
To Encode or not to Encode - 1 : Linear Planning

Abstract
Stochastic local search (SLS) techniques are very
effective in solving hard prepositional satisfiability
problems. This has lead to the popularity of the en
code & solve paradigm in which different problems
are encoded as propositional satisfiability problems
to which SLS techniques are applied. In AI, plan
ning is the main area in which this methodology
is used. Yet, it seems plausible that SLS methods
should perform better when applied to the original
problem space whose structure they can exploit. As
part of our attempts to validate this thesis, we ex
perimented with LPSP, a planner that applies SLS
techniques to the space of linear plans. LPSP out
performs SLS applied to encoded planning prob
lems that enforce a similar linearity assumption be
cause of its ability to exploit the special structure
of planning problems. Additional experiments (re
ported in a longer version of this paper) conducted
on the Hamiltonian circuit problem lend farther
support to our thesis.

1 Introduction
Rapid improvement in the performance of stochastic local
search (SLS) methods for solving propositional satisfiabil
ity (SAT) problems coupled with the naturalness with which
many problems can be reduced to SAT problems has led to the
popularity of an encode & solve approach to problem solving.
In this three phase approach, the original problem is reduced
into a sentence in propositional logic; a satisfying assignment
for the sentence is searched for using state of the art SLS al
gorithms; and a solution, if found, is converted back into a
solution to the original problem. This method has become
increasingly influential in the area of classical AI planning,
where it is known as the planning as satisfiability approach
(PAS) [Kautz and Selman, 1992].

But is it not more effective to apply SLS methods directly
to the original problem space? In this paper we report on
our investigation into this issue in the context of planning
problems. We describe the LPSP planner (linear plan-level
stochastic planner) which uses SLS on the space of linear
plans to solve planning problems. We chose to explore the
space of linear plans because we found it easier to formu
late and program heuristics, metrics, and moves in this space.
LPSP has a number of operators for moving in this space that

HolgerRHoos
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
hoos@cs.ubc.ca

enable it to discover plans in a small fraction of the number
of steps required by SLS algorithms operating on the encoded
planning problems. Some of its moves are reasonably nat
ural when projected to the encoded problem. Others have
no apparent equivalent, are motivated by the particular struc
ture of planning problems, and are based on intuitions devel
oped in classical work on partial-order planners (e.g., causal
links, threats, producers, consumers, plan repair). Each move
is considerably more expensive than moves made by, e.g.,
WALKS AT [Selman et al, 1994], yet the overall performance
is better than that of SAT based algorithms operating on en
coded planning problems that share the linearity assumption.

Our planner is not competitive with planners such as
BLACKBOX [Kautz and Selman, 1998] in domains in which
parallel plans are much shorter than linear plans, e.g., the lo
gistics domain.1 Because the search space size is exponen
tial in the plan length, LPSP is in a considerable disadvantage
in such cases. However, it performs better than SAT based
planners when the use of concurrency leads to little or no
decrease in plan length. More generally, it does better than
the SAT based approaches when we use Medic's [Ernst et
al, 1997] encodings in which the linearity assumption is en
forced. We believe that this latter comparison is more valid
when we come to examine the encoded vs. un-encoded for
mulations. In fact, we believe that these observations will ap
ply when we extend this work to parallel plan structures. In
Section 5, we discuss evidence from current research support
ing this view. Overall, our results seem to support the thesis
that SLS methods applied to problem domains with sufficient
structure can outperform the encode & solve approach.

2 The Planning as Satisfiability Approach
Given a planning problem and some natural number n, we can
generate a propositional formula whose models correspond
to n step solutions to the problem. There are a number of
schemes for generating such a formula (see, e.g., [Ernst et al,
1997]), but the essential idea is that variables in this formula
represent the value of the propositions describing the domain
at different time points as well as the actions that are or are
not applied at each time point. Hence, these variables contain
information about the dynamics of the world throughout the
execution of the plan. The formula contains constraints that

968 PLANNING AND SCHEDULING

Ronen I. Brafman
Department of Math and CS

Ben-Gurion University
Beer Sheva, Israel 84105

brafmanScs.bgu.ac. i l

these variables most satisfy if they describe the state of the
world during the execution of a valid plan. From the value
assigned to variables representing actions in any satisfying
assignment we can easily infer a valid plan.

