
An A l g o r i t h m for Op t ima l Winner Dete rmina t ion i n Combina tor ia l
Auct ions

Tuomas Sandholm*
sandholm@cs.wustl.edu

Department of Computer Science
Washington University

St. Louis, MO 63130-4899
Abs t rac t

Combinator ial auctions, i.e. auctions where
bidders can bid on combinations of items, tend
to lead to more efficient allocations than tra
di t ional auctions in mul t i - i tem auctions where
the agents' valuations of the items are not addi
tive. However, determining the winners so as to
maximize revenue is complete. We present
a search algorithm for opt imal winner deter
minat ion. Experiments are shown on several
bid distributions. The algori thm allows com
binatorial auctions to scale up to significantly
larger numbers of items and bids than prior ap
proaches to opt imal winner determination by
capitalizing on the fact that the space of bids is
necessarily sparsely populated in practice. We
do this via provably sufficient selective gener
ation of children in the search and by using a
method for fast child generation, heuristics that
are accurate and optimized for speed, and four
methods for preprocessing the search space.

1 I n t r o d u c t i o n
Auctions are popular, efficient, and autonomy preserv
ing ways of allocating items among agents. This paper
focuses on auctions wi th mult ip le items to be allocated.

In a sequential auction, the items are auctioned one
at a t ime. If a bidder has preferences over bundles,
i.e. combinations of items (as is often the case e.g.
in electricity markets, equities trading, bandwidth auc
tions [McAfee and McMi l lan , 1996], and transportation
exchanges [Sandholm, 1993]), bidding in such auctions
is diff icult. To determine her valuation for an i tem, the
bidder needs to guess what items she wi l l receive in later
auctions. This requires speculation on what the others
wi l l bid in the future because that affects what items
she wi l l receive. Furthermore, what the others bid in
the future depends on what they believe others wi l l bid,
etc. This counterspeculation introduces computational
cost and other wasteful overhead. Moreover, in auctions
wi th a reasonable number of items, such lookahead in
the game tree is intractable, and then there is no known
way to bid rationally. Bidding rationally would involve
opt imal ly t rading off the cost of lookahead against the
gains it provides, but that would again depend on how
others strike that tradeoff. Furthermore, even if looka
head were computat ional ly manageable, usually uncer
tainty remains about the others' bids because agents do
not have exact informat ion about each other. This often

•Paten t pending since 10/27/1998.

542 DISTRIBUTED Al

leads to inefficient allocations where bidders fai l to get
the combinations they want and get ones they do not.

In a parallel auction the items cire open for auction
simultaneously and bidders may place their bids during
a certain t ime period. This has the ad vantage that the
others' bids part ial ly signal to the bidder what the oth
ers1 bids wi l l end up being so the uncertainty and the
need for lookahead is not as drastic as in a sequential
auction. However, the same problems prevail as in se
quential auctions, albeit in a mit igated form.

Combinatorial auctions can be used to overcome the
need for lookahead and the inefficiencies that stem from
the uncertainties [Rassenti et al, 1982, Sandholm, 1993].
In a combinatorial auction bidders may place bids on
combinations of items. This allows the bidders to express
complementarities between items instead of having to
speculate into an item's valuation the impact of possibly
getting other, complementary items. For example, the
Federal Communications Commission saw the desirabil
i ty of combinatorial bidding in their bandwidth auctions,
but it was not allowed due to perceived intractabi l i ty of
winner determination. This paper focuses on winner de
termination in combinatorial auctions where each bidder
can bid on bundles of indivisible items, and any number
of her bids can be accepted.

2 W i n n e r d e t e r m i n a t i o n
Let M be the set of items to be auctioned, and let. m =
|A/|. Then any agent, /', could place any bid for
any combination The relevant bids are:

Let n be the number of these bids. Winner determi
nation is the following problem, where the goal is to
maximize the auctioneer's revenue:

where is a valid outcome, i.e. an outcome where each
item is allocated to only one bidder:

for every
If each combination S has received at least one bid of

positive price, the search space wi l l look like Fig. 1.
P r o p o s i t i o n 2.1 The number of allocations is
and
The proof is long, and is presented in [Sandholm, 1999].

The graph can be searched more efficiently than ex
haustive enumeration by dynamic programming, which
takes and steps [Rothkopf et al., 1998].
This is sti l l too complex to scale up above about 25
items. Also, dynamic programming executes the same

Figure 1: Space of allocations in a 4-item example. Each
node represents one possible allocation X.

algorithmic steps regardless of which bids have actually
been submit ted.

Some combinations of items may not have received any
bids, so some of the allocations in the graph need not
be considered. Unfortunately no algori thm can find the
opt imal allocation in polynomial t ime in the number
of bids submit ted, unless
P r o p o s i t i o n 2.2 Winner determination is complete.
Proo f . Winner determination is weighted set packing,
and set packing is [Karp, 1972].

Even approximate winner determination is hard:
P r o p o s i t i o n 2.3 No polytime algorithm can guarantee
an allocation within a bound from optimum for any

0 (unless equals probabilistic polytime).
The proof is based on [Hastad, 1999], and is presented
in the ful l length version of this paper [Sandholm, 1999].

If the bids exhibit special structure, better approxima
tions can be achieved in polynomial t ime [Chandra and
Halldorsson, 1999, Halldorsson, 1998, Hochbaum, 1983,
Halldorsson and Lau, 1997], but even these guarantees
are so far f rom opt imum that they are irrelevant for auc
tions in practice [Sandholm, 1999].

Polynomial t ime winner determination can be
achieved by restricting the combinations on which the
agents are allowed to bid [Rothkopf et al., 1998]. How
ever, because the agents may then not be able to bid on
the combinations they want, similar economic inefficien
cies prevail as in the non-combinatorial auctions.

3 Our opt imal search algorithm
The goals of our approach to winner determination are:

• allow bidding on all combinations.
• strive for the opt imal allocation.
• completely avoid loops and redundant generation of

vertices when searching the allocation graph, Fig. 1.
• capitalize heavily on the sparseness of bids. In

practice the space of bids is necessarily extremely
sparsely populated. For example, if there are 100
items, there are combinations, and it would
take longer than the life of the universe to bid on all
of them even if every person in the world submitted
a bid per second. Sparseness of bids implies sparse-
ness of the allocations that need to be checked.

Our algori thm constructively checks each allocation
X that has positive value exactly once, and does
not construct the other allocations. Therefore, un
like dynamic programming, the algori thm only gen
erates those parts of the search space which are ac
tually populated by bids. The disadvantage then is
that the run t ime depends on the bids received.

To achieve these goals, we use a search algori thm that
generates a tree, Fig. 2. Each path in the tree consists
of a sequence of disjoint bids, i.e. bids that do not share
items. As a bid is added to the path, the bid price is
added to the (g-function. A path terminates when all
items have been used on that path. At that point the
path corresponds to a feasible allocation, and the revenue
from that allocation, i.e. the (/-value, can be compared
to the best one found so far to determine whether the
allocation is the best one so far. The best so far is stored,
and once the search completes, that allocation is opt imal .

Figure 2: A search tree generated by our algori thm.

The naive method of constructing the search tree
would include all bids (that do not include items that
are already on the path) as the children of each node.
Instead, the following proposition enables a significant
reduction of the branching factor by capitalizing on the
fact that the order of the bids on a path does not matter.

P r o p o s i t i o n 3.1 Every allocation will be explored ex
actly once in the tree if the children of a node are those
bids that

• include the item with the smallest index among the
items that are not on the path yet, and

• do not include items that are already on the path.

P r o o f . We first prove that each allocation is generated
at most once. The first bullet leads to the fact that an
allocation can only be generated in one order of bids on
the path. So, for there to exist more than one path for a
given allocation, some bid would have to occur mult iple
times as a child of some node. However, the algori thm
uses each bid as a child for a given node only once.

What remains to be proven is that each allocation is
generated. Assume for contradiction that some alloca
tion is not. Then, at some point, there has to be a bid
in that allocation such that it is the bid wi th the item
wi th the smallest index among those not on the path,
but that bid is not inserted to the path. Contradiction D

Our search algori thm restricts the children according
to the proposition, Fig. 2. This can be seen for example
at the first level because all the bids considered at the

SANDHOLM 543

first level include i tem 1. The min imal index does not
coincide w i th the depth of the search tree in general.

The auctioneer's revenue can increase if he can keep
items. Tha t can be profitable if some item has received
no bids on its own. For example, if there is no bid for
i tem 1, a $5 bid for i tem 2, and a $3 bid for the combina
t ion of 1 and 2, it is more profitable for the auctioneer to
keep 1, and to allocate 2 alone. Such optimization can
be implemented by placing dummy bids of price zero
on those individual items that received no bids alone,
Fig. 2. For example, if i tem 1 had no bids on it alone
and dummies were not used, the tree under 1 would not
be explored and opt imal i ty could be lost. When dummy
bids are used, the resulting search generates each alloca
t ion that has positive revenue exactly once (and searches
through no other allocations). This guarantees that the
algori thm finds the opt imal solution. Throughout the
rest of the paper, we use this dummy bid technique.

3 .1 O p t i m i z e d g e n e r a t i o n o f c h i l d r e n
The main search algorithm uses a secondary depth-first-
search (DFS) to quickly determine the children of a node.
The secondary search occurs in a data structure which
we call the Bidtree. It is a binary tree in which the bids
are inserted up front as the leaves. Only those parts of
the tree are generated for which bids are received, Fig. 3.
What makes the data structure special is the use of a

Stopmatk

Figure 3: The Bidtree data structure.

Stopmask. The Stopmask is a vector w i th one variable
for each auctioned i tem. If the variable corresponding
to an i tem has the value B L O C K E D , those parts of the
Bidtree are pruned instantaneously (and in place) that
contain bids containing that i tem. In other words, search
in the Bidtree wi l l never progress left at that level. If the
item's variable has the value MUST, all other parts of
the Bidtree are pruned instantaneously and in place, i.e.
search cannot progress right at that level. The value
A N Y corresponds to no pruning based on that i tem: the
search may go left or r ight.

To start, the first i tem has value MUST in the Stop-
mask, and the others have A N Y . The first child of any
given node in the main search is determined by a DFS
f rom the top of the Bidtree. The siblings of that child
are determined by backtracking in the Bidtree after the
main search has explored the tree under the first child.
As a bid is appended to the path of the main search,
B L O C K E D is inserted in the Stopmask for each i tem of
that b id . Tha t implements the branching reduction of
the main search based on the second bullet of Prop. 3.1.

MUST is inserted at the unallocated i tem w i th the small
est index. That implements the branching reduction of
the main search based on the first bullet of Prop. 3.1.
These MUST and B L O C K E D values are changed back
to A N Y when backtracking a bid f rom the path of the
main search, and MUST is reallocated to the place where
it was before that bid was appended to the path.

The secondary search can be implemented to execute
in place, i.e. wi thout memory allocation dur ing search.
That is accomplished via the observation that recursion
or an open list is not required because in DFS, to decide
where to go next, it suffices to know where the search
focus is now, and from where it most recently came.

3 .2 A n y t i m e w i n n e r d e t e r m i n a t i o n v i a
d e p t h - f i r s t - s e a r c h (D F S)

We first implemented the main search as DFS which ex
ecutes in linear space. The depth-first strategy causes
feasible allocations to be found quickly (the first one is
generated in linear t ime when the first search path ends),
and the solution improves monotonically since the al
gor i thm keeps track of the best solution found so far.
This implements the anytime feature: if the algori thm
does not complete in the desired amount of t ime, it can
be terminated prematurely, and it guarantees a feasible
solution that improves monotonically over t ime. When
testing the anytime feature, it turned out that in practice
most of the revenue was generated early on as desired,
and there were diminishing returns to computat ion.

3 .3 P r e p r o c e s s i n g
Our algori thm preprocesses the bids in four ways to make
the main search faster wi thout compromising opt imal i ty.
The next subsections present the preprocessors in the
order in which they are executed.

P R E 1 : K e e p o n l y t h e h i ghes t b i d f o r a c o m b i n a t i o n
As a bid arrives, it is inserted into the Bidtree. If a bid
for the same S already exists in the Bidtree, only the
bid wi th the higher price is kept, and the other bid is
discarded. We break ties in favor of the earlier bid.

P R E 2 : R e m o v e p r o v a b l y n o n c o m p e t i t i v e b i ds
This preprocessor removes bids that are provably non
competit ive. A bid (prunee) is noncompetit ive if there is
some disjoint collection of subsets of that bid such that
the sum of the bid prices of the subsets exceeds or equals
the price of the prunee bid. For example, a $10 bid for
items 1, 2, 3, and 4 would be pruned by a $4 bid for
items 1 and 3, and a $7 bid for items 2 and 4.

To determine this we search, for each bid (potential
prunee), through all combinations of its disjoint subset
bids. This is the same DFS as the main search except
that it restricts the search to those bids that only include
items that the prunee includes (Fig. 4): B L O C K E D is
kept in the Stopmask for other items.

Especially w i th bids that contain a large number of
items, PRE2 can take more t ime than it saves in the main
search. In the extreme, if some bid contains all items,
the preprocessing search wi th that bid as the prunee is
the same as the main search (except for one main search

544 DISTRIBUTED Al

share items. PRE4 is used as a part ia l preprocessor like
PRE2, wi th caps T or instead of T or PRE4
runs in t ime. Handl ing 3-tuples would in
crease this to , etc. Handl ing large tuples
also slows the main search because it needs to ensure
that noncompetitive tuples do not exist on the path.

As a bid is appended to the path, it excludes f rom
the rest of the path those other bids that constitute a
noncompetitive pair w i th i t . Our algor i thm determines
this quickly as follows. For each bid, a list of bids to
exclude is determined in PRE4. In the main search, an
exclusion count is kept for each b id, start ing at 0. As
a bid is appended to the path, the exclusion counts of
those bids that it excludes are incremented. As a bid
is backtracked from the path, those exclusion counts are
decremented. Then, when searching for bids to append
to the main search path from the Bidtree, only bids wi th
exclusion count 0 are accepted.1

3 .4 I D A * a n d h e u r i s t i c s
We sped up the main search by using an iterative deep
ening A* (IDA*) search strategy [Korf, 1985] instead of
DFS. The search tree, use of the Bidtree, and the prepro
cessors stay the same. At each iteration of IDA*—except
the last—the I D A * threshold gives an upper bound on
solution quality. It can be used, for example, to commu
nicate search progress to the auctioneer.

Since winner determination is a maximization prob
lem, the heuristic function h should never underestimate
the revenue from the items that are not yet allocated in
bids on the path because that could lose opt imal i ty. We
designed two heuristics that never underestimate: ...

2. As above, but accuracy is increased by recomput
ing c(i) every t ime a bid is appended to the path
since some combinations S are excluded: some of
their items are on the path, or they constitute a
noncompetitive pair w i th some bid on the path.

We use (2) wi th several methods for speeding it up. A
tal ly of h is kept, and only some of the c(i) values in h
need to be updated when a bid is appended to the path.
In PRE4 we precompute for each bid the list of items
that must be updated: items included in the bid and
in bids that are on the bid's exclude list. To make the
update even faster, we keep a list for each item of the
bids in which it belongs. The c(i) value is computed by

traversing that list and choosing the highest among
the bids that have exclusion count 0. So, recomputing h

l P R E 2 and PRE4 could be converted in to anyt ime preproces
sors w i thout compromising op t ima l i t y by s tar t ing w i th a small
cap, conduct ing the searches, increasing the cap, reconduct ing the
searches, etc. Preprocessing would stop when it is complete (cap
= n) , the user decides to stop i t , or some other stopping cr i ter ion
is met. PRE2 and PRE4 could also be converted into approximate
preprocessors by al lowing prun ing when the sum of the pr imers'
prices exceeds a f ixed f ract ion of the prunee's price. This would
allow more bids to be pruned which can make the main search
faster, but i t can compromise opt imal i ty .

SANDHOLM 545

Figure 4: A search tree generated for one prunee in
PRE2. The dotted paths are not generated because
pruning occurs before they are reached.

path that contains that bid only). To save preprocessing
t ime, PRE2 is carried out part ial ly. Some of the noncom
petit ive bids are left unpruned, but that wi l l not affect
opt imal i ty of the main search—although it can make it
slower. We implemented two ways of restricting PRE2:

1. A cap, T, on the number of pruner bids that can be
combined to t ry to prune a particular prunee bid.
This l imi ts the depth of the search in PRE2 to I\

2. A cap, on the number of items in a prunee bid.
Longer bids would then not be targets of pruning.
This entails a cap, on tree depth. It also tends
to exclude wide trees because long prunees usually
lead to trees w i th large branching factors.

W i t h either method PRE2 takes t ime, which
is polynomial for a constant cap (there are n prunees, the
tree for each is and finding a child in the Bidtree
is O(m)). The latter method is usually preferable. It
does not waste computat ion on long prunees which take a
lot of preprocessing t ime and do not significantly increase
the main search t ime. This is because the main search is
shallow along the branches that include long bids: each
i tem can only occur once on a path and a long bid uses
up many items. Second, if the bid prices are close to
additive, the former method does not lead to pruning
when a path is cut prematurely based on the cap.

P R E 3 : D e c o m p o s e b i d s i n t o c o n n e c t e d sets
The bids are part i t ioned into sets such that no item is
shared by bids from different sets. PRE4 and the main
search are then done in each set of bids independently,
and using only items included in the bids of the set. The
sets are determined as follows. We define a graph where
bids are vertices, and two vertices share an edge if the
bids share items. We generate an adjacency list repre
sentation of the graph in t ime. We use DFS to
generate a depth-first forest of the graph in
t ime. Each tree is then a set wi th the desired property.

P R E 4 : M a r k n o n c o m p e t i t i v e t u p l e s o f b i ds
Noncompetit ive tuples of disjoint bids are marked so that
they need not be considered on the same path in the
main search. For example, the pair of bids $5 for items
1 and 3, and $4 for items 2 and 5 is noncompetitive if
there is a bid of $3 for items 1 and 2, and a bid of $7 for
items 3 and 5. Noncompetit ive tuples are determined as
in PRE2 except that now each prunee is a v i r tual bid
that contains the items of the bids in the tuple, and the
prunee price is the sum of the prices of those bids.

For computat ional speed, we only mark 2-tuples, i.e.
pairs of bids. A pair of bids is excluded also if the bids

takes O(nin) t ime, where m is the number of items that
need to be updated, and n is the (average or greatest)
number of bids in which those items belong.2

On the last I D A * i terat ion, the I D A * threshold is al
ways incremented to equal the revenue of the best solu
t ion found so far in order to avoid futi le search. In other
words, once the first solution is found, the algorithm
converts to branch-and-bound wi th the same heuristic.

4 Experimental setup
Not surprisingly, the worst case complexity of the main
search is exponential in the number of bids. However,
unlike dynamic programming, this is complexity in the
number of bids actually received, not in the number of
allowable bids. To determine how the algori thm does in
practice, we ran experiments on a regular uniprocessor
workstation (360MHz Sun Ul t ra 60 w i th 256 M R A M) in
C-f-f w i th four different bid distr ibutions:

• R a n d o m : For each bid, pick the number of items
randomly from l , 2 , . . . , m . Randomly choose that
many items wi thout replacement. Pick the price
randomly from [0,1].

• W e i g h t e d r a n d o m : As above, but pick the price
between 0 and the number of items in the b id.

• U n i f o r m : Draw the same number of randomly cho
sen items for each b id. Pick the prices from [0,1].

• Decay : Give the bid one random i tem. Then re
peatedly add a new random item wi th probabil i ty
a unt i l an i tem is not added or the bid includes all
m items. Pick the price between 0 and the number
of items in the bid.

If the same bid was generated twice, the new version was
deleted and regenerated. So if the generator was asked
to produce e.g. 500 bids, it produced 500 different bids.

We let all the bids have the same bidder. This conser
vative method causes PRE1 to prune no bids. In prac
tice, the chance that two agents bid on the same combi
nation of items is often small anyway because the num
ber of combinations is large However, in some
cases PRE1 is very effective. For example, it prunes all
of the bids except one if all bids are placed on the same
combination by different bidders.

5 Experimental results
We focus on I D A * because it was two orders of mag
nitude faster than DFS. We lower the I D A * threshold
between iterations to 95% of the previous threshold or
to the highest / = g + h that subceeded the previous
threshold, whichever is smaller. Experimentally, this
tended to be a good rate of decreasing the threshold.

2 P R E 2 and PRE4 use DFS because due to the caps their execu
t ion t ime is negligible compared to the main search. Al ternat ively
they could use I D A * . Unl ike in the main search, the c(i) values
should be computed using only combinations 5 that are subsets of
the prunee. The threshold for I D A * can be set to the prunee bid's
price (or a f ract ion thereof in the case of approx imat ion) , so I D A *
wi l l complete in one i tera t ion. Final ly, care needs to be taken that
the heurist ic and the tuple exclusion are handled correctly since
they are based on the results of the preprocessing itself.

If it is decreased too fast, the overall number of search
nodes increases because the last i terat ion becomes large.
If it is decreased too slowly, the number of search nodes
increases because new iterations repeat a large port ion
of the search from previous iterations.

For PRE2, the cap = 30 gave a good compromise
between preprocessing t ime and main search t ime. For
PRE4, = 20 led to a good compromise. These values
are used in the rest of the experiments. W i t h these caps,
the hard problem instances wi th short bids get prepro-
cessed completely, and PRE2 and PRE4 take negligible
t ime compared to the main search because the trees un
der such short prunees are small. The caps only take
effect in the easy cases wi th long bids. In the uniform
distr ibut ion all bids are the same length, so PRE2 does
not prune any bids because no bid is a subset of another.

PRE3 saved significant t ime on the uniform and de
cay distributions by part i t ioning the bids into sets when
the number of bids was small compared to the number
of items, and the bids were short. In almost all experi
ments wi th random and weighted random, al l bids fell in
the same set because the bids were long. In real world
combinatorial auctions it is likely that the number of
bids wi l l significantly exceed the number of items which
would suggest that PRE3 does not help. However, most
bids wi l l usually be short, and the bidders' interests often
have special structure which leads to some items being
independent of each other, and PRE3 capitalizes on that.

The main search generated 35,000 nodes per second
when the number of items was small , e.g. 25, and the
bids were short. This rate decreased slightly wi th the
number of bids, but significantly wi th the number of
items and bid size. W i th the random distr ibut ion wi th
400 items and 2000 bids, the search generated only 9
nodes per second. However, the algor i thm solved these
cases easily because the search paths were short and the
heuristic focused the search well. Long bids make the
heuristic and exclusion checking slower but the search
tree shallower which makes them easier for our algori thm
than short bids overall. This observation is further sup
ported by the results below. Each point in each graph
represents an average over 20 problem instances. The
search times presented include all preprocessing times.

The random distr ibut ion was easy, Fig. 5, since the
search was shallow because the bids were long. The
weighted random distr ibut ion was even easier. The
curves become closer together on the logarithmic value
axis as the number of items increases, which means that
search t ime is polynomial in items. In the weighted
random case, the curves are sublinear meaning that
search t ime is polynomial in bids as well, while in the
unweighted case they are roughly linear meaning that
search t ime is exponential in bids.

The uni form distr ibut ion was harder, Fig. 6 left. The
bids were shorter so the search was deeper. The curves
are roughly linear so complexity is exponential in bids.
The spacing of the curves does not decrease significantly
indicating that complexity is exponential in items also.
Fig. 6 right shows complexity decrease as bids get longer.

546 DISTRIBUTED Al

Figure 6: Search t ime for the uniform distr ibut ion.
The decay distr ibut ion was also hard, Fig. 7 left.

However, the curves get closer together as the number
of items increases: complexity is polynomial in items.
Complexity first increases in and then decreases,
Fig. 7 r ight. Left of the max imum, PRE3 decomposes
the problem leading to small , fast searches. The hard
ness peak moves left as the number of bids grows because
the decomposition becomes less successful. Right of the
max imum, all bids are in the same set. The complex
i ty then decreases wi th a because longer bids lead to
shallower search.

But what happens if agent 1 bids b1 ({1 }) =
$5, 61({2}) = $4, and b1({1 ,2 }) = $7, and there are no
other bidders? The auctioneer could allocate items 1
and 2 to agent 1 separately, and that agent's bid for the
combination would value at $5 + $4 = $9 instead of $7.
So, the current techniques focus on capturing synergies
(positive complementarities) among items. In practice,
local subadditivities can occur as well. For example,
when bidding for a landing slot for a plane, the bidder
is wi l l ing to take any one of a host of slots, but does not
want more than one. To address this we developed a
protocol where the bidders can submit XOR-bids in our
auction server, i.e. bids on combinations such that only
one of the combinations can get accepted. This allows
the bidders to express general preferences wi th both pos
it ive and negative complementarities, see also [Rassenti
et al., 1982]. The winner determination algor i thm of this
paper can be easily generalized to XOR-bids by marking
(as in PRE4) noncompetitive those pairs of bids that
are mutual ly exclusive. These extra constraints cause
the algorithm to run faster for XOR-bids than for the
same number of nonexclusive bids.

Our server also allows there to be mult ip le units of
each i tem. The winner determination algori thm then
needs to keep track of the sum of the units consumed
for each item separately on the main search path. For
the mul t i -uni t setting, the h-function can be improved to
differentiate between the potential future contributions
of units of different items.

Currently we are developing winner determination al
gorithms for combinatorial double auctions which in
clude mult iple buyers and mult iple sellers.

References
[Chandra and Halldorsson, 1999] B Chandra and M IIalldorsson.

Greedy local search and weighted set packing approximat ion In
SI AM-ACM Symposium on Discrete Algorithms

[Halld6rsson and Lau , 1997] M Halld6rsson and H Lau Low-degree
graph par t i t ion ing via local search w i th applications to constraint
satisfaction, max cut , and 3-coloring. J.of GraphAlg.Appl. 1 (3)1 13

[Halldorsson, 1998] M Halld6rsson Approximat ions of independent
sets in graphs. In Intl. Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, p. 1-14, Aa lborg , Den
mark. Springer LNCS 1444

[Hastad, 1999] Johan Hastad. Clique is hard to approximate wi th in
Acta Mathematica, 1999 To appear Draf t Royal Inst i tute

of Tech., Sweden, 8 /11 /98 . Early version FOCS-96, G27---636.
[Hochbaum, 1983] Dor i t S. Hochbaum. Efficient bounds for the sta

ble set, vertex cover, and set packing problems Discrete Applied
Mathematics, 6 243-254

[Karp, 1972] R Karp Reducibi l i ty among combinator ia l problems
In Raymond Mi l ler and James Thatcher, editors, Complexity of
Computer Computations, pages 85-103. Plenum Press, NY

[Korf, 1985] R Kor f Depth-f i rst i terative-deepening: An opt imal ad
missible tree search. Artificial Intelligence, 27(1) 97-109.

[McAfee and McMi l l an , 1996] R P McAfee and J McMi l l an Analyz
ing the airwaves auct ion. J. of Econ. Perspectives, 10(1) 159-175.

[Rassenti et al., 1982]S Rassenti, V Smith and R Bul f in A combina
tor ia l auct ion mechanism for a i rpor t t ime slot al locat ion Bell J. of
Economics 13402-417.

[Rothkopf et al., 1998] M Rothkopf, A Pekec, and R Harstad Com
putat ional ly manageable combinator ia l auctions. Management Sci
ence, 44(8)1131-1147. Draf t : Rutgers Center for OR report 13-95

[Sandholm, 1993) T Sandholm An implementat ion of the contract net
protocol based on marginal cost calculations. In AAAAI, p. 256 262

[Sandholm, 1999] T Sandholm. An a lgor i thm for opt imal winner de
terminat ion in combinator ia l auctions WUCS-99-01, Washington
University, Dept. of Computer Science, January.

SANDHOLM 547

Figure 5: Search t ime for the random and weighted ran
dom distr ibutions. In the random distr ibut ion, the point
wi th 1,000 bids and 200 items is unusually high due to
one hard outl ier among the 20 problem instances.

Figure 7: Search t ime for the decay distr ibut ion.

6 Conclusions and generalizations
We presented a search algori thm for opt imal winner de
terminat ion in combinatorial auctions. It allows combi
natorial auctions to scale up to significantly larger num
bers of items and bids than previous approaches to op
t ima l winner determination. The I D A * search can also
be distr ibuted across mult ip le computers for additional
speed. We believe that our algori thm wi l l make the dif
ference between being able to use a combinatorial auc
t ion design in many practical markets and not.

The algor i thm can also be used to solve weighted set
packing, independent set, and maximum clique problems
because they are in fact the same problem. So is coalition
structure generation in characteristic function games.

The methods discussed so far are based on the com
mon assumption that bids are superadditive:

