
To Encode or not to Encode - 1 : Linear Planning 

Abstract 
Stochastic local search (SLS) techniques are very 
effective in solving hard prepositional satisfiability 
problems. This has lead to the popularity of the en­
code & solve paradigm in which different problems 
are encoded as propositional satisfiability problems 
to which SLS techniques are applied. In AI, plan­
ning is the main area in which this methodology 
is used. Yet, it seems plausible that SLS methods 
should perform better when applied to the original 
problem space whose structure they can exploit. As 
part of our attempts to validate this thesis, we ex­
perimented with LPSP, a planner that applies SLS 
techniques to the space of linear plans. LPSP out­
performs SLS applied to encoded planning prob­
lems that enforce a similar linearity assumption be­
cause of its ability to exploit the special structure 
of planning problems. Additional experiments (re­
ported in a longer version of this paper) conducted 
on the Hamiltonian circuit problem lend farther 
support to our thesis. 

1 Introduction 
Rapid improvement in the performance of stochastic local 
search (SLS) methods for solving propositional satisfiabil­
ity (SAT) problems coupled with the naturalness with which 
many problems can be reduced to SAT problems has led to the 
popularity of an encode & solve approach to problem solving. 
In this three phase approach, the original problem is reduced 
into a sentence in propositional logic; a satisfying assignment 
for the sentence is searched for using state of the art SLS al­
gorithms; and a solution, if found, is converted back into a 
solution to the original problem. This method has become 
increasingly influential in the area of classical AI planning, 
where it is known as the planning as satisfiability approach 
(PAS) [Kautz and Selman, 1992]. 

But is it not more effective to apply SLS methods directly 
to the original problem space? In this paper we report on 
our investigation into this issue in the context of planning 
problems. We describe the LPSP planner (linear plan-level 
stochastic planner) which uses SLS on the space of linear 
plans to solve planning problems. We chose to explore the 
space of linear plans because we found it easier to formu­
late and program heuristics, metrics, and moves in this space. 
LPSP has a number of operators for moving in this space that 
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enable it to discover plans in a small fraction of the number 
of steps required by SLS algorithms operating on the encoded 
planning problems. Some of its moves are reasonably nat­
ural when projected to the encoded problem. Others have 
no apparent equivalent, are motivated by the particular struc­
ture of planning problems, and are based on intuitions devel­
oped in classical work on partial-order planners (e.g., causal 
links, threats, producers, consumers, plan repair). Each move 
is considerably more expensive than moves made by, e.g., 
WALKS AT [Selman et al, 1994], yet the overall performance 
is better than that of SAT based algorithms operating on en­
coded planning problems that share the linearity assumption. 

Our planner is not competitive with planners such as 
BLACKBOX [Kautz and Selman, 1998] in domains in which 
parallel plans are much shorter than linear plans, e.g., the lo­
gistics domain.1 Because the search space size is exponen­
tial in the plan length, LPSP is in a considerable disadvantage 
in such cases. However, it performs better than SAT based 
planners when the use of concurrency leads to little or no 
decrease in plan length. More generally, it does better than 
the SAT based approaches when we use Medic's [Ernst et 
al, 1997] encodings in which the linearity assumption is en­
forced. We believe that this latter comparison is more valid 
when we come to examine the encoded vs. un-encoded for­
mulations. In fact, we believe that these observations will ap­
ply when we extend this work to parallel plan structures. In 
Section 5, we discuss evidence from current research support­
ing this view. Overall, our results seem to support the thesis 
that SLS methods applied to problem domains with sufficient 
structure can outperform the encode & solve approach. 

2 The Planning as Satisfiability Approach 
Given a planning problem and some natural number n, we can 
generate a propositional formula whose models correspond 
to n step solutions to the problem. There are a number of 
schemes for generating such a formula (see, e.g., [Ernst et al, 
1997]), but the essential idea is that variables in this formula 
represent the value of the propositions describing the domain 
at different time points as well as the actions that are or are 
not applied at each time point. Hence, these variables contain 
information about the dynamics of the world throughout the 
execution of the plan. The formula contains constraints that 
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these variables most satisfy if they describe the state of the 
world during the execution of a valid plan. From the value 
assigned to variables representing actions in any satisfying 
assignment we can easily infer a valid plan. 

We can extend this idea into a planning algorithm as fol­
lows. Starting with some initial guess for n, we generate an 
appropriate formula. If it is satisfiable, we can get a plan by 
inspecting the satisfying assignment. Otherwise, we increase 
n and repeat. 

As shown in [Kautz and Selman, 1996], this approach can 
be quite efficient thanks to the availability of fast SLS-based 
algorithms for SAT problems such as WALKS AT [Selman et 
al., 1994]. WALKS AT starts by randomly picking a truth as­
signment. At each step, WALKS AT randomly chooses an un­
satisfied clause c and makes it satisfied by flipping the value 
of one of its variables v. If possible, v is chosen so that no cur­
rently satisfied clause becomes unsatisfied by this flip. Oth­
erwise, the variable is either chosen randomly or by selecting 
the flip that maximizes the number of satisfied truth assign­
ments - called the assignment's score. 

3 The LPSP Planner 
Search space The LPSP planner performs SLS on a space of 
fixed length linear plans. As in the PAS approach, LPSP is 
given this length as part of its input. Hence, the states of the 
search space consist of sequences of ground actions of length 
n, where n is an input parameter. Null actions (i.e., actions 
with no preconditions or effects) are allowed as part of the 
sequence. In principle, with the introduction of appropriate 
operators, it is a simple matter to let LPSP operate on plans of 
varying length, much like conventional planners. However, 
we have not experimented with this option, yet. 
Scoring plans LPSP scores (or more accurately, penalizes) 
plans by a weighted sum of plan flaws. A flaw arises in a plan 
when an action a (the consumer) has a precondition p and the 
closest predecessor a' of a that influences the value of p (the 
cloberer) has -p as an effect. Each flaw's weight is d, the 
distance between a' and a. (In some domains, a weight of d2 

or d2, performs better.) Each plan is penalized by the sum of 
the weights of all its flaws. Naturally, a plan is valid iff it has 
no flaws and consequently has 0 penalty. 

Example 1: Consider a blocks' world domain with four 
blocks and actions of the form MOVE(x, y, z) which takes 
block x from y and places it on z. Its preconditions are 
ON(x, y), CLEAR(s), and CLEAR(z). Its effects are ON(x, Z), 
CLEAR(y), ~yON(x,z), -CLEAR(z). 

Suppose that initially C is on A, and that B and D are 
on the table, and we want to reach a goal state in which A 
is on B and B is on C. Consider the following three step 
plan: MOVE(C,A,D), MOVE(B,D,C), and MOVE(A,TABLE,B). 
This plan contains a single flaw: the ON(B,D) precondition of 
MOVE(B,D,C). The closest predecessor of this action influ­
encing ON(B,D) is the initial action,2 which has -ON(B,D) as 
an effect. In this case d =■ 2 and so the plan's penalty is 2. 
Moving around the search space Since plan space is 
searched, we can use various operators for moving in this 
search space that do not have natural counterparts in the space 

2 We use the well known technique of inserting a (fixed) fictitious 
initial action that "sets-up" the initial state as its effects and a ficti­
tious final action that has the goal as its precondition. 

of truth assignments. In particular, the use of special plan re­
ordering operators is crucial to LPSP'S success. Without them, 
it usually does not find a solution. 

(1) Best-Replacement. This operator scores all plans that 
differ from the current plan by a single action, i.e., plans 
in which one of the current plan's steps was replaced. It 
returns the plan with the least penalty score among these.3 

In Example 1, we would consider plans in which one-of 
the current steps was replaced by some ground action. In 
particular, when we replace the MOVE(B,D,C) step with 
MOVE(B,TABLE,C) we get a plan with no flaws. 

(2) Flaw-Repair. This operator randomly chooses a flaw 
from the current plan flaws. It then scores all possible plans in 
which this flaw is repaired by replacing one plan step between 
the cloberer and the consumer. The new action must establish 
the precondition of the consumer destroyed by the cloberer. If 
none of these plans has a lower penalty score than the current 
plan, it examines plans in which the consumer is replaced by 
some other action. 

Flaw-repair is motivated by a similar strategy employed by 
WALKS AT where a "flawed" (i.e., unsatisfied) clause is cho-
sen and repaired by changing the value of one of its variables. 

Example 2: Consider actions that repair the flaw of the 
plan in Example 1, i.e., actions that have ON(B,D) as an ef-
fect. Such actions are of the form MOVE(B,?X,D) and the best 
scoring plan is obtained when we use MOVE(B,TABLE,D). 
The resulting plan will be: MOVE(B,TABLE,C), MOVE(B,D,C), 
and MOVE(A,TABLE,B). This plan has a single flaw: the 
CLEAR(A) precondition of the last action. The closest pre­
decessor of the last action affecting CLEAR(A) is the initial 
action, and so this plan's penalty is 3, which is higher than 
the penalty of the original plan. Consequently, we consider 
actions that replace the consumer, namely the second step, 
among them MOVE(B,TABLE,C), which gives us a solution. 

(3) Reorder-1: We generate a directed graph whose ver­
tices are the current plan steps. An edge exists from plan step 
a to step a1 if a (the producer) has an effect that is a precon­
dition of a' (the consumer). First, we use this graph to throw 
out steps that are not useful (by replacing them with null ac­
tions). A step is useful if it has an effect that is part of the 
goal conjunct or an effect that is a precondition of a useful 
step. Adjacent plan steps, between which we have edges in 
both directions, are deleted as well. Now, we add additional 
edges to the graph that reflect a heuristic notion of threats'. If 
a, a' are nodes in the graph between which there is no edge, 
and if a clobers some precondition of a1 we say that a threat­
ens a' and we add an edge from a' to a. 

Finally, we attempt to generate an ordering consistent with 
the graph, i.e., such that step a will precede step a' if there 
is a path from a to a'. Usually, this is not possible, and we 
heuristically order the edges as follows: One of the nodes 
with the minimal number of incoming edges is chosen as the 
first step. It is removed from the graph, and the next step is 
chosen from this revised graph in the same fashion. 

Example 3: We have two stacks of blocks: A on B on 
C and D on E on F; our goal state is F on B on E and 
A on c on D; plan length is 7. Suppose that our cur­
rent plan is: (1) MOVE(A,B,TABLE), (2) MOVE(A,TABLE,C), 
(3) MOVE(E,F,TABLE), (4) M0VE(B,C,E), (5) MOVE(F,TAB-
LE,B), (6) MOVE(D,E,C), (7) MOVE(C,TABLE,D). 

3 We break ties randomly. 
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Figure 1: Graphs generated in Examples 3 (left) and 4 (right). 
Solid edges stem from producer-consumer relation, broken 
edges stem from threats. 

The producer/consumer pairs appears in Figure 1 (left) and 
are denoted by solid edges. According to this graph, all nodes 
are useful. Next, we add edges reflecting threats, denoted by 
broken edges. Now, we start reordering the nodes. The only 
node without incoming arcs is (1), and it is assigned to the 
first plan step. Deleting it, we see four nodes with a single 
incoming edge (2),(3),(6),(7), among which we can choose 
arbitrarily. Suppose we chose (6). Removing it from the 
graph, we see that (3) has no incoming edges, and we choose 
it. Next comes (4) and then either (5) or (7). If we choose (7), 
we can next choose between (5) and (2). Hence, one possible 
resulting plan is: (1) MOVE(A ,B ,TABLE) , (6) MOVE(D,E,C) , 
(3) MOVE(E,F,TABLE), (4) MOVE(B,C,E), (7) MOVE(C,TAB-
LE,D), (5) MOVE(F,TABLE,B), (2) MOVE(A,TABLE,C). 

Example 4: Here is a similar plan in which the correct 
plan steps are ordered incorrectly. (1) MOVE(A ,B ,TABLE) , 
(2) MOVE(A,TABLE,C), (3) MOVE(E,F,TABLE), (4) MOVE(B, 
c, E), (5) MOVE(F, Table, B), (6) M O V E ( D , E, TABLE) , 
(7) MOVE(C, TABLE, D). The initial graph contains the solid 
edges in Figure 1 (right). A l l nodes are useful. When we add 
threat arcs we obtain the additional broken edges. Nodes (1) 
and (6) have no incoming edges. Either choice is correct. We 
choose (1). (6) is still the only node without incoming edges, 
and we choose it next. Node (3) comes next, followed by 
(4). Now we can choose between (5) and (7). Both choices 
are correct. If we choose (7) we can then choose (2) as well. 
Whichever choice we made, we would get a correct plan. 

(4) Reorder-2: Reorder-2 attempts to partition the set of ac­
tions into disjoint ranks such that, roughly, each rank is pre­
ceded by a rank containing actions that supply its precondi­
tions. The actions within a rank are not needed by each other. 
After removing unneeded actions, we attempt to reorder ac­
tions within a rank based on whether they destroy each oth­
ers' effects. A more detailed description is deferred to the full 
version of this paper 

(5) Reorder. Applies Reorder-1 with probability 0.5 and 
otherwise applies Reorder-2. 

Initialization We initialize the plan by performing sto/-
chastic bi-directional search. That is, if n is the plan size, 
we run a standard regression algorithm in which branches are 
chosen stochastically for n /2 steps. This determines the latter 
half of the plan. Then, we run stochastic forward search for 
n/2 steps, which generates the first half of the plan. 

Reachability Analysis Before we start the planning pro­
cess, we perform a fast heuristic reachability analysis in order 
to prune the number of actions considered at each time step. 
First, we determine which actions are applicable at the initial 
state. Let E1 be the set of effects of all these actions. Clearly, 
actions that have a precondition outside E1 can be pruned as 
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Notes: Almost .Solution holds if New _Plans's penalty score 
is lower than OPT.THRESHOLD, and we did not call Re­
order in the previous step. We keep a tabu list of pairs (whose 
length is set to 2 in our experiments) containing the last two 
actions added and their respective positions. We disallow new 
plans in which an action is inserted in a position for which the 
corresponding action-position pair appear in the tabu list. 

State of the planner LPSP is implemented in C++. It does 
not have a domain parser, yet. Hence, for each planning prob­
lem we write a procedure that specifies the propositions that 
hold in the initial and goal state; and for each action schema 
we define a class whose parameters are the schema's parame­
ters and a list of the appropriate preconditions and effects. In 
addition, we supply a procedure that, given an action identi­
fier (which is simply some integer), returns an action object. 
These operations have negligible running times and we be­
lieve that the time required to parse a domain description into 
a more generic action representation wil l be inconsequential 
(and, most likely, smaller than the time required to encode the 
same problem into SAT). 

4 Experimental Results 
We empirically compared LPSP to the PAS approach on prob­
lem instances from three well-known planning domains: the 
blocks world and logistics domains [Kautz and Selman, 1996; 
Ernst et a/., 1997] and the artificial D1S1 domain [Barrett 



and Weld, 1994].4 For the PAS approach, the performance 
depends on three components: (i) the SAT-encoding of the 
planning instances, (ii) polynomial simplification algorithms 
which are applied to the SAT formula before general SAT 
solvers are invoked, and (iii) the SAT algorithm used to solve 
the simplified encoded problem instance. All three com­
ponents have a significant influence on the overall perfor­
mance; in particular, the solver performance heavily depends 
on the encoding and simplification algorithms used to cre­
ate the SAT instance. Considering that additionally the SAT 
algorithms have several parameters which have to be tuned 
to achieve optimal performance, the number of choices over 
which one would have to optimize in order to get the best 
possible performance for the PAS approach is too high to 
practically allow an exhaustive analysis. Therefore, for this 
comparative study, we chose the following approach: 

• We used two linear SAT encodings which are known to 
be good from the literature; for the blocks world do­
main, this is the linear encoding with operator splitting 
described in [Kautz and Selman, 1996J, for the logis­
tics and D1S1 we used the "erse" (explanatory frame 
axioms, regular operator splitting, sequential plans, full 
type elimination) encoding as described in [Ernst et al. ,, 
1997]. 

• We considered several simplification strategies, as pro­
vided by Jimmy Crawford's COMPACT simplifies be­
sides "no simplification" [-] these were unit propagation 
and pure literal elimination [p] plus the unary [u] and 
binary [b] failed literal strategies which are based on ef­
ficiently computing unary and binary implicates. For the 
blocks world domain, we also considered the simplifier 
based on unit propagation and subsumption [ps] which 
is part of the SATPLAN system. 

• We focussed on stochastic local search algorithms for 
SAT; in particular, we considered the four best-per­
forming WALKS AT variants described in [McAllester 
et AL., 1997] which are among the fastest existing SAT 
solvers. To get an impression, how LPSP's performance 
compares to that of systematic SAT algorithms, we also 
used SATZ [Li and Anbulagan, 1997], one of the best 
deterministic SAT solvers. 

For the stochastic solvers, we took great care to opti­
mize the parameters (especially the noise parameter which 
is known to significantly affect performance) so that the over­
all time required for finding a solution was minimized. This 
was done for each SAT instance independently, ensuring that 
for our comparison we got an approximately optimal per­
formance. Because for a given problem instance, the dif­
ferent types of local search steps in LPSP require a variable 
amount of time, and for the PAS approach, the simplifica­
tion and solving time have to be taken into account, we com­
pared CPU times as measured on a PC with a 400MHz Pen­
tium II processor and 256 MB RAM running under Linux 
(Red Hat 5.2). For both LPSP and the stochastic SAT solvers, 
our comparison is based on 100 tries, using MAXJSTEPS 
settings high enough to guarantee that a solution was found 
in all tries. For LPSP, we left the value of many parame­
ters fixed throughout the experiments (e.g, tabu list length 

4The first two were chosen because of their use in the original 
SATPLAN paper, and the third because [Kautz and Selman, 1996] 
mentions that it seems difficult for SATPLAN. 

was 2 and DOWN-THRESH was 5) and varied the values of 
GREEDY JQF-ALMOST, GREEDY IF-NOTJVLMOST, and 
OPT_THRESH. 

The problem instances have the following characteristics: 
• Blocks World: We used the instances described in 

[Kautz and Selman, 1996]; these are: bw- large.a 
(9 blocks, 6 steps minimal linear plan length), 
bw- large.b (11 blocks, 9 steps), bw_Large.c (15 
blocks, 14 step plan), and bw_large. d (19 blocks, 18 
step plan). 

• Logistics: We used three instances in which there 
were 8 packages and 3 cities but only a small num­
ber of packages change their location. The instances 
are l o g . new. a (6 steps minimal linear plan lengdi), 
log.new.b(10 steps), and log.new. c (16 steps). 

• D1S1: We used domain sizes n = 15 and 30 and four in­
stances per domain size: d l s l - n . a (15/30 steps mini­
mal linear plan length), d l s l . b (12/23 steps), d l s l . c 
(8/16), and d l s l . d (14/28 steps). 

In Table 1, we report our experimental results. For LPSP, 
we report the mean and median CPU times over 100 suc­
cessful tries (see above) as well as the variation coefficient 
(standard deviation / mean), which gives a scaling indepen­
dent impression of the variability of the observed run-times. 
For PAS/WALKSAT, we report the CPU times for simplify­
ing the formula and the mean CPU time required by WALK-
SAT for solving the resulting simplified problem instance av­
eraged over 100 successful tries. Furthermore, we report the 
variation coefficient for the time used by WALKS AT.5 Note 
that here, we report only the best results we found for any 
simplification and WALKSAT combination, using approxi­
mately optimal noise parameter settings for WALKSAT. 6 For 
PAS/SATZ, as only deterministic algorithms are used, we re­
port the CPU times for simplification and SATZ. 

As can be seen from Table 1, LPSP shows superior perfor­
mance compared to PAS/WALKSAT as well as PAS/SATZ on 
almost all problem instances. For the blocks world instances, 
LPSP is between 3 and 13 times faster than PAS/WALKSAT. 
Interestingly, for PAS/WALKS AT, the time required for sim­
plifying the formula dominates the overall performance. 
Since different from WALKSAT, the implementations of the 
simplification algorithms are not optimized for speed, one 
might expect a significant reduction in overall performance 
when using optimized simplifiers. However, for the larger in­
stances, LPSP shows superior performance even when (unre-
alistically) assuming that simplification would come for free. 
Furthermore, LPSP requires much less tweaking then WALK­
SAT, for which various simplification strategies must be con­
sidered, various heuristics, and various parameter tuning per 
heuristic. In addition, our LPSP implementation is certainly 
not fully optimized. 

5 Our actual experimental methodology is based on measuring 
run-time distributions (RTDs) as outlined in [Hoos and Stiitzle, 
1998]; because of the limited space the RTDs could not be reported 
here, but this data is available from the authors. 

6The best-performing WALKSAT variants were TABU for the 
Blocks World instances and Novelty for all others. The approx­
imately optimal noise settings varied between the instances and 
seemed to be strongly dependent on the simplification strategies ap­
plied before. 
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Table 1: Performance of LPSP versus PAS using die best simplification and solver variants with approximately optimal param­
eters. For stochastic solvers, we report the mean run-times over 100 successful tries and the variation coefficient (vc = standard 
deviation/mean). For both PAS approaches, we report the times required for simplifying (first number) and solving (second 
number) separately and also indicate which simplification method has been applied (see text for explanation) All run-times 
reported in CPU seconds; "*" indicates cases in which no solution was found in 60 CPU seconds (for SLS algorithms, 10 tries 
£ 60 seconds were performed). For further details, see text. 

The more complex SAT-simplifications seem to be far 
more effective for the logistics domain than for the blocks 
world or D1S1 problems. Here, the formulae obtained by 
simplifying with the "unary/binary failed clauses" options 
are almost trivial for WALKSAT. However, although they 
have polynomial worst-case complexity, these simplifica­
tions are quite expensive in practice. So here, again, for 
PAS/WALKSAT the overall performance is dominated by 
the time required for simplification. Comparing the overall 
performance, LPSP is between 15 and 80 times faster than 
PAS/WALKSAT. Even assuming that the implementation of 
the simplifier could be considerably more optimized than 
LPSP, it is hard to imagine that PAS/WALKS AT could reach 
LPSP's performance on this domain. It should be noted, how­
ever, that for the logistics domain, most problem instances 
have significantly shorter parallel plans which are much eas­
ier to find than sequential plans. But since LPSP is a lin­
ear planner, it would be unfair to compare its performance 
to PAS approaches which allow for parallel plans. Finally, 
even for DlSI , a domain which has been noted to be diffi­
cult for SATPLAN using SLS for solving the SAT instances 
[Kautz and Selman, 1996], LPSP shows better performance 
than PAS/WALKSAT. The only exception is instance d l s l -
3 0. a, which is solved by simplification (unit propagation) 
alone. The reason for this is that the d l s l - n . a instances 
have a chaining structure of the goals and operators which is 
very regular, but, in our opinion, highly untypical for realistic 
planning problems. We also believe that LPSP's performance 
on this domain can be significantly improved by optimizing 
its parameter settings. 

Regarding the results on PAS/SATZ, LPSP's performance 
is still considerably better on all instances except for instance 
d l s l - 3 0 . a, which in principle is solved by simplification 
(unit propagation) alone. Nevertheless, for this particular in­
stance, SATZ is actually faster then the simplification algo­
rithm we use, probably because it is more efficiently imple­
mented. Interestingly, when compared to PAS/WALKSAT, 

PAS/SATZ shows a better performance for 7 of our 11 bench­
mark instances. For the biggest blocks world and logistics in­
stances, as well as for one of the d l s l - 3 0 instances, SATZ 
did not find a solution in 60 seconds — which could possibly 
indicate that SATZ does not scale as well as SLS approaches 
(LPSP and PAS/WALKSAT). However, this issue needs to be 
further investigated, especially using newer, randomized sys­
tematic search algorithms [Gomes et al., 1998]. 

5 Discussion 
The thesis that SLS-based algorithms operating on un-
encoded problems can fare better than those operating on en­
coded problems cannot be proved experimentally. The per­
formance of LPSP does, however, lend it greater credibility, 
especially when we compare the effort invested in it with that 
invested in work on SAT-based SLS algorithms in general and 
the PAS approach specifically. 

In a longer version of this paper, we describe experiments 
which we conducted on two additional problem domains: 
Hamiltonian circuit and binary CSPs. The first domain has 
interesting, inherent structure, and we have been able to ob­
tain better results using an SLS-based algorithm applied to 
the graph description directly. The second problem domain is 
more general and closely resembles SAT problems. There, 
we found that SAT-based methods perform better than the 
SLS-based algorithms we experimented with.7 

Of course, one could argue that in the area of planning 
in general, SLS-based methods applied to encoded problems 
that do not enforce the linearity assumption have the upper 
hand. However, recent research is starting to show that the 
situation is a bit more complicated. tSerina and Gerevini, 
1998] employ SLS methods to search Graphplan's planning 
graph. Their algorithm outperforms PAS based methods on 
some problems, and in particular, those in which concurrent 

7See also [Hoos, 1999]. 
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plans are much shorter. Our algorithm seems to outperform 
PAS based approaches when concurrency is not an important 
factor (e.g., the blocks' world instances). The best SAT-based 
planner, BLACKBOX {Kautz and Selman, 19981, relies more 
on traditional plan representations than the original S ATPLAN 
planner [Kautz and Selman, 1996]. BLACKBOX goes very 
far with the original planning problem before converting it 
into a prepositional formula: It first generates a planning 
graph and encodes this graph together with the mutual exclu­
sion constraints it generated. More importantly, recent work 
[Giunchiglia et al., 1998] shows that better performance can 
be obtained if the variables describing state properties are 
treated as dependent variables (i.e., one chooses an assign­
ment for the action variables and this determines the value of 
the state variables). What this result mean is that it is better 
to search over the space of assignments to actions than over 
the whole space of truth assignments. The space of action 
assignments is very similar to LPSP's search space. 

Naturally, we have not heard the last word in SAT algo­
rithms, and recent work on exploiting variable dependences 
[Kautz et al, 1997] may allow us to utilize knowledge about 
problem structure in solving the encoded problems. Another 
promising direction in which little work has been carried out 
is the analysis of the encoded problems for useful features 
of search space structures (see also [Hoos, 1999]) or syntac­
tic properties. Such features may stem from deep properties 
of the encoded problem. To date, most SAT solvers do not 
attempt to utilize such information (although it could be ar­
gued that formula simplification routines do something of this 
sort). But perhaps there are algorithms that can operate much 
better than the standard methods on sentences with special 
properties. This is particularly interesting if such properties 
are shared by all problems from a particular domain. If this 
turns out to be the case, then, indeed, the encode & solve ap­
proach may be our best bet.8 

To use Chapman's terminology, LPSP is a somewhat 
"scruffy" planner. It would be nice to see a simpler, more 
principled and general planner based on SLS techniques. 
However, it is already much easier to optimize than the PAS 
based algorithms that have three distinct phases (translate, 
simplify, solve) each of which needs to be fine-tuned sepa­
rately. Moreover, it may be the case that good SLS algorithms 
must be a bit involved if they are to exploit domain structure. 

LPSP's reordering operators are interesting in their own 
right and could possibly be integrated into plan reuse and plan 
repair algorithms. Plan reordering has been considered in the 
past (see [Backstrom, 1998] and references therein) but typ­
ically with the goal of optimizing the order of correct plans. 
The idea of repairing plans in general is not new either, and 
goes back at least to [Sussman, 1975]. The heuristic, rather 
than more systematic, approach LPSP takes stems from the 
need to balance the desire for a better, and more sophisticated 
order analysis (which is likely to be intractable), and the need 
to maintain a low cost for each step. Finally, we note that dif­
ferent types of domain specific knowledge can be used to fo­
cus the search process, e.g., by using general variables rather 
than binary variable to specify state information, by restrict­
ing the type of operators that should be considered in various 
situations, etc. 
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