class of default the­
ories with a tractable model checking problem. 

1 Introduction and Overview of Results 
The complexity of default reasoning is already well un­
derstood, however, in search of model-based represen­
tations, the complexity of the model checking problem 
instead of the inference problem needs to be analysed. 

As Halpern and Vardi [1991] argue, model checking is 
a beneficial alternative simplifying reasoning tasks (for 
instance, in classical propositional logic, model check­
ing can be done using an easy polynomial algorithm, 
however reasoning is coNP-complete) and allowing for 
representing the agent's knowledge as a semantic struc­
ture instead of a collection of formulae and additionally, 
this approach introduces a kind of closed-world assump­
tion. Furthermore, the complexity of model checking is 
closely related to the notion of representational succinct-
ness [Gogic et al., 1995] of non-monotonic formalisms. 

1.1 Complexity of Inference 
Gottlob [1992] and Stillman [1992] showed that the com­
plexity of brave (cautious) reasoning, i.e. to decide, given 
a formula and a default theory if / is in at least 
one (all) extension(s) of i s c o m p l e t e ( I n ­
complete), even in case of normal and prerequisite-free 
default theories, and even if is a single literal. For 
related results, see [Papadimitriou and Sideri, 1992]. 

The complexity decreases one level if disjunction-free 
default theories are considered, i.e. only conjunctions of 
literals and negated literals are allowed. Kautz and Sel-
man [1991] dealt with the inference problem for such 
theories: Brave reasoning (for disjunction-free formulae) 
is NP-complete, even in the case of normal default theo­
ries (although finding an extension is polynomial in that 
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case) and even if the formula to be inferred of at least one 
extension is a single literal. If W is a Horn theory, NP-
completeness holds even in the case of prerequisite-free 
normal default theories [Stillman, 1990]. 

1.2 Complexity of Model Checking 
An interpretation is a model of a default theory iff it sat­
isfies at least one extension of the theory. Liberatore and 
Schaerf [1998] show that model checking is -complete, 
even for semi-normal prerequisite-free default theories. 
In the case of normal default theories, model checking is 
easier than the corresponding reasoning task - they show 
that the problem is in and -hard, and 
coNP-complete if defaults are also prerequisite-free. 

In general, model checking suffers from two sources 
of hardness: On the one hand there are (with 

possible sets of generating defaults, 
and the other source of intractability is the hardness of 
propositional inference. In case of normal default theo­
ries, given a particular model, only one subset of G needs 
to be considered and therefore the initial guessing stage 
is eliminated. In Theorem 4.1 we show with a non-trivial 
membership proof that this problem is in 
and hence due to earlier results -complete. 
To obtain this theorem we improve techniques of Gott­
lob [1995] for guessing data-structures. 

If the defaults are restricted in such a way that propo­
sitional satisfiability and inference are polynomial, the 
other source of intractability is affected and the problem 
is due to the necessary guessing of generating defaults 
NP-complete. If such a default theory is restricted to 
normal defaults, complexity of model checking is even 
polynomial. Therefore, in Chapter 5, we introduce the 
class of default theories in extended Horn normal form 
(abbreviated as "EHNF default theories"), a class con­
taining disjunction-free default theories, for which model 
checking is still one level easier than for arbitrary default 
theories. A default theory (D, W) is in EHNF iff W and 
all elements of each justification are disjunctions of Horn 
theories, each prerequisite is a conjunction of dual Horn 
theories, and each consequent is a Horn theory. This is 
an ample class of default theories with a tractable model 
checking problem and hence very useful in practical ap­
plications. 
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Table 2: Complexity of Weak Model Checking 

1.3 Weak Model Checking and A E L 
In Chapter 6 we recall the notion of weak extensions 
and show that weak model checking, i.e. deciding if an 
interpretation satisfies at least one weak extension of a 
default theory, is, due to the non-constructive nature of 
the problem, even -complete for normal default theo­
ries and hence strictly harder than model checking. This 
issue is also connected to the fact that no modular trans­
lation from default logic into autoepistemic logic (AEL) 
exists [Gottlob, 1995b], since prerequisites are treated in 
a very different way. The objective parts of stable ex­
pansions (N-expansions) of the translated default theory 
correspond to weak extensions (extensions) of the de­
fault theory, therefore we obtain the complexity of model 
checking for AEL (nonmonotonic logic N) in Chapter 7. 

