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Abs t rac t 
Methods to avoid overfitting fall into two broad 
categories: data-oriented (using separate data 
for validation) and representation-oriented (pe­
nalizing complexity in the model). Both have 
limitations that are hard to overcome. We 
argue that fully adequate model evaluation is 
only possible if the search process by which 
models are obtained is also taken into account. 
To this end, we recently proposed a method 
for process-oriented evaluation (P0E), and suc­
cessfully applied it to rule induction [Domingos, 
1998b]. However, for the sake of simplicity this 
treatment made a number of rather artificial as­
sumptions. In this paper the assumptions are 
removed, and a simple formula for error esti­
mation is obtained. Empirical trials show the 
new, better-founded form of POE to be as accu­
rate as the previous one, while further reducing 
theory sizes. 

1 I n t r oduc t i on 
Overfitt ing avoidance is a central problem in machine 
learning. If a learner is sufficiently powerful, whatever 
representation and search methods it uses, it must guard 
against selecting a model that fits the training data well 
but captures the underlying phenomenon poorly. Cur­
rent methods to address this problem fall into two broad 
categories. Data-oriented evaluation uses separate data 
to learn and validate models, and includes methods like 
cross-validation [Breiman et a/., 1984; Stone, 1974], the 
bootstrap [Efron and Tibshirani, 1993], and reduced-
error pruning [Brunk and Pazzani, 1991]. It has several 
disadvantages: it is often computationally intensive, re­
duces the data available for learning, can be unreliable if 
the validation set is small, and is itself prone to overfit­
t ing if a large number of models is compared [Ng, 1997]. 
Representation-oriented evaluation seeks to avoid these 
problems by using the same data for training and vali­
dation, but a priori penalizing some models. Bayesian 
approaches in general fall into this category (e.g., [Chick-
ering and Heckerman, 1997]). Representation-oriented 
measures typically contain two terms, one reflecting fit 

to the data, and one penalizing model complexity (e.g., 
[Rissanen, 1978]). This approach is only appropriate 
when the simpler models are truly the more accurate 
ones, and there is mounting evidence that this is typ-
ically not the case [Domingos, 1998a; Jensen and Co­
hen, 1998]. Structural risk minimization [Vapnik, 1995; 
Shawe-Taylor et al., 1996] and PAC learning [Kearns and 
Vazirani, 1994] are representation-oriented methods that 
seek to bound the difference between training and gen­
eralization error using a function of the model space's 
(effective) dimension. This typically produces bounds 
that are overly broad, and requires severely restricting 
the model space. 

We believe the limitations of representation-oriented 
evaluation stem from ignoring the search process by 
which candidate models* are obtained. A learner wi th 
an unlimited model space can avoid overfitting as long 
as it attempts only a l imited number of models (even 
if it is not possible a priori to predict which). Intu­
itively, the more search has been performed to obtain a 
model, the higher its expected generalization error for 
a given training-set error. In a recent paper [Domin­
gos, 1998b] we made this intuit ion precise and applied 
the resulting formulas to the CN2 rule learner [Clark 
and Niblett, 1989], obtaining systematic improvements 
in generalization error and theory size. However, for the 
sake of simplicity the treatment in [Domingos, 1998b] 
made two rather artificial assumptions: that all error 
rates are a priori equally likely, and that a model's gen­
eralization error can be roughly estimated by treating 
all previously-generated models as having similar gen­
eralization errors. In this paper we remove these two 
assumptions, interpret the result, and successfully apply 
it to CN2. 

2 Process-Oriented Eva luat ion 
Suppose learner Lm consists of drawing m hypotheses at 
random (independently) from some model space, and re­
turning the one wi th lowest error on a training sample 5. 
Let hm,i be the ith hypothesis generated by Lm. If hm,i 's 
true error rate is Em, i and S consists of n independently 

1By "model" we mean model structure and parameter 
values. 
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drawn examples, the number of errors committed 
by on 5 is a binomially distributed variable with 
parameters n and 

Let be the probability that the number 
of errors is greater than 

Notice that this notation is the opposite of the usual 
notation for a cumulative distribution function (i.e., 

It wi l l be more 
convenient for what follows. 

The probability of Lm returning a hypothesis hm that 
misclassifies em training examples is the probability that 
at least one of the m hypotheses makes em errors, 
and all the others make em or more errors. Equivalently, 
it is the probability that all hypotheses make more 
than em — 1 errors, minus the probability that they all 
make more than em errors: 

Let: 

where By Bayes' theo-
rem: 

Let hm,c be the hypothesis wi th lowest error (i.e., the 
"chosen" hypothesis, so that learner Lm returns 
and Our goal is to predict 
true error rate from For this purpose, we 
marginalize Equation 4 over all the save 

where the integral is multiple, over all components of 
save The expected value of can now be 

computed by integration: 

(10) 
Substituting Equation 3 into 5 and 5 into 6, using the as­
sumption of independent hypotheses, and assuming the 
same prior for all hypotheses, we obtain the fol­
lowing expression: 

2 This is where we previously assumed that 
and dropped the prior 

For all but the smallest n, F f (Equations 7, 8, 1 and 
2). Thus, using the binomial expansion of we 
obtain that 

Sub­
stituting these into Equation 11 and simplifying, we ob­
tain: 

Let be the maximum likelihood estimate 
o f For sufficiently l a r g e ( E q u a ­
tion 9, given a well-behaved prior i.e., as long as 

in the neighborhood of Let 
be the prior expected value 

of €m,c. Suppose a beta or similarly bell-shaped prior is 
used [Bernardo and Smith, 1994]; this is what makes in­
tuitive sense for error rates. In general (the inflec­
tion point of as a function of wi l l fall 
below (the peak of the prior), since em wi l l tend 
to zero as more hypotheses are generated and the one 
with lowest error selected. Then, for sufficiently large n, 

over the entire range where is 
significantly greater than zero (leaving out only the left 
tai l of the distribution), and (Equa­
tion 10). Making these substitutions we finally obtain 
(omitting the c indexes, since 
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This formula is quite similar to the well-known Laplace 
correction or m-estimate [Cestnik, 1990]. Its role for 
the number of hypotheses is similar to the m-estimate's 
role for the number of examples. The m-estimate grad­
ually changes from the maximum likelihood estimate to 
the prior as the number of examples decreases; similarly, 
Equation 13 gradually uncovers the prior as the number 
of hypotheses generated increases. The intuitive mean­
ing of Equation 13 is clear: when a learner generates 
a series of hypotheses and returns the one wi th lowest 
training-set error, the more hypotheses it generates the 
less sure we are that the observed error corresponds to 
the true error, and the more weight should be given to 
the a priori expected error. 

This result is intuitively satisfying, because it gives 
a mathematical basis for increasing model uncertainty 
as the amount of search performed increases. However, 
Equation 13 as it stands is of l imited practical use, be­
cause it converges very rapidly to as more in­
dependent hypotheses are generated. As a result, for 
all but the earliest few hypotheses, the error estimate 

is quite insensitive to the empirical error 
This effect, however, is at least partly due to the 

fact that hypothesis dependences are being ignored, and 
as a result the empirical error of one hypothesis carries 
no information about the true error of another. In par­
ticular, only the empirical error of the chosen hypothe­
sis carries information about its true error, resulting in 
the chosen hypothesis' expected error being the unal­
loyed prior in all a priori possible situations where the 
minimum empirical error is not the chosen hypothesis' 
(Equation 3). In practical learners, on the other hand, 
the hypotheses generated are typically very strongly de­
pendent. Thus, in general, all the empirical errors ob­
served wil l carry information about the true error of the 
chosen hypothesis, and Equation 13 should converge cor­
respondingly slower to the prior term We pro­
pose to model tins by replacing m in Equation 13 by 
a slower-growing function of m, which can be thought 
of as the "effective number of independent hypotheses 
attempted." For example, attempting ten hypotheses 
wi th given dependences between them may be equiv­
alent (with respect to the convergence of Equation 13 
to to attempting two independent hypotheses. 
Thus, Equation 13 provides a simple way of combin­
ing data-oriented, representation-oriented and process-
oriented information when estimating generalization er­
ror: is the data-oriented component (the model's 
empirical error), is the representation-oriented 
component (a function of the model's form), and m is 
the process-oriented component (a function of the search 
process that led to the model). 

3 App l i ca t i on to Ru le Induc t i on 
Most rule induction systems employ a set covering or 
"separate and conquer" search strategy [Michaiski, 1983; 

Clark and Niblett, 1989]. Rules are induced one at a 
time, and each rule starts wi th a training set composed 
of the examples not covered by any previous rules. A rule 
is induced by adding conditions one at a t ime, starting 
wi th none (i.e., the rule init ial ly covers the entire in­
stance space). The next condition to add is chosen by 
attempting all possible conditions. Conditions on sym­
bolic attributes are typically of the form where 
Vij is a possible value of attr ibute a i. Conditions on nu­
meric attributes are typically of the form or 

where the thresholds are usually values of 
the attr ibute that appear in the training set. In the beam 
search process used by many rule learners, at each step 
the best b versions of the rule according to some eval­
uation function are selected for further specialization. 
AQ {Michaiski, 1983] continues adding conditions unti l 
the rule is "pure" (i.e., unt i l it covers examples of only 
one class). This can lead to severe overfitting. The lat­
est version of the CN2 system [Clark and Niblett, 1989; 
Clark and Boswell, 1991] uses a simple and effective 
Bayesian method to combat this: induction of a rule 
stops when no specialization improves its error rate, and 
the latter is computed using a Laplace correction or m-
estimate. If is the number of examples covered by a 
rule and is the number of those examples it misclas-
sifies, the conventional estimate of the rule's error rate 
is but its m-estimate is: 

where Eo is the rule's a priori error, which CN2 takes to 
be the error obtained by random guessing if all classes 
are equally likely: = (c— 1) /c , where c is the number of 
classes. This prior value is given a weight of m examples 
(i.e., the behavior of Equation 14 is equivalent to having 
m additional examples covered by the rule, one of each 
class). CN2 uses m=c. As conditions are added, the 
rule covers fewer and fewer examples, and tends to 
Eo. Thus a rule making more misclassifications may be 
preferred if it covers more examples, causing induction to 
stop earlier and reducing overfitting. Clark and Boswell 
[1991] found this version of CN2 to be more accurate 
than C4.5 [Quinlan, 1993] on 10 of the 12 benchmark 
datasets they used for testing. However, this scheme 
ignores that, as more and more conditions are attempted, 
the probability of finding one that appears to reduce the 
rule's error merely by chance increases. This wi l l lead 
the m-estimate to underestimate the chosen condition's 
true error, and CN2 to overfit. The upward correction 
made to er should increase wi th the number of conditions 
attempted. The process-oriented evaluation framework 
described in the previous section allows us to do this in 
a systematic way, as follows. 

Equation 13 can be used to compare the hypotheses 
returned by k learners and choose 
the one wi th lowest predicted error. It can also be used to 
compare successive stages of the same learner, by taking 

to be the result of continuing the search of learner 
more hypotheses. In 
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Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 wi th two versions of process-oriented 
evaluation (CN2-P0E1 and CN2-POE2). 

particular, the successive stages can be the successive 
versions of a rule returned by CN2 or a similar "sep­
arate and conquer" rule learner. A natural choice for 
the prior expected error for all rule versions is 
the default error rate, obtained by always predicting the 
most frequent class in the training set. The choice of 
slower-growing function of m is less obvious. One pos­
sibility is m' = logm (for m based on an analogy 
wi th decision tree induction. When learning a tree using 
an algorithm like C4.5, each new hypothesis is obtained 
by modifying the previous one in only a fraction of the 
instance space (the fraction corresponding to the node 
currently being expanded), and this fraction becomes 
exponentially smaller as induction progresses. Only an 
entire new level of the decision tree corresponds to an 
entirely new hypothesis. Since the depth of the tree 
grows approximately wi th the logarithm of the number 
of nodes, we can take the equivalent number of indepen­
dent hypotheses attempted m' to be proportional to the 
logarithm of the total number of hypotheses attempted 
m. Since a rule corresponds to a path through a decision 
tree, both in its content and in the way it is induced by a 
system like CN2, we can apply a similar line of reasoning 
to the number of rules attempted.3 

Let each hypothesis be one version of the rule at­
tempted during the beam search. Equation 13 does not 
need to be computed for every rule version generated 
during the beam search. This would introduce a prefer­
ence for adding some conditions instead of others, which 
is unlikely to produce good results unless there is do­
main knowledge supporting such preferences. Instead, 
Equation 13 can be computed only once for each round. 
One round consists of generating every possible one-step 
specialization of each rule version in the beam, and se­
lecting the b best. Thus, if there are a attributes and 
v is the maximum number of values of any attribute 

(in the worst case, for numeric attributes), one 
round corresponds to 0(bav) rule versions. Let mK be 
the total number of rule versions generated up to, and 
including, round K. Round 1 consists of the init ial rule 
wi th no conditions, and m1 = 1. Induction stops when 

1. 

4 Exper iments 
In order to test the effectiveness of process-oriented eval­
uation, default and process-oriented versions of CN2 
were compared on the benchmark datasets previously 
used by Clark and Boswell [1991] .4 The process-oriented 
versions were implemented by adding the necessary fa­
cilities to the CN2 source code. Details of the earlier 
version of POE and its implementation can be found 
in [Domingos, 1998b]. CN2's Laplace estimates are stil l 
used to choose the best b specializations in each round. 
This is preferable to using uncorrected estimates, since as 
implemented POE has no preference between hypotheses 
within the same round, and this is also a factor in avoid­
ing overfitting. However, the Laplace correction distorts 
the value of used in Equation 13. This wil l be par­
ticularly pronounced when there are many classes, since 
CN2 uses m = c. In order to minimize this problem, 
m = 2 was used wi th POE.5 

The experimental procedure of [Clark and Boswell, 
1991] was followed. Each dataset was randomly divided 
into 67% for training and 33% for testing, and the error 
rate and theory size (total number of conditions) were 
measured for default CN2, CN2-POE1 (the earlier ver­
sion) and CN2-POE2 (the version described in this pa­
per). This was repeated 20 times. The average results 
and their standard deviations are shown in Table 1;6 

3In the experiments described below, the results were not 
sensitive to the base of the logarithms used. Base 2, base 
e and base 10 all yielded practically indistinguishable error 
rates and theory sizes. The results reported are for base 2. 

4With the exception of pole-and-cart, which is not avail­
able in the UCI repository [Blake et al., 1998]. 

5Simply changing m = c to m = 2 in default CN2 does 
not change its performance on the datasets used. 

6There are some differences between CN2,s results and 
those reported in [Clark and Boswell, 1991]. This may be due 
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the results for CN2 and CN2-P0E1 are from [Domin-
gos, 1998b], 

Compared to CN2-P0E1, CN2-POE2 roughly main­
tains accuracy (lower error in five datasets, higher in five, 
same in one; 0,2% lower error on average) while reduc­
ing theory size in most datasets (lower in seven, higher 
in four, 4.5 fewer conditions on average). This indicates 
that Equation 13 is successfully deleting unnecessary 
conditions that the previous method retained. Being in 
closed form, Equation 13 is also much more efficient to 
evaluate than the integrals in [Domingos, 1998b]. Ex­
periments on two larger UCI databases (shuttle and let­
ter) showed CN2-POE2 learning faster than CN2, while 
maintaining accuracy and reducing theory size. 

5 Related W o r k 
The literature on model selection and error estimation 
is very large, and we wi l l not attempt to review it here. 
Several pieces of previous work take into account the 
number of hypotheses being compared, and so can be 
considered early steps towards process-oriented evalua­
t ion. This includes notably systems that use Bonferroni 
corrections when testing significance (e.g., [Gaines, 1989; 
Jensen and Schmill, 1997]; see also [Kloekars and Sax, 
1986]). A key difference between these systems and what 
is proposed here is that they require a somewhat arbi­
t rary choice of significance threshold, while this paper 
directly attempts to optimize the end goal (expected gen­
eralization error). Also, the Bonferroni correction does 
not take hypothesis dependencies into account, while the 
present framework offers (at least in principle) a way of 
doing so. 

Quinlan and Cameron-Jones's [1995] "layered search" 
method for automatically selecting CN2's beam width 
can also be considered a form of process-oriented evalu­
ation. While layered search and the approach proposed 
here have similar aims, their biases differ: layered search 
limits the search's width, while the present method limits 
its length. The latter may be more effective in reducing 
the fragmentation and small disjuncts problems [Pagallo 
and Haussler, 1990; Holte et al., 1989]. The assumptions 
made here are also clearer than those implicit in Quinlan 
and Cameron-Jones's [1995] measure. 

Freund [1998] recently proposed a form of process-
oriented evaluation that is closer to the PAC-learning 
framework. It is an extension of the statistical query 
model [Kearns, 1993] that attempts to obtain tighter 
bounds on generalization error by considering the tree 
of queries that the learner could make. While the gen­
eral algorithm to obtain these bounds has exponential 
computational cost in the number of queries made, Fre-
und proposes a specialized version for algorithms based 
on local search (e.g., CN2) that is more efficient, at the 
price of loosened bounds. How tight the bounds wi l l be 

to the fact that the default version of CN2 uses a beam size of 
5, whereas Clark and Boswell used b = 20. The distribution 
version of CN2 may also differ from the one used in [Clark 
and Boswell, 1991]. 

in either case is sti l l an open question; no empirical test­
ing of Freund's [1998] method has been carried out so 
far. These bounds could be used for model selection by 
preferring the model w i th the lowest upper bound (for 
given parameters). However, as wi th Bonferroni correc­
tions, the result wi l l in general depend on the choice of 
parameters, for which there is no clear criterion. While 
the approach proposed in the present paper directly ob­
tains an estimate of the generalization error, it would 
also be useful to have a confidence interval for i t , and 
Freund's [1998] method may be a path to i t . 

Evaluating models that are the result of a search 
process, not just of fitting the parameters of a pre­
determined structure, has traditionally not been a con­
cern of statisticians. However, this is beginning to 
change [Chatfield, 1995]. 

6 Conclusion 
Two main types of model selection are currently avail­
able. In data-oriented evaluation, a hypothesis's score 
does not depend on its form or how the hypothesis was 
found, but only on its performance on the data. In 
representation-oriented evaluation, the score depends on 
the data and on the hypothesis's form, but not on the 
search process that led to i t . Recently [Domingos, 1998b] 
we argued that the latter cannot be ignored, and pro-
posed process-oriented evaluation (POE). However, in 
[Domingos, 1998b] we assumed that all models searched 
had similar true error rates, and that all error rates were 
equally likely a priori. In this paper we removed these 
assumptions, and derived a simple approximation for 
the generalization error of the returned hypothesis as 
a function of the number of hypotheses searched. This 
approximation is a weighted average of the maximum 
likelihood estimate of the error and the prior expected 
error, that increasingly favors the prior as more models 
are attempted. This approximation gives a mathemati­
cal basis to the intuit ion that model uncertainty should 
increase wi th the amount of search conducted. 

In the future we plan to: study the statistical proper­
ties of Equation 11, in particular when the sample size 
is not large enough to approximate it by Equation 13; 
compare the method proposed here wi th other forms of 
process-oriented evaluation (e.g., Bonferroni corrections 
and layered search); apply it to other learners; and study 
methods for accurately estimating the growth of the ef­
fective number of hypotheses m' in each of these learners. 
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