We can extend this idea into a planning algorithm as fol
lows. Starting with some initial guess for n, we generate an
appropriate formula. If it is satisfiable, we can get a plan by
inspecting the satisfying assignment. Otherwise, we increase
n and repeat.

As shown in [Kautz and Selman, 1996], this approach can
be quite efficient thanks to the availability of fast SLS-based
algorithms for SAT problems such as WALKS AT [Selman et
al., 1994]. WALKS AT starts by randomly picking a truth as
signment. At each step, WALKS AT randomly chooses an un
satisfied clause c and makes it satisfied by flipping the value
of one of its variables v. If possible, v is chosen so that no cur
rently satisfied clause becomes unsatisfied by this flip. Oth
erwise, the variable is either chosen randomly or by selecting
the flip that maximizes the number of satisfied truth assign
ments - called the assignment's score.

3 The LPSP Planner
Search space The LPSP planner performs SLS on a space of
fixed length linear plans. As in the PAS approach, LPSP is
given this length as part of its input. Hence, the states of the
search space consist of sequences of ground actions of length
n, where n is an input parameter. Null actions (i.e., actions
with no preconditions or effects) are allowed as part of the
sequence. In principle, with the introduction of appropriate
operators, it is a simple matter to let LPSP operate on plans of
varying length, much like conventional planners. However,
we have not experimented with this option, yet.
Scoring plans LPSP scores (or more accurately, penalizes)
plans by a weighted sum of plan flaws. A flaw arises in a plan
when an action a (the consumer) has a precondition p and the
closest predecessor a' of a that influences the value of p (the
cloberer) has -p as an effect. Each flaw's weight is d, the
distance between a' and a. (In some domains, a weight of d2

or d2, performs better.) Each plan is penalized by the sum of
the weights of all its flaws. Naturally, a plan is valid iff it has
no flaws and consequently has 0 penalty.

Example 1: Consider a blocks' world domain with four
blocks and actions of the form MOVE(x, y, z) which takes
block x from y and places it on z. Its preconditions are
ON(x, y), CLEAR(s), and CLEAR(z). Its effects are ON(x, Z),
CLEAR(y), ~yON(x,z), -CLEAR(z).

Suppose that initially C is on A, and that B and D are
on the table, and we want to reach a goal state in which A
is on B and B is on C. Consider the following three step
plan: MOVE(C,A,D), MOVE(B,D,C), and MOVE(A,TABLE,B).
This plan contains a single flaw: the ON(B,D) precondition of
MOVE(B,D,C). The closest predecessor of this action influ
encing ON(B,D) is the initial action,2 which has -ON(B,D) as
an effect. In this case d =■ 2 and so the plan's penalty is 2.
Moving around the search space Since plan space is
searched, we can use various operators for moving in this
search space that do not have natural counterparts in the space

2 We use the well known technique of inserting a (fixed) fictitious
initial action that "sets-up" the initial state as its effects and a ficti
tious final action that has the goal as its precondition.

of truth assignments. In particular, the use of special plan re
ordering operators is crucial to LPSP'S success. Without them,
it usually does not find a solution.

(1) Best-Replacement. This operator scores all plans that
differ from the current plan by a single action, i.e., plans
in which one of the current plan's steps was replaced. It
returns the plan with the least penalty score among these.3

In Example 1, we would consider plans in which one-of
the current steps was replaced by some ground action. In
particular, when we replace the MOVE(B,D,C) step with
MOVE(B,TABLE,C) we get a plan with no flaws.

(2) Flaw-Repair. This operator randomly chooses a flaw
from the current plan flaws. It then scores all possible plans in
which this flaw is repaired by replacing one plan step between
the cloberer and the consumer. The new action must establish
the precondition of the consumer destroyed by the cloberer. If
none of these plans has a lower penalty score than the current
plan, it examines plans in which the consumer is replaced by
some other action.

Flaw-repair is motivated by a similar strategy employed by
WALKS AT where a "flawed" (i.e., unsatisfied) clause is cho-
sen and repaired by changing the value of one of its variables.

Example 2: Consider actions that repair the flaw of the
plan in Example 1, i.e., actions that have ON(B,D) as an ef-
fect. Such actions are of the form MOVE(B,?X,D) and the best
scoring plan is obtained when we use MOVE(B,TABLE,D).
The resulting plan will be: MOVE(B,TABLE,C), MOVE(B,D,C),
and MOVE(A,TABLE,B). This plan has a single flaw: the
CLEAR(A) precondition of the last action. The closest pre
decessor of the last action affecting CLEAR(A) is the initial
action, and so this plan's penalty is 3, which is higher than
the penalty of the original plan. Consequently, we consider
actions that replace the consumer, namely the second step,
among them MOVE(B,TABLE,C), which gives us a solution.

(3) Reorder-1: We generate a directed graph whose ver
tices are the current plan steps. An edge exists from plan step
a to step a1 if a (the producer) has an effect that is a precon
dition of a' (the consumer). First, we use this graph to throw
out steps that are not useful (by replacing them with null ac
tions). A step is useful if it has an effect that is part of the
goal conjunct or an effect that is a precondition of a useful
step. Adjacent plan steps, between which we have edges in
both directions, are deleted as well. Now, we add additional
edges to the graph that reflect a heuristic notion of threats'. If
a, a' are nodes in the graph between which there is no edge,
and if a clobers some precondition of a1 we say that a threat
ens a' and we add an edge from a' to a.

Finally, we attempt to generate an ordering consistent with
the graph, i.e., such that step a will precede step a' if there
is a path from a to a'. Usually, this is not possible, and we
heuristically order the edges as follows: One of the nodes
with the minimal number of incoming edges is chosen as the
first step. It is removed from the graph, and the next step is
chosen from this revised graph in the same fashion.

Example 3: We have two stacks of blocks: A on B on
C and D on E on F; our goal state is F on B on E and
A on c on D; plan length is 7. Suppose that our cur
rent plan is: (1) MOVE(A,B,TABLE), (2) MOVE(A,TABLE,C),
(3) MOVE(E,F,TABLE), (4) M0VE(B,C,E), (5) MOVE(F,TAB-
LE,B), (6) MOVE(D,E,C), (7) MOVE(C,TABLE,D).

3 We break ties randomly.

BRAFMAN AND HOOS 989

Figure 1: Graphs generated in Examples 3 (left) and 4 (right).
Solid edges stem from producer-consumer relation, broken
edges stem from threats.

The producer/consumer pairs appears in Figure 1 (left) and
are denoted by solid edges. According to this graph, all nodes
are useful. Next, we add edges reflecting threats, denoted by
broken edges. Now, we start reordering the nodes. The only
node without incoming arcs is (1), and it is assigned to the
first plan step. Deleting it, we see four nodes with a single
incoming edge (2),(3),(6),(7), among which we can choose
arbitrarily. Suppose we chose (6). Removing it from the
graph, we see that (3) has no incoming edges, and we choose
it. Next comes (4) and then either (5) or (7). If we choose (7),
we can next choose between (5) and (2). Hence, one possible
resulting plan is: (1) MOVE(A ,B ,TABLE) , (6) MOVE(D,E,C) ,
(3) MOVE(E,F,TABLE), (4) MOVE(B,C,E), (7) MOVE(C,TAB-
LE,D), (5) MOVE(F,TABLE,B), (2) MOVE(A,TABLE,C).