1.4 S u m m a r y 
In Table 1 and Table 2 a summary of our results for 
model checking and weak model checking with Reiter's 
default logic is presented (the results already present in 
[Liberatore and Schaerf, 1998] are marked with * ) . Ad­
ditionally, the main contributions of this paper are: 

• We solve the open problem of the exact complexity 
of model checking for normal default theories. 

• We introduce a new ample class of default theories 
with a tractable model checking problem. 

• We show that weak model checking is -complete, 
even if restricted to normal default theories. 

• We generalize these results to -completeness of 
model checking with AEL and N. 

• Finally, in Chapter 8 the complexity results of model 
checking are used to draw some interesting conclu­
sions in translatability issues. 

2 Basic Concepts 
A preposit ional default theory [Reiter, 1980] is a pair 
(D, W) where W is a finite set of propositional sentences 
and D is a finite set of defaults. Whenever we use the 
term default theory in the rest of the paper, we mean 
propositional default theory. 

A default d is a configuration of the form 
where are propositional sentences. p(d) 
is called the prerequisite of d, the (non-empty) set 

is referred to as the justification of d and de­
noted by is called the consequent of the default 
d. For convenience we define c(H) = and 
if is a singleton we identify it with its only element. 

Since Reiter's original definition of extensions [1980] 
a great number of equivalent characterizations has been 
introduced. In this paper we normally use a finite quasi-
inductive characterization, based on the operator 
due to Marek and Thuszczyfoki [1993]. 

We define cons(A) as usual as Let H 
be a subset of D: 

As we limit ourselves to finite default theories, it can 
easily be seen that at latest after steps a fixed point 
has been reached. . is an extension 
of (D, W) iff H = H\D\. Every extension is of the form 
E = cons with GD being called the 
generating defaults of the extension. 

In a normal default theory j(d) = c(d) for each default. 
A semi-normal default theory is a theory in which each 
(d) is of the form where are arbitrary 

propositional formulae. 

Def ini t ion 2.1 An interpretation (valuation) is 
model of is model of at least one (con­
sistent) extension of 

Whenever we use the term model we refer to propo­
sitioned Herbrand model The Model Checking problem 
for default logic is to decide, given an interpretation 
and a default theory 

Short Review of Relevant Complexi ty Con­
cepts: The notion of completeness we employ is based 
on many-one polynomial transformability. Recall that 

is the class of decision problems that are solvable in poly­
nomial time on a deterministic oracle Turing machine 
calling an NP-oracle polynomially often. 

The classes have been refined, depending of how 
many oracle calls are needed: Of special interest in 
this paper is the class also known as 

- this is the class of decision problems solv­
able with a logarithmic number of calls to an NP-oracle. 

A survey on already known complexity results for sev­
eral nonmonotonic logics can be found in [Cadoli and 
Schaerf, 1992]. 

1We always implicitly assume that and that the 
PH does not collapse. 
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3 Some Useful Tools 
Due to lack of space, some proofs in the following chap­
ters are sketched or omitted. 

Lemma 3.1 Let be a normal default theory. If 
W is consistent, then there are no mutually in­
compatible defaults and thus only one generating set. 
Lemma 3.2 Let be a monotonic rule-system (or 
a normal or justification-free default theory) where W 
and the consequents of are jointly 
consistent. Then the statement: "At least rules do not 
fire" is equivalent to "It is possible to choose a set B R 
with and interpretations in such 

The following proposition formalizes a technique (bi­
nary search) that is well known in the literature [Wagner, 
1990; Papadimitriou, 1993]. 
P ropos i t i on 3.3 Let be function of 
instances of a problem and be polynomially 
bounded in n, i.e. If the problem of 
deciding is in N P , then the 
computation oj 

Propos i t i on 3.4 M is model of default theory 
{D,W) iff there exists an extension of (D,W) gener­
ated by a subset In 
a normal default theory at most one extension E such 
that exists. 

