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Abstract 
In this paper, we extend and integrate pre­
viously reported techniques for resource con­
strained scheduling to develop a CSP proce-
dure for solving RCPSP/max, the resource con­
strained project scheduling problem with time 
windows (generalized precedence relations be­
tween start time of activities). RCPSP/max 
is a well-studied problem within the Opera­
tions Research community and the presence of 
a large set of benchmark problems provides a 
good opportunity for comparative performance 
analysis. Our base CSP scheduling model gen­
eralizes previous profile-based approaches to 
cumulative scheduling by focusing on global 
analysis of minimal conflicting sets rather than 
pairwise conflict analysis. This generalization 
increases the tendency for more effective con-
flict resolution. Since RCPSP/max is an opti­
mization problem, other ideas from prior work 
are adapted to embed this base CSP model 
within a multi-pass, iterative sampling proce-
dure. The overall procedure, called ISES (It­
erative Sampling Earliest Solutions), is applied 
to the above mentioned set of benchmark prob-
lems. ISES is shown to perform quite well in 
comparison to current state-of-the-art proce-
dures for RCPSP/max, particularly as search 
space size becomes limiting for systematic pro-
cedures. 

1 Introduction 
In recent years, CSP scheduling research has been 
increasingly concerned with development of models 
for solving cumulative (i.e., multi-capacity resource) 
scheduling problems. Such models are important be­
cause they are much better matched to the requirements 
of many practical scheduling environments than tradi­
tional CSP scheduling models. Much of the work in 
this area has focused on constraint propagation tech­
niques that exploit the structure of cumulative resource 
constraints, and are hence capable of stronger inference. 
Less attention has been paid to development of effective 
heuristics for managing the scheduling search process. 

In this paper, we focus on this latter issue. Drawing 
from previous work in resource-constrained scheduling, 
we develop a base CSP resolution procedure for cumu­
lative scheduling. Our procedure proceeds by iteratively 
detecting and leveling "resource contention peaks", i.e., 
periods where demand is projected to exceed resource 
capacity. The conflict selection and resolution heuris­
tics used in our procedure to direct the search general­
ize those employed in previous "profile-based" schedul­
ing approaches, replacing localized, pair-wise analysis of 
competing resource requests with more global analysis 
of minimal conflict sets. Such extended analysis can be 
expected to lead to more informed resolution decisions. 

Our specific interest in this paper is application of this 
scheduling approach to the resource constrained project 
scheduling problem with time windows (RCPSP/max), a 
well-studied and difficult makespan minimization prob­
lem. To this end, extensions are developed to enable 
use of the base resolution procedure within a larger "op­
timizing" search process. Below, we first define the 
RCPSP/max problem (Section 2). Next, we describe 
elements of our composite RCPSP/max solution proce­
dure (Sections 3 and 4). Finally we report comparative 
performance results on a previously studied set of bench­
mark problems (Section 5). 

2 The RCPSP/max Problem 
The RCPSP/max scheduling problem can be formalized 
as follows: 

• a set V of n activities to be executed, where each 
activity j has a fixed duration . Each activity 
has a start-time and a completion-time that 
satisfies the constraint 

• a set E of temporal constraints between activity 
pairs of the form , 
called start-to-start constraints (time lags or gener­
alized precedence relations between activities). 1 

• a set R of renewable resources, where each resource 
has a integer capacity 

Note that since activity durations are constant values, 
end-to-end, end-to-start, and start-to-end constraints be-
tween activities can all be represented in start-to-start form. 
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In [Bartusch et a/., 1988J, it is shown that finding 
a feasible schedule alone for RCPSP/max is NP-hard. 
This difficulty is due to the presence of maximum sep-
arations The RCPSP/max problem has been 
the subject of recent investigation within the Opera­
tions Research (OR) Community, yielding lower-bound 
analysis [Heilmann and Schwindt, 1997] and a number 
of branch and bound (B&B) solution procedures (e.g., 
[De Reyck and Herroelen, 1998; Mohring et a/., 1998; 
Schwindt, 1998; Dorndorf et a/., 1998]). A problem gen­
erator PROGEN/max [Schwindt, 1996] has been made 
available on the Web together with a set of reference 
problems [Kolisch et a/., 1998]. 