Example 4: Here is a similar plan in which the correct
plan steps are ordered incorrectly. (1) MOVE(A ,B ,TABLE) ,
(2) MOVE(A,TABLE,C), (3) MOVE(E,F,TABLE), (4) MOVE(B,
c, E), (5) MOVE(F, Table, B), (6) M O V E (D , E, TABLE) ,
(7) MOVE(C, TABLE, D). The initial graph contains the solid
edges in Figure 1 (right). A l l nodes are useful. When we add
threat arcs we obtain the additional broken edges. Nodes (1)
and (6) have no incoming edges. Either choice is correct. We
choose (1). (6) is still the only node without incoming edges,
and we choose it next. Node (3) comes next, followed by
(4). Now we can choose between (5) and (7). Both choices
are correct. If we choose (7) we can then choose (2) as well.
Whichever choice we made, we would get a correct plan.

(4) Reorder-2: Reorder-2 attempts to partition the set of ac
tions into disjoint ranks such that, roughly, each rank is pre
ceded by a rank containing actions that supply its precondi
tions. The actions within a rank are not needed by each other.
After removing unneeded actions, we attempt to reorder ac
tions within a rank based on whether they destroy each oth
ers' effects. A more detailed description is deferred to the full
version of this paper

(5) Reorder. Applies Reorder-1 with probability 0.5 and
otherwise applies Reorder-2.

Initialization We initialize the plan by performing sto/-
chastic bi-directional search. That is, if n is the plan size,
we run a standard regression algorithm in which branches are
chosen stochastically for n /2 steps. This determines the latter
half of the plan. Then, we run stochastic forward search for
n/2 steps, which generates the first half of the plan.

Reachability Analysis Before we start the planning pro
cess, we perform a fast heuristic reachability analysis in order
to prune the number of actions considered at each time step.
First, we determine which actions are applicable at the initial
state. Let E1 be the set of effects of all these actions. Clearly,
actions that have a precondition outside E1 can be pruned as

990 PLANNING AND SCHEDULING

Notes: Almost .Solution holds if New _Plans's penalty score
is lower than OPT.THRESHOLD, and we did not call Re
order in the previous step. We keep a tabu list of pairs (whose
length is set to 2 in our experiments) containing the last two
actions added and their respective positions. We disallow new
plans in which an action is inserted in a position for which the
corresponding action-position pair appear in the tabu list.

State of the planner LPSP is implemented in C++. It does
not have a domain parser, yet. Hence, for each planning prob
lem we write a procedure that specifies the propositions that
hold in the initial and goal state; and for each action schema
we define a class whose parameters are the schema's parame
ters and a list of the appropriate preconditions and effects. In
addition, we supply a procedure that, given an action identi
fier (which is simply some integer), returns an action object.
These operations have negligible running times and we be
lieve that the time required to parse a domain description into
a more generic action representation wil l be inconsequential
(and, most likely, smaller than the time required to encode the
same problem into SAT).

4 Experimental Results
We empirically compared LPSP to the PAS approach on prob
lem instances from three well-known planning domains: the
blocks world and logistics domains [Kautz and Selman, 1996;
Ernst et a/., 1997] and the artificial D1S1 domain [Barrett

and Weld, 1994].4 For the PAS approach, the performance
depends on three components: (i) the SAT-encoding of the
planning instances, (ii) polynomial simplification algorithms
which are applied to the SAT formula before general SAT
solvers are invoked, and (iii) the SAT algorithm used to solve
the simplified encoded problem instance. All three com
ponents have a significant influence on the overall perfor
mance; in particular, the solver performance heavily depends
on the encoding and simplification algorithms used to cre
ate the SAT instance. Considering that additionally the SAT
algorithms have several parameters which have to be tuned
to achieve optimal performance, the number of choices over
which one would have to optimize in order to get the best
possible performance for the PAS approach is too high to
practically allow an exhaustive analysis. Therefore, for this
comparative study, we chose the following approach:

• We used two linear SAT encodings which are known to
be good from the literature; for the blocks world do
main, this is the linear encoding with operator splitting
described in [Kautz and Selman, 1996J, for the logis
tics and D1S1 we used the "erse" (explanatory frame
axioms, regular operator splitting, sequential plans, full
type elimination) encoding as described in [Ernst et al. ,,
1997].