Propos i t ion 3.5 Let E be an extension of the default 
theory (G, W) and G D. Then, E is an extension of 

4 Model Checking for Normal Default 
Theories is complete 

Theorem 4.1 Let be an interpretation and 
be normal default theory. Deciding whether 

Proof . We describe a Turing machine M which decides 
this problem in polynomial time using an NP-oracle for 
only O(logn) times where n is the number of defaults. 
M works in four steps. 

Step 1: M rejects if W. Let G D be the set 
of all defaults d with c(d). This step determines G 
by sorting out all unwanted ("bad") defaults B = D\G. 
None of the defaults of B shall fire or is not a model 
of this extension (Proposition 3.4). Checking if W 
and constructing G can be achieved in polynomial time. 
In the following, let m be the cardinality of G. 

Step 2: M computes the cardinality of the set G\ of 
generating defaults of the extension, i.e. those defaults 
in G which are applicable because their prerequisites can 
be inferred; due to Lemma 3.1, G1 is unique. M assumes 
that E = cons{W U c{G1)) is an extension, and in step 
3 and 4 M will verify if no "bad" defaults have to be 

used. To compute the cardinality of G1, M determines 
the number of defaults that do not fire. 
We can identify wi th a monotonic rule-system 

in which all consequents are jointly consistent. 
Claim The problem to decide if at least rules of a 
monotonic rule-system (in n rules) do not fire is in N P . 

Proof of Claim: Machine M guesses a data-structure 
with is a set of de­

faults (rules), the are interpretations, 
and proves in polynomial time (using the monotonic 
rule system syntax of Lemma 3.2): W, 

Due 
to Lemma 3.2, this is equivalent to the question if at 
least rules do not fire, i.e. if 

From Proposition 3.3 the number of defaults which 
do not fire can be computed in polynomial time using 
O(logm) calls to an NP-oracle. After concluding this 
step M knows hence 

Step 3: If it can be shown that W and 
is consistent for at least one d є B, then 

G1 is not a set of generating defaults and the given inter­
pretation is not a model for (D, W) (Proposition 3.5). 
Two types of "bad" defaults need to be distinguished: B\ 
is consisting of defaults in which the prerequisites are not 
applicable, formally 
and M determines the exact number of 
defaults in B\ and in the fourth step will check for each 
default in B2, if the justifications are consistent with 

(after guessing the right G1 and B1). 
Claim The problem to decide, given if the number 
of defaults in B1 is at least s, is in N P . 

Proof of Claim: For a given ,s, M guesses a data-
structure 
with are inter­
pretations. Now M proves: 

• 

formation of the cardinality of G1, therefore M now 
just has to guess a G\ of suitable cardinality and 
check if it is the right one.). 

• 

way, then there are at least s not applicable prereq­
uisites of defaults, hence (This statement 
is equivalent to 

Both steps can be concluded in polynomial time and are 
due to the initial guess in N P . 

Hence, can be computed with log 
oracle calls (Proposition 3.3). 

Step 4: In the previous steps M has determined the 
cardinality of B1 and G\. Now M finally has to check 
that is inconsistent for all defaults d 
B2 (if yes, then G\ is a generating set). To this aim, 
let us show that the converse problem is in NP and 
introduce a machine N solving it. 
Claim The problem to decide if W is con­
sistent for at least one d B2, given the cardinality of 
G1 and B1, is in N P . 
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Proof of Claim: Machine N guesses a data-structure 

t ime: 

• Now N just needs to prove that 
W This states the 
fact that there is a default which is consistent wi th 
cons(W c(G1)). 

A l l steps can be concluded in polynomial t ime and are 
due to the in i t ia l guess in N P . 

This means that the output yes of machine N is 
achieved iff there exist defaults of B2 which fire (with 
guessing the only suitable G1 and B\, and The 
converse problem therefore needs merely one (negative) 
oracle call. 

Hence, step 1 to 4 are feasible in polynomial t ime wi th 
calls to three different 

oracles in N P . W i t h standard techniques these three 
oracles can be replaced w i th a single oracle. 

5 E H N F Default Theories 
A default theory is disjunction-free, if W, all 
p(d), all elements of each and all consequents c(d) 
are conjunctions of (negated and not negated) literals. 
A Horn clause is a disjunction of literals wi th at most 
one positive l i teral. A Horn theory is a conjunction of 
Horn clauses. A dual Horn clause is a conjunction of 
literals containing at most one negative l i teral. A dual 
Horn theory is a disjunction of dual Horn clauses. 

Def ini t ion 5.1 A default theory (D,W) is in extended 
Horn normal form (EHNF) iff W and all elements of 
each j(d) are disjunctions of Horn theories, each p(d) 
is a conjunction of dual Horn theories, and each conse­
quent c(d) is a Horn theory. (D,W) is normal, then, 
trivially, the only element of each j(d) is only a Horn 
theory, too. 

This is an ample class of default theories contain­
ing many restricted cases wi th an intractable reason­
ing problem even for normal default theories. However, 
model checking turns out to be tractable for normal 
EHNF default theories. 

T h e o r e m 5.2 Let be an interpretation and 
an EHNF default theory. Deciding whether 
(D,W) is i n N P . 
Proof. (Sketch) Guess G D, compute show 
that G = and A l l satisfiability 
checks are of the form sat and due to 
the deduction theorem, the inference checks are equiv­
alent to A l l these checks are 
polynomial, because satisfiability of a Horn theory and 
tautology checking of a dual Horn theory are tractable; 

furthermore, the question sat is equiva­
lent to sat or . . . or sat(fm) and taut 
is equivalent to taut and . . . and taut ; there­
fore each check can be splitted to a quadratic number 
of checks in the number of disjunctions of W and 
resp. (However, if we would have allowed the con­
sequents to be disjunctions Horn theories, too, the 
number of disjunctions would be exponential in the in­
put length, even if only a logarithmic number of defaults 
would be allowed to have this form.). 

Theorem 5.3 Let be an interpretation and 
be an EHNF default theory. Deciding whether 

is NP-Ziard, even if is prerequisite-free, 
semi-normal, disjunction-free and all consequents are 
single literals. 

Intuit ively, the new atoms are introduced because the 
empty set shall be a model regardless to which evaluation 
of satisfies F. Each extension has to contain, 
for each either iff F is satisfiable it can 
contain all i.e. F is satisfiable iff 

Instead of using a prerequisite-free default theory, in 
the above proof an "almost" normal default theory with 
prerequisites could be used, however the first set of de­
faults of the above proof cannot be presented as nor­
mal defaults unless using weak extensions (Chapter 6) 
or disjunctive default logic of Gelfond et al [1991] (with 

We show that in the case of normal EHNF default the­
ories, model checking is tractable, and moreover belongs 
to the hardest problems in P w.r.t. logspace-reductions. 

Theorem 5.4 Let be an interpretation and (D , W) 
be an EHNF normal default theory. Deciding whether 

is in P. 

Proof. We describe the algorithm given in Figure 1: In 
the while loop, each default of the set G is tested and G\ 
is created. To this aim, the check 
where (each is a Horn 
theory, hence the negation a dual Horn theory) and each 

is splitted to 
dp tautology checks of dual Horn theories, which is poly­
nomial (the boolean functions taut(dualHorntheory) 
and sat{Horntheory) are assumed to be given). If 

then each check was successful and the de­
fault is added to G\. After at most steps, all defaults 
wi th applicable prerequisites w.r.t. G have been added 
to the generating set G\ of . To show, that this 
is a generating set of check that no default of 
D\G is applicable, i.e. either the prerequisite cannot be 
inferred or the justif ication (which is in case of normal 
EHNF default theories only a singleton and only a Horn 
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Figure 1: Deterministic Algorithm of Theorem 5.4 

theory) is not consistent, which is implemented in the 
for each d B loop. If dp (expressing that 
the prerequisite is inferred) and (expressing that 
sat because one disjunction is satisfi-
able, i.e. the justification is consistent with G\), then at 
least one of the "bad" defaults has to be used and is 
not a model. 

Theorem 5.5 Let be an interpretation and 
be an EHNF normal default theory. Deciding whether 

is P-hard, even if is either 
disjunction-free or prerequisite-free. 

Proof . In the case of disjunction-free default theories 
use a reduction of the P-complete problem of reasoning 
in propositional not-free logic programming [Dantsin et 
a/., 1997]. Let be the default theory where each 
clause of P is translated into a normal 
default and the default is added which is 
feasible in logarithmic space since only one new default 
is added. Then iff is in the sta­
ble model of P. In the case of prerequisite-free EHNF 
default theories use a reduction of the (essentially the 
same) P-complete problem if a Horn theory is satisfi-
able and use the default theory with W being a 
Horn theory. 

If a normal default-theory is disjunction-free and 
prerequisite-free the problem no longer remains P-hard 
and can be shown to be in non-deterministic logspace. 

6 Complexity of Weak Model Checking 

E = cons(W is called a weak extension of 
iff H = J (see, e.g. [Marek and Truszczynski, 1993]) and 
H is the weak generating set of this weak extension. 

In prerequisite-free default theories extensions and 
weak extensions coincide. is a weak model of 
iff is a model of at least one (consistent) weak ex­
tension. Every extension is a weak extension, therefore 
every model is a weak model. However, the converse 
does not hold, since not every extension is a subset of a 
weak extension. 
Theorem 6.1 Let be an interpretation and 
be default theory. Deciding if is weak model of 

is -complete, even if is semi-normal 
and prerequisite-free. 

Lemma 3.1 does not hold for weak generating sets, and 
for normal default theories it is neither sufficient to look 
at the largest weak generating set nor at the smallest 
w.r.t. G, hence an exponential number of subsets needs 
to be considered: 
Theorem 6.2 Let be an interpretation and 
be a normal default theory. Then the problem to decide 
if is weak model of complete. 

Proof . (Sketch) We use a transformation from the 
complete problem i.e. the problem of checking 
whether there exists an evaluation of the P, such 
that for each evaluation of the F(P,Q) is true, 
into 

with w and being new atoms. In the full paper we 
show that 

Theorem 6.3 Let be an interpretation and 
be normal prerequisite-free default theory. Then the 
problem to decide if is weak model of is 
coNP -complete. 
Theorem 6.4 Let be an interpretation and 
be an EHNF default theory. Then the problem to decide 
if is weak model of is NP-complete even 
if the theory is disjunction-free and either semi-normal 
and prerequisite-free or normal, and P-complete if the 
theory is prerequisite-free and normal. 

7 Complexity of Model Checking 
with AEL and N 
An interpretation in the language is a propositional 
AEL (N)-model of a set of premises in extended 
with a modal operator) iff satisfies an objective part 
of at least one stable expansion (N-expansion). 
Theorem 7.1 Let be a set of premises in and 
be an interpretation in Deciding if is proposi­
tional AEL (N)-model is -complete. 
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Proof. Hardness: Weak extensions (extensions) of a 
default theory correspond to objective parts of stable ex­
pansions (N-expansions) of the translated theory [Marek 
and TVuszczyriski, 1989; 1993]. 

Membership: In [Gott lob, 1992] it is shown that de­
ciding if a formula is not occuring in all extensions is in 

(using the finitary characterization of Niemela [1991] 
w i th modal subformulae). Consider the propositional 
language and any m o d e l c o n t a i n i n g some 
of these atoms. Then wi th 

and 

8 Translatability Issues 
A pfm-function / : is a function embedding for­
malism A into formalism B fulf i l l ing the additional crite­
r ia of polynomial i ty, faithfulness (extensions/expansions 
coincide in some way) and modular i ty (a propositional 
subtheory can independently be translated) [Janhunen, 
1998; Gott lob, 1995b]. 

We refer to [Eiter and Gott lob, 1995] for details of 
disjunctive logic programming (DLP) (reasoning is as 
hard as in default logic) and to [Inoue and Sakama, 1993] 
for results that DLP can be pfm-embedded into default 
logic. 

T h e o r e m 8.1 Unless the PH collapses, there exists no 
pfm-function embedding default logic, normal default 
logic or disjunction-free default logic into DLP. 

P r o o f . Assume the existence of a pfm-function embed­
ding default logic into disjunctive logic programming; 
then a given default theory would admit the same mod­
els as a pfm-translation into a corresponding disjunctive 
program. However, as model checking wi th disjunctive 
logic programming is only coNP-complete, this implies 
that = c o N P . Contradict ion. 

9 Future Research 
We plan to investigate the complexity of model checking 
for further interesting variants of default logic and other 
nonmonotonic logics. We hope that this wi l l allow us to 
clarify a number of translatabi l i ty issues, akin the result 
of Chapter 8. 
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