3 Constructing a Feasible Solution 
We begin by specifying a core CSP resolution proce­
dure for generating feasible solutions to instances of 
RCPSP/max. Our approach follows the same gen­
eral schema as other constraint-posting scheduling ap-
proaches (e.g., [Cheng and Smith, 1994; Cesta et al, 
1998a]). An initial, time-feasible solution is first com­
puted (ignoring all resource constraints). Resource con­
straints are then super-imposed and an iterative search 
is performed to resolve all resulting resource conflicts 
(i.e., sets of activities competing for the same resource 
capacity over some time interval). On each iteration 
a particular conflict is selected to resolve, and one ad­
ditional precedence relation is posted to eliminate the 
contention. The search continues until either a feasible 
solution is found (i.e., all conflicts have been eliminated), 
or until an unresolvable conflict has been discovered (in 
which case the search fails). 

Clearly, one key to the effectiveness of this greedy 
search procedure will be the strength of the heuristics 
used to select and resolve pending conflicts. In this re­
gard, our approach integrates ideas from a previously re­
ported clique-based approach to resource reasoning [La-
borie and Ghallab, 1995] to improve on previously devel­
oped heuristics for cumulative scheduling. A second way 
in which the effectiveness of above (partial) procedure 
can be enhanced is through the addition of backtracking 
or restarting mechanisms, which serve to broaden the 

search in the event of failure. Exploiting the approach 
taken in [Oddi and Smith, 1997], we develop a random­
ized variant of our conflict selection heuristic and embed 
the core resolution procedure within a larger, iterative 
sampling search. Before elaborating on the design of 
these aspects of our feasible solution generator, we first 
briefly summarize the constraint propagation machinery 
used to support the search. 

3.1 Constraint Propagation 
A CSP-based resolution procedure integrates two ba­
sic components: a search procedure responsible for re­
fining the current CSP by taking decisions on possible 
values for variables, and a constraint propagation pro-
cedure that, after each choice of the search, computes 
implications by updating the status of the CSP and 
eliminating inconsistent values. In a scheduling prob­
lem like RCPSP/max both temporal and resource con­
straints can be sources of propagation: 
Time constraints. Our search procedure manipulates 

a temporally consistent network of time points, con­
strained initially by the set of temporal constraints 
identified in Section 2 and further constrained as 
additional precedence constraints are posted dur­
ing the search. Path consistency in this network is 
dynamically maintained via all pair shortest path 
computation, making distance information between 
any pair of time variables available for use in focus­
ing the search. 

Resource constraints. We do not make use of re­
source constraint propagation as is done in some 
other recent approaches to disjunctive and cumula­
tive scheduling problems (e.g., [Nuijten and A arts, 
1996; Nuijten and Le Pape, 1998]). This form of 
deduction can be seen as complementary to our ap­
proach; it could be added in a transparent way to 
further prune the search space (and potentially im­
prove reported results). This is one direction of cur­
rent research. 

3.2 ESA: A Basic Resolution A lgor i thm 
Figure 1 specifies the basic "conflict removal" procedure 
used to generate a feasible solution, referred to as ESA 
(Earliest Start Algorithm). The algorithm accepts a 
problem instance (Problem) and an upper bound on the 
overall makespan (Horizon). It first computes an earli­
est start time solution that assumes "infinite capacity" 
(ProblemEST at line 1) and then attempts to incremen­
tally transform this initial time-feasible solution into a 
resource-feasible solution. At each step, a resource con­
flict still present in the current solution is selected and 
resolved, by posting a precedence constraint that delays 
the earliest start time of one of the competing activities. 

Contention Peaks on Resource Profiles. Given a 
time-feasible, earliest start time schedule , it is 
straightforward to identify time instants t where the re­
source capacity constraint of a given resource is violated. 
We say that there is a contention peak on resource at 
time t if condition holds. Intuitively, 
a contention peak on resource characterizes a conflict, 
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identifying a set of activities that simultaneously require 
but have a combined capacity requirement 

Obviously feasible solutions do not contain peaks, and 
one possible way to transform ESTsol into a feasible so­
lution is to detect and remove all peaks. This is the basic 
idea behind profile-based scheduling procedures [Cesta et 
a/., 1998a]. A peak can be removed by "leveling" it, that 
is by posting one or more precedence constraints between 
pairs of activities contributing to the peak (such con-
straints are posted between the end-time of one activity 
and the start-time of the other to avoid overlap). In lev­
eling a conflict, the choice of which pair(s) of activities 
to order can be quite crucial to the quality of the solu­
tion, as it is possible to add precedence relations that 
do not have a strong peak leveling effect. For example, 
assume resource with capacity = 4 has a peak that 
includes the following activities (capacity requirements 
in brackets): . Two pairs of ac­
tivities that might be selected for ordering are 
or . In the case of the combined 
requirement exceeds ck and hence any feasible solution 
must have at and a1 reciprocally ordered. Alternatively, 
an ordering of the pair may or may not be es­
sential to leveling the conflict. One observed shortcom­
ing of previous profile-baaed approaches to cumulative 
scheduling has been their tendency to post unnecessary 
ordering constraints, following from the use of conflict 
selection and resolution heuristics that rely strictly on 
pairwise analysis of competing activities [Cesta et a/., 
1998a]. 

Conflicts are Min imal Crit ical Sets of Activit ies. 
An alternative approach to conflict analysis that can 
overcome this problem has been proposed in [Laborie 
and Ghallab, 1995]. Under this scheme, an activity 
"intersection graph" is constructed and systematically 
searched for particular cliques. Such a clique is called 
a Minimal Critical Set (MCS). It specifies a set of ac­
tivities that simultaneously require a resource with a 
combined capacity requirement , such that the com-
bined requirement of any subset is . The important 
advantage of isolating MCSs is that a single precedence 
relation between any pair of activities in the MCS elimi­

nates the resource conflict. 
Unfortunately, the exponential nature of the intersec­

tion graph search prohibits use of this basic approach on 
scheduling problems of any interesting size. In [Cesta 
et a/., 1998b], it is shown that much of the advantage 
of this type of global conflict analysis can be retained 
by using an approximate procedure for computing MCSs. 
But the pragmatic cost of recomputing MCSs across all 
resources at each iteration of the CSP resolution pro­
cedure nonetheless remains high and significantly limits 
scalability. 

In ESA, we achieve an even better computational 
tradeoff by instead integrating the use of MCS analysis 
into a profile-based scheduling framework. On each it­
eration of the search, we first compute contention peaks 
(which is quadratic in the number of activities) to isolate 
those areas of the solution where conflicts (i.e., MCSs) 
should be computed. Next we generate a set of MCSs 
for each peak. (These two steps are embedded respec­
tively in the ResourceFeasible(ESTBol) predicate and 
ExistUnsolvableConf l i c t function of lines 4 and 7 in 
the algorithm description of Figure 1.) The number of 
MCSs contained in a given peak can still be quite large (in 
the worst case , and, accordingly, ESA also uti­
lizes an approximate (heuristic) scheme for computing 
MCSS. 

Computation of Cri t ical Min imal Sets. Two 
heuristic sampling schemes for computing the set of MCSs 
associated with a given contention peak P are evaluated 
in this paper: linear sampling and quadratic sampling. 
In both cases, the activities j P are first sorted in or­
der of decreasing size of the./capacity requirements (,e. 
largest first), to promote detection of the "most critical" 
MCSs. The two schemes are summarized as follows: 

Linear sampling. Under this scheme, a queue Q is 
used to select an MCS in P. Activities j P are se­
quentially considered (in sorted order) and inserted 
in Q until the sum of the resource requirements ex­
ceed the resource capacity. At this point, the set Q 
(the current MCS) is collected in a list of MCSs and 
the first element from Q is removed. The previous 
steps are iterated and MCSs are collected until there 
are no uninserted activities in P. 

Quadratic sampling. This scheme can be seen as 
an extension of linear sampling in which the second 
step is expanded as follows. Once the current MCS 
has been collected, instead of immediately removing 
the first element from Q, a forward search through 
the remaining uninserted activities in P is first per-
formed to also collect all MCSs that can obtained by 
dropping the last item placed in Q and substituting 
with single subsequent activities in P until an MCS 
is still composed. 
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Conflict Removal. Lines 10-12 of the ESA algorithm 
in Figure 1 remove an MCS from the current solution. 
The basic steps involve selecting an MCS from the current 
conflict set (Line 10), selecting a precedence constraint 
that resolves the selected MCS (Line 11), and posting 
the constraint in ESTsol to perform temporal constraint 
propagation (Line 12). 

The heuristics that govern both conflict selection and 
conflict resolution in ESA are based directly on least 
commitment concepts previously utilized for other prob­
lems with maximum time lags (e.g., [Cheng and Smith, 
1994; Laborie and Ghallab, 1995]). Candidate MCSs are 
ordered according to the temporal flexibility they con­
tain (a function of the degree to which constituent ac­
tivities can be reciprocally shifted in time). The less 
flexibility a MCS has, the more critical it is to resolve 
first. The greater the flexibility that is retained after 
posting a precedence constraint that resolves a MCS, the 
more desirable it is to post that constraint. 

To quantify the notion of temporal flexibility, the 
heuristic estimator K suggested in [Laborie and Ghal­
lab, 1995] is used. Given a candidate MCS and a set 

of precedence constraints that could be 
posted between pairs of activities in the MCS A'(MCS) 
is defined as follows: 

where ranges from 0 to 1 and estimates the 
loss in temporal flexibility as a result of posting con­
straint pci and pCmin is the precedence constraint with 
the minimum value of cornmit(pc). 

Note that K'(MCS) takes on its highest value of 1 
in those cases where only one specific precedence con­
straint can be feasibly posted to resolve the conflict. 
In general, the closer an MCS is to being unresolvable, 
the higher the value of K(MCS). The conflict selection 
heuristic (SelectConf l i c t ) chooses the MCS with the 
highest K value, and the conflict resolution heuristic 
(SelectPrecedence) simply 

3.3 Randomiz ing ESA 
The ESA resolution procedure, as defined above, is a de­
terministic (partial) solution procedure with no recourse 
in the event that an unresolvable conflict is encountered. 
To provide a capability for expanding the search in such 
cases without incurring the combinatorial overhead of a 
conventional backtracking search, we define a random 
counterpart of our conflict selection heuristic (in the 
style of [Oddi and Smith, 1997]) and embed the resulting 
"Random-ESA" procedure within an iterative sampling 
search framework. Specifically, the heuristic employed 
by SelectConf l i c t is modified as follows. We define an 
acceptance band , and consider as equivalent the set of 
MCSs for which The 
conflict to be resolved next is randomly selected from this 
set, resulting in a non-deterministic yet heuristically-
biased choice. 

Figure 2 depicts the larger iterative sampling algo­
rithm. It is designed simply to invoke the random-ESA 

resolution procedure a fixed number (MaxRestart) of 
times, rather than predicating any restarts on a failure 
to produce a feasible solution. Given that the broader 
objective in this paper is makespan minimization, each 
restart provides a new opportunity to produce a different-
feasible solution with lower makespan. 

4 An Optimization Procedure 
Though the restarting procedure just described does in 
fact retain the smallest makespan solution generated 
across calls to mresESA, its principal role is to produce 
a feasible solution relative to a given upper-bound hori­
zon. In this section, we define an RCPSP/max opti­
mization procedure based on use of this feasible solution 
generator, and relate it to previous OR approaches to 
RCPSP/max. 

4-1 The ISES A l g o r i t h m 
Similar to other CSP procedures for makespan minimiza­
tion (e.g., [Cheng and Smith, 1997]), we adopt a multi-
pass approach; the feasible solution generator is repeat­
edly applied to solve problems with increasingly smaller 
temporal horizons, until it is no longer possible to find a 
feasible solution or until a lower-bound solution is found. 

Figure 3 shows the specific multi-pass version of the 
base ESA procedure we have defined, called ISES (It-
erative Sampling Earliest Solutions). ISES is composed 
of two basic steps. First, a feasible solution is found 
by invoking mresESA with a horizon value (MaxH) much 
greater than the lower bound mko. (mk0 is the initial "in­
finite capacity" solution to Problem). Successive calls 
are then made to mresESA each time substituting the 
new best makespan found on the previous call as the new 
problem horizon. The iteration stops when either (1) a 
call to mresESA returns an empty solution, (2) a lower 
bound solution is obtained, or (3) a solution is returned 
which does not improve the previous best. 

4.2 Compar ison to OR Approaches 
As previously noted, the work of [Bartusch et a/., 1988] 
investigates the mathematical properties of the problem 
and similarly characterizes the solution space using the 
temporal constraints. The notion of forbidden sets is 
introduced to represent resource conflicts, equivalent to 

CESTA, ODDI, AND SMITH 1025 



our definition of contention peaks. The paper also de­
fines a concept similar to MCS (called reduced forbidden 
set). This is used to sketch a systematic B&B procedure 
which similarly starts from an infinite capacity solution 
and extends the set of precedence relations in the prob­
lem. Unfortunately the computational analysis is quite 
limited. Only small instances are mentioned and this 
approach has not influenced later OR computational ap­
proaches to RCPSP/max. ISES can be seen as an ap­
proximation algorithm based on the same ideas (even if 
it has evolved from other origins). 

More recent B&B approaches have retained the idea of 
extending a time-feasible solution by adding precedence 
relations, but analyze the current solution differently. In 
[De Reyck and Herroelen, 1998] and [Schwindt, 1998], 
peaks are considered in increasing chronological time or­
der and, for each of them, a set of "minimal delaying 
activities" are detected for resolving conflicts. Alterna­
tively, ESA does not depend on the chronological time 
order, but opportunistically acts on the more constrained 
part of the solution. Other B&B algorithms work differ­
ently. For example [Mohring et a/., 1998] solves resource 
conflicts by increasing release dates (minimum time lags 
relative to beginning of the project) for certain activi­
ties instead of introducing precedence relations. A very 
recent proposal [Dorndorf et a/., 1998] obtained strong 
results using a combination of techniques: it couples a 
set of temporal and resource constraint propagation rules 
with a binary branching schema that exploits particular 
properties of the current partial solution to successively 
fix and/or delay the start-times of various activities. 

Approximate approaches are also defined in the OR 
literature. One heuristic analysis [Franck and Neumann, 
1998] very recently obtained very good results on the 
RCPSP/max benchmark problems. Despite being clas­
sified as a "priority rules" approach, this work uses a two 
step method: (a) a sophisticated decomposition analysis 
is performed to identify "critical sub-components" which 
can be scheduled independently, and (b) the scheduled 
sub-components (partial schedules) are integrated into 
one using a set of priority rules. Note that the first step 
uses properties due to the presence of maximum time 
lags. With respect to ISES this approach is determinis­
tic and relies on a quite different analysis of the problem. 

5 Experimental Evaluation 
Our experimental evaluation of ISES focuses on two sets 
of reference problems taken from the RCPSP/max prob­
lem repository 2: 
Problem set A. This is the benchmark problem set 

described in [Kolisch et a/., 1998]. It consists of 
three sets of 270 problems each, named J10, J20 
and J30, with problems of 10, 20 and 30 activities 
respectively and 5 resources. The only known re­
sults for this problem set to date have been obtained 
using the B&B procedure of [Schwindt, 1998] 

Problem set B. This is the benchmark problem set in­
troduced in [Schwindt, 1998] and used by the recent 
B&B approaches mentioned in Section 4.2. It con­
sists of 1080 problems with 100 activities and 5 re-
sources, of which 1059 are feasible and the rest are 
provably infeasible. For this set, lower bounds are 
known for each problem [Heilmann and Schwindt, 
1997], providing a common reference point for mea­
suring deviation from optimal solutions. 

Both above problem sets were generated by PRO-
GEN/max, a flexible random networks generator 
[Schwindt, 1996] that allows generation of project 
scheduling problems of varying structure, constrained-
ness and difficulty. However, due to differences in the 
generation parameters used in each case, there are im­
portant differences in the characteristics of the problems 
in each set. The parameter settings used to generate 
Problem Set A are closer than Problem Set B's to the 
settings which produce the "hardest possible" problems 
[Franck and Neumann, 1998]. In particular, the prob­
lems in Set A exhibit higher levels of resource contention 
(i.e., higher contention peaks) than those in Set B, along 
with increased parallelism in project activities (i.e., in­
creased sequencing flexibiliy). Given these properties, 
we can expect deeper search trees (i.e., a larger search 
space) in solving problems from Set A than for prob­
lems in Set B, since a greater number of ordering deci­
sions are needed to build up a feasible solution. Hence, 
even though Problem Set B contains larger (100 activity) 
problems, the problems in Problem Set A are actually 
very challenging. 

5.1 Exper imen ta l Design. 
Results are obtained with ISES on Problem Sets A and B 
using both linear and quadratic MCS sampling schemes. 
For all experiments, the randomization factor B in MCS 
selection is set to 0.1, so all MCSs within the 10% of 
the maximum ranked are considered as equivalent. The 
number of restarts of the resolution procedure at a given 
horizon (MaxRestart) is set to 10 and 30 for problem set 
A, and to 10 for problem set B. The maximum horizon 
MaxH is set to 5x mk0 

All algorithms compared to ISES below have been im­
plemented in C++ and run on a Pentium 200 with an im­
posed time limit of 100 seconds per problem. Our current 

2Available at ftp://ftp.wior.uni-karlsruhe.de/ 
pub/ProGen-max/pspmaxlib/ 
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implementation of ISES is in Allegro Common Lisp and 
the reported results are obtained on a SUN UltraSparc 
30 (266MHz). The and Lisp implementations are 
not directly comparable, but we have nonetheless im­
posed the same 100 second time limit. For problem set 
B we also compute the performance of ISES for 300 and 
500 second limits to better understand the behavior of 
the algorithm. 

Given the non-deterministic nature of ