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Abs t rac t 
Singapore has one of the busiest ports in the 
world. Ship berthing is one of the problems 
faced by the planners at the port. In this pa
per, we study the ship berthing problem. We 
first provide the problem formulation and study 
the complexity of the problem with different re-
strictions. In general, the ship berthing prob
lem is NP-complete, although, some of its vari
ants may be solved quickly. While a geometri
cal model is intuitive, the model cannot be eas
ily extended to handle clearance constraints and 
berth restriction. Rather than solving the prob
lem geometrically, we transform the problem 
tnto the problem of fixing directionsof edges ,n 
graph to form directed acyclic graph with min
imal lonqest path. Since the problem is NP-
complete, solving the problem exactly in poly-
nomial time is highly unlikely. As a result, we 
devise a fast and effective greedy algorithm to 
can generate good solutions. The greedy method 
together with a tabu search like post optimiza
tion algorithm is able to return optimal or near 
optimal solutions. 

1 I n t r o d u c t i o n 
Situated at the crossroads of the world, the Port of Sin
gapore is one of the world's busiest port. Every few 
minutes a ship arrives or departs the port. Every month 
the port handles more than one mill ion transhipment 
containers. 

When a ship arrives at the port, the planners must 
first decide where to berth the ship for the unload
ing and loading of containers. For the containers that 
are to be unloaded, the planners must decide where to 
place these containers in the yard. The wharf line of 
the port is divided into sections, and no ship can be 
berthed across any two sections. Which section to as
sign a ship to and exactly where to berth a ship within 
a section depend on factors like the locations of con
tainers to be loaded and unloaded, the physical (i.e. 
depth of the berth) and resource limitations (i.e. suit
ably of quay crane) of each berth. A sketch of a port 

is given in Figure 1. The allocation of ships to sec
tions and placement of containers in the yard is stud
ied by L im [Lim, 1998]. The approach used is a variant 
of graph partitioning problem. Allocation of vessels to 
sections were also studied by Brown [Brown et al., 1994; 
1997]. 

One of the subproblems in [Lim, 1998] is the ship 
berthing problem. The ship berthing problem was stud
ied by HenglHeng, Khoong, and L im, 1996J using a 
mixed integer linear programming model. Their model 
assumed constant inter-ship clearance distance and con
stant end-berth clearance distance. While their model 
worked reasonably well on historical test data, it did 
quite badly on fully packed test cases. Their approach 
is also computationally intensive. As the ship berthing 
problem is only a subproblem which is called many times 
in the berth yard planning system, it needs to be compu
tationally efficient. Heng's version of the problem is also 
very closely related to the offline version of the dynamic 
storage allocation problem [Wilson et al, 1995]. Because 
the dynamic storage allocation problem is a special case 
of the ship berthing problem, the ship berthing problem 
is NP-Complete [Garey and Johnson, 1979] 

2 P r o b l e m Fo rmu la t i on 
Ships come in different lengths and they arrive at the 
port at different times to be berthed. Every ship has an 
expected duration of stay which may be different from 
another ship. To berth a ship is to place the ship along 
the wharf line of a section. Once a ship is berthed, it 
wil l not be moved unti l its departure time. When two 
ships are berthed side by side, a certain minimum inter-
shipdearance distance must be observed. Each ship 
has an inter-ship clearance distance which is dependent 
on the ship's length. The minimum inter-ship clearance 
distance of two ships berthed side by side is the larger 
of the two ships' inter-ship clearance distances. If a ship 
is berthed at the end of a section, a certain end-berth 
clearance distance must be observed. This end-berth 
clearance distance is not fixed and is dependent on the 
ship. A ship can also be given a fixed berthing location 
within a section. A ship may also be prohibited from 
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Figure 1: Sketch of a port 

berthing at certain parts of a section. A berth plan for 
a set of ships in a section is the exact locations of ships 
within the section. 

We can represent a ship geometrically by a rectangle 
such that the height of the rectangle is the length of the 
ship and the length of the rectangle is the duration of its 
stay. The left edge of the rectangle represents the arrival 
time of the ship. The right edge represents the departure 
time of the ship. A section can be represented geomet
rically by an infinitely long rectangle where its height 
represents the length of the section and the length repre
sents the time axis. We can associate a coordinate with 
the left bottom corner of the geometric representation 
of each ship. The x-coordinate is fixed as it represents 
time of arrival, but the y-coordinate is not known un
less the ship has a preassigned berth location. The Ship 
Berthing Problem is to decide the y-coordinates of the 
set of boxes in the long rectangle of the section such that 
all rectangles representing ships are non-overlapping and 
are within the rectangle of the section with all clearance 
distances are satisfied. Figure 2 clarifies the transforma
tion. 

Let us define the problem formally. Let S be the set 
of ships and  
be the start wharf mark of the berthing location, length, 
arrival t ime, duration of stay, inter-ship clearance dis
tance, end-berth clearance distance, and the set of for
bidden berth positions respectively of Ship 5,. When 
is berthed at wi l l occupy wharf mark from to 

from time to time is a set of intervals 
in the section in which ship i cannot be berthed. If 
is berthed at 6,, the interval should not inter
sect with any interval in For a clearer picture of the 
above definitions, please refer to Figure 2. 
The optimization version of the Ship Berthing Problem 

(SBP) is defined Figure 2, where L is the wharf length: 

The decision version of the Ship Berthing Problem is 
similar to the SBP problem. A l l we need to do is to 
remove the objective function to Minimize L and assume 
that L is given. 

2.1 Complexity 
Lemma 1 where 
C1,C2 and C3 are constants, the ship berthing problem 
can be solved in O(nlogn) time. 
Proof : The above problem can be transformed to the 
problem of coloring of interval graphs by first partit ion
ing the section into fixed berths and sorting 
the ships, in non-decreasing order based on the arrival 
times, followed by assigning the ships in the sorted order 
to the fixed berths using the criteria of most recently 
used available berth. This algorithm takes O(n logn) 
time.  

Biro[Biro et al., 1992] showed that 1-precoloring 
of interval graph is polynomial time solvable and 2-
precoloring is NP-Complete. Using his results, if  

and C3 are 
constants, and if some of the ships are preassigned to a 
single berth, then the problem remains polynomial time 
solvable. If some of the ships are preassigned to 2 berths, 
then the problem becomes NP-complete even if the ships 
have the same length and clearance distances. 

In the next section, we wil l show the that berth 
planning problem is NP-complete. Our reduction uses 
the PARTITION problem which is known to be NP-
Complete. The definition of the partit ion problem is 
given below: 

L e m m a 2 The berth planning problem is NP-Complete. 
Proof : If we set all inter-ship clearances and end-berth 
clearances to be zero the berth planning problem is ex
actly the same as the dynamic storage allocation prob
lem [Garey and Johnson, 1979]. The dynamic storage 
allocation problem has been shown to be NP-complete 
by Stockmeyer using the 3-PARTITION problem. How
ever, this result is not published [Garey and Johnson, 
1979]. In this section, we shall sketch a simple reduction 
using the PARTITION problem. Let  
We use the triple to represent the ship 5,, 
where are the length, arrival time and the du
ration of stay of the ship repectively. Let  

where 
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For the set if there are only 2 berth 
plans (in fact one is a reflection of the other). In 
both of these plans, there are two unoccupied regions 
of equal size. One is from wharf mark 1 to from 
time unit 2 to time unit 3. The other is from wharf 
mark to T -f 2 from time unit 2 to unit 3. Let 
SB = where =  
Clearly, if there is a berth plan where then 
the set SB must be partitioned into two disjoint subsets 
such that the sum of lengths of ships in the two sub
sets are the same. It is clear that the transformation 
wi l l only take polynomial time. It is also clear that the 
problem is in NP. Hence, the berth planning problem is 
NP-complete.  

Since the berth planning problem is NP-Complete, it 
is highly unlikely that a fast algorithm can be devised to 
solve the problem optimally. 

3 Graph M o d e l 
While the geometrical model is visually attractive, it 
cannot be extended to handle clearance constraints and 
berth restriction constraints easily. In this section, we 
shall transform our geometrical representation of the 
Ship Berthing Problem to a graph, For each ship 

we have a vertex in The weight of vertex 
is set to which is the length of the ship If two 

ships have time overlap, then there is an edge 
linking the 2 vertices and The weight of 

the edge is the larger of the two ships inter-ship 
clearance distances, i.e. For each ship  
there are 2 additional vertices and These vertices 
have weights 0. There is a directed edge and 
another directed edge The weight of these 
directed edges is the end-berth clearance  

If a ship is required to be fixed at a particular berth 
location k (i.e. = k and wi l l occupy wharf mark 
from within the section, we wil l add two ver
tices u\ and u*i and two edges and  
u1 and wi l l have vertex weight of 0. and 

wil l have edge weight of k and ). 
Similarly, a ship may not be permitted to berth from 
wharf mark p to wharf mark q. We can handle this situa
tion by creating a fictitious ship which is fixed at location 
p wi th length which has a hypothetical time 
overlap with only ship Using such a transformation, 
berth restrictions for ships can be handled consistently. 

At the end of the transformation, we have a graph con
sisting of directed and undirected edges. Let us pick an 
undirected edge = exists because ship  
and ship have a time overlap. This implies that both 
ship and ship cannot share any part of the section. 
If ship is berthed at a lower wharf mark, (a wharf 
mark is a particular position in a section) than ship 
we wi l l set the edge to become Sim
ilarly, if ship is berthed at a lower wharf mark than 

ship , we wi l l set the edge to go from vertex to 
vertex i.e. The ship berthing problem has 
been transformed to a problem of setting the directions 
of undirected edges in the graph such that the graph be
comes directed acyclic and the longest path in the graph 
is minimized. The length of a path in our graph is the 
sum of all vertex weights and edge weights of all vertices 
and edges in the path. 

The directed acyclic condition of the graph is impor
tant as the directions of the edges represent relative 
berth locations, therefore it is impossible to have a sit
uation such that ship is berthed at a lower location 
than ship and ship is berthed at a lower location 
than ship and ship is berthed at a lower location 
than ship Therefore, when we set the direction of 
the undirected edges we must not create any cycle. The 
length of the longest path in the directed acyclic graph 
created is the minimum length required in the section to 
berth the set of ships S. 

L e m m a 3 The Ship Berthing Problem can be trans-
formed to a problem of fixing the directions of some edges 
in a graph such that the graph becomes directed acyclic 
and the longest path in the graph is no more than the 
section length. 

Proof : Obvious from the above discussion.  
It is clear that the optimization version of the Ship 

Berthing Problem can be transformed to a problem of 
fixing the directions of edges in a graph such that the 
graph becomes directed acyclic and the longest path in 
the graph is minimized. In the worst case, only 0(n) of 
the decision versions of the problem need to be solved 
through the use of binary search on L. 

4 An Effective Greedy A l g o r i t h m 
In this section, we shall discuss our heuristic for fixing 
the edge directions in our graph representation to create 
a DAG with the minimum longest path. Before describ-
ing the algorithm, let us define the following. Let be 
the edge between vertices and If is undirected, 
it can be set in two directions, namely from to or 
from to  

is the longest incoming path of vertex  
is the longest outgoing path from vertex  

and are the weights of v e r t e x a n d edge 
(i,j) respectively. 

For every undirected edge, the potential of edge, 
is given by The algorithm of our 

heuristic is given in Figure 4. The algorithm first com
putes the potential of every undirected edge. Next the 
algorithm selects the undirected edge with the highest 
potential. In the event of a tie, a second criterion is 
used. This criterion is the larger the better. 
Once the edge is selected, the direction of the edge is set 
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