• We considered several simplification strategies, as pro
vided by Jimmy Crawford's COMPACT simplifies be
sides "no simplification" [-] these were unit propagation
and pure literal elimination [p] plus the unary [u] and
binary [b] failed literal strategies which are based on ef
ficiently computing unary and binary implicates. For the
blocks world domain, we also considered the simplifier
based on unit propagation and subsumption [ps] which
is part of the SATPLAN system.

• We focussed on stochastic local search algorithms for
SAT; in particular, we considered the four best-per
forming WALKS AT variants described in [McAllester
et AL., 1997] which are among the fastest existing SAT
solvers. To get an impression, how LPSP's performance
compares to that of systematic SAT algorithms, we also
used SATZ [Li and Anbulagan, 1997], one of the best
deterministic SAT solvers.

For the stochastic solvers, we took great care to opti
mize the parameters (especially the noise parameter which
is known to significantly affect performance) so that the over
all time required for finding a solution was minimized. This
was done for each SAT instance independently, ensuring that
for our comparison we got an approximately optimal per
formance. Because for a given problem instance, the dif
ferent types of local search steps in LPSP require a variable
amount of time, and for the PAS approach, the simplifica
tion and solving time have to be taken into account, we com
pared CPU times as measured on a PC with a 400MHz Pen
tium II processor and 256 MB RAM running under Linux
(Red Hat 5.2). For both LPSP and the stochastic SAT solvers,
our comparison is based on 100 tries, using MAXJSTEPS
settings high enough to guarantee that a solution was found
in all tries. For LPSP, we left the value of many parame
ters fixed throughout the experiments (e.g, tabu list length

4The first two were chosen because of their use in the original
SATPLAN paper, and the third because [Kautz and Selman, 1996]
mentions that it seems difficult for SATPLAN.

was 2 and DOWN-THRESH was 5) and varied the values of
GREEDY JQF-ALMOST, GREEDY IF-NOTJVLMOST, and
OPT_THRESH.

The problem instances have the following characteristics:
• Blocks World: We used the instances described in

[Kautz and Selman, 1996]; these are: bw- large.a
(9 blocks, 6 steps minimal linear plan length),
bw- large.b (11 blocks, 9 steps), bw_Large.c (15
blocks, 14 step plan), and bw_large. d (19 blocks, 18
step plan).

• Logistics: We used three instances in which there
were 8 packages and 3 cities but only a small num
ber of packages change their location. The instances
are l o g . new. a (6 steps minimal linear plan lengdi),
log.new.b(10 steps), and log.new. c (16 steps).

• D1S1: We used domain sizes n = 15 and 30 and four in
stances per domain size: d l s l - n . a (15/30 steps mini
mal linear plan length), d l s l . b (12/23 steps), d l s l . c
(8/16), and d l s l . d (14/28 steps).

In Table 1, we report our experimental results. For LPSP,
we report the mean and median CPU times over 100 suc
cessful tries (see above) as well as the variation coefficient
(standard deviation / mean), which gives a scaling indepen
dent impression of the variability of the observed run-times.
For PAS/WALKSAT, we report the CPU times for simplify
ing the formula and the mean CPU time required by WALK-
SAT for solving the resulting simplified problem instance av
eraged over 100 successful tries. Furthermore, we report the
variation coefficient for the time used by WALKS AT.5 Note
that here, we report only the best results we found for any
simplification and WALKSAT combination, using approxi
mately optimal noise parameter settings for WALKSAT. 6 For
PAS/SATZ, as only deterministic algorithms are used, we re
port the CPU times for simplification and SATZ.

As can be seen from Table 1, LPSP shows superior perfor
mance compared to PAS/WALKSAT as well as PAS/SATZ on
almost all problem instances. For the blocks world instances,
LPSP is between 3 and 13 times faster than PAS/WALKSAT.
Interestingly, for PAS/WALKS AT, the time required for sim
plifying the formula dominates the overall performance.
Since different from WALKSAT, the implementations of the
simplification algorithms are not optimized for speed, one
might expect a significant reduction in overall performance
when using optimized simplifiers. However, for the larger in
stances, LPSP shows superior performance even when (unre-
alistically) assuming that simplification would come for free.
Furthermore, LPSP requires much less tweaking then WALK
SAT, for which various simplification strategies must be con
sidered, various heuristics, and various parameter tuning per
heuristic. In addition, our LPSP implementation is certainly
not fully optimized.

5 Our actual experimental methodology is based on measuring
run-time distributions (RTDs) as outlined in [Hoos and Stiitzle,
1998]; because of the limited space the RTDs could not be reported
here, but this data is available from the authors.

6The best-performing WALKSAT variants were TABU for the
Blocks World instances and Novelty for all others. The approx
imately optimal noise settings varied between the instances and
seemed to be strongly dependent on the simplification strategies ap
plied before.

BRAFMAN AND H00S 991

Table 1: Performance of LPSP versus PAS using die best simplification and solver variants with approximately optimal param
eters. For stochastic solvers, we report the mean run-times over 100 successful tries and the variation coefficient (vc = standard
deviation/mean). For both PAS approaches, we report the times required for simplifying (first number) and solving (second
number) separately and also indicate which simplification method has been applied (see text for explanation) All run-times
reported in CPU seconds; "*" indicates cases in which no solution was found in 60 CPU seconds (for SLS algorithms, 10 tries
£ 60 seconds were performed). For further details, see text.

The more complex SAT-simplifications seem to be far
more effective for the logistics domain than for the blocks
world or D1S1 problems. Here, the formulae obtained by
simplifying with the "unary/binary failed clauses" options
are almost trivial for WALKSAT. However, although they
have polynomial worst-case complexity, these simplifica
tions are quite expensive in practice. So here, again, for
PAS/WALKSAT the overall performance is dominated by
the time required for simplification. Comparing the overall
performance, LPSP is between 15 and 80 times faster than
PAS/WALKSAT. Even assuming that the implementation of
the simplifier could be considerably more optimized than
LPSP, it is hard to imagine that PAS/WALKS AT could reach
LPSP's performance on this domain. It should be noted, how
ever, that for the logistics domain, most problem instances
have significantly shorter parallel plans which are much eas
ier to find than sequential plans. But since LPSP is a lin
ear planner, it would be unfair to compare its performance
to PAS approaches which allow for parallel plans. Finally,
even for DlSI , a domain which has been noted to be diffi
cult for SATPLAN using SLS for solving the SAT instances
[Kautz and Selman, 1996], LPSP shows better performance
than PAS/WALKSAT. The only exception is instance d l s l -
3 0. a, which is solved by simplification (unit propagation)
alone. The reason for this is that the d l s l - n . a instances
have a chaining structure of the goals and operators which is
very regular, but, in our opinion, highly untypical for realistic
planning problems. We also believe that LPSP's performance
on this domain can be significantly improved by optimizing
its parameter settings.

Regarding the results on PAS/SATZ, LPSP's performance
is still considerably better on all instances except for instance
d l s l - 3 0 . a, which in principle is solved by simplification
(unit propagation) alone. Nevertheless, for this particular in
stance, SATZ is actually faster then the simplification algo
rithm we use, probably because it is more efficiently imple
mented. Interestingly, when compared to PAS/WALKSAT,

PAS/SATZ shows a better performance for 7 of our 11 bench
mark instances. For the biggest blocks world and logistics in
stances, as well as for one of the d l s l - 3 0 instances, SATZ
did not find a solution in 60 seconds — which could possibly
indicate that SATZ does not scale as well as SLS approaches
(LPSP and PAS/WALKSAT). However, this issue needs to be
further investigated, especially using newer, randomized sys
tematic search algorithms [Gomes et al., 1998].

5 Discussion
The thesis that SLS-based algorithms operating on un-
encoded problems can fare better than those operating on en
coded problems cannot be proved experimentally. The per
formance of LPSP does, however, lend it greater credibility,
especially when we compare the effort invested in it with that
invested in work on SAT-based SLS algorithms in general and
the PAS approach specifically.

In a longer version of this paper, we describe experiments
which we conducted on two additional problem domains:
Hamiltonian circuit and binary CSPs. The first domain has
interesting, inherent structure, and we have been able to ob
tain better results using an SLS-based algorithm applied to
the graph description directly. The second problem domain is
more general and closely resembles SAT problems. There,
we found that SAT-based methods perform better than the
SLS-based algorithms we experimented with.7

Of course, one could argue that in the area of planning
in general, SLS-based methods applied to encoded problems
that do not enforce the linearity assumption have the upper
hand. However, recent research is starting to show that the
situation is a bit more complicated. tSerina and Gerevini,
1998] employ SLS methods to search Graphplan's planning
graph. Their algorithm outperforms PAS based methods on
some problems, and in particular, those in which concurrent

7See also [Hoos, 1999].

992 PLANNING AND SCHEDULING

plans are much shorter. Our algorithm seems to outperform
PAS based approaches when concurrency is not an important
factor (e.g., the blocks' world instances). The best SAT-based
planner, BLACKBOX {Kautz and Selman, 19981, relies more
on traditional plan representations than the original S ATPLAN
planner [Kautz and Selman, 1996]. BLACKBOX goes very
far with the original planning problem before converting it
into a prepositional formula: It first generates a planning
graph and encodes this graph together with the mutual exclu
sion constraints it generated. More importantly, recent work
[Giunchiglia et al., 1998] shows that better performance can
be obtained if the variables describing state properties are
treated as dependent variables (i.e., one chooses an assign
ment for the action variables and this determines the value of
the state variables). What this result mean is that it is better
to search over the space of assignments to actions than over
the whole space of truth assignments. The space of action
assignments is very similar to LPSP's search space.

Naturally, we have not heard the last word in SAT algo
rithms, and recent work on exploiting variable dependences
[Kautz et al, 1997] may allow us to utilize knowledge about
problem structure in solving the encoded problems. Another
promising direction in which little work has been carried out
is the analysis of the encoded problems for useful features
of search space structures (see also [Hoos, 1999]) or syntac
tic properties. Such features may stem from deep properties
of the encoded problem. To date, most SAT solvers do not
attempt to utilize such information (although it could be ar
gued that formula simplification routines do something of this
sort). But perhaps there are algorithms that can operate much
better than the standard methods on sentences with special
properties. This is particularly interesting if such properties
are shared by all problems from a particular domain. If this
turns out to be the case, then, indeed, the encode & solve ap
proach may be our best bet.8

To use Chapman's terminology, LPSP is a somewhat
"scruffy" planner. It would be nice to see a simpler, more
principled and general planner based on SLS techniques.
However, it is already much easier to optimize than the PAS
based algorithms that have three distinct phases (translate,
simplify, solve) each of which needs to be fine-tuned sepa
rately. Moreover, it may be the case that good SLS algorithms
must be a bit involved if they are to exploit domain structure.

LPSP's reordering operators are interesting in their own
right and could possibly be integrated into plan reuse and plan
repair algorithms. Plan reordering has been considered in the
past (see [Backstrom, 1998] and references therein) but typ
ically with the goal of optimizing the order of correct plans.
The idea of repairing plans in general is not new either, and
goes back at least to [Sussman, 1975]. The heuristic, rather
than more systematic, approach LPSP takes stems from the
need to balance the desire for a better, and more sophisticated
order analysis (which is likely to be intractable), and the need
to maintain a low cost for each step. Finally, we note that dif
ferent types of domain specific knowledge can be used to fo
cus the search process, e.g., by using general variables rather
than binary variable to specify state information, by restrict
ing the type of operators that should be considered in various
situations, etc.

Acknowledgments
Craig Boutilier was-instrumental in the development of earlier
versions of LPSP. The first author is partially supported by
the Paul Ivanier Center for Robotics Research and Production
Management.

References
[Backstrom, 1998] C. Backstrom. Computational aspects of

reordering plans. Journal ofAl Research, 9:99-131,1998.
[Barrett and Weld, 1994] A. Barrett and D. Weld. Partial or

der planning: Evaluating possible efficiency gains. Artifi-
cial Intelligence, 67(1):71-112,1994.

[Brafman, 1999] R. I. Brafman. Reachability, relevance, res
olution, and the planning as satisfiability approach. In
Proc. of lJCAI' 99.

[Ern et s a l , 1997] M. D. Ernst, T. D. Millstein,, and D. S.
Weld. Automatic SAT-compilation of planning problems.
In Proc. IJCAI'97,1997.

[Giunchiglia et al, 1998] E. Giunchiglia, A. Massarotto, and
R. Sebastiani. Act and the rest will follow: Exploiting
determinism in planning as satisfiability. In Proc. 15th Nat.
Con. on AI, 1998.

[Gomes et al, 1998] C. P. Gomes, B. Selman, and H. Kautz.
Boosting combinatorial search through randomization. In
Proc. AAAI'98,1998.

[Hoos, 1999] H. H. Hoos. SAT-encodings, search space
structure, and local search performance. In Proc. IJ~
CAI'99,1999.

[Hoos and Stutzle, 1998] H. H. Hoos and T. Stutzle. Eval
uating Las Vegas algorithms — pitfalls and remedies. In
Proc. UAI'98,1998.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Plan
ning as satisfiability. In Proc. 10th ECA1, 1992.

[Kautz and Selman, 1996] H. Kautz and B. Selman. Pushing
the envelope: Planning, prepositional logic, and stochastic
search. In Proc. 13th NCAI, pages 1194-1201,1996.

[Kautz and Selman, 1998] H. Kautz and B. Selman. Black-
box: A new approach to the application of theorem prov
ing to problem solving. In Working notes of the Workshop
on Planning as Combinatorial Search, 1998.

[Kautz et ai, 1997] H. Kautz, D. McAllester, and B. Selman.
Exploiting variable dependency in local search. 1997.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan.
Heuristics based on unit propagation for satisfiability prob
lems. In Proc. UCAI-97, 1997.

[McAllester et al., 1997] D. McAllester, B. Selman, and
H. Kautz. Evidence for invariants in local search. In
AAAI'97, pages 321-326,1997.

[Selman et al, 1994] Bart Selman, Henry A. Kautz, and
B. Cohen. Noise strategies for improving local search. In
Proceedings of the AAA1 National Conference on Artificial
Intelligence, volume 1, pages 337-343,1994.

[Serina and Gerevini, 1998] I. Serina and A. Gerevini. Local
search techniques for planning graphs. In Proc. 17th UK
Planning and Scheduling WS, pages 157-168,1998.

[Sussman, 1975] G. J. Sussman. A Computer Model of Skill
Acquisition. MIT Press, 1975.

See [Brafman, 1999] for a recent attempt along this direction.

BRAFMAN AND HOOS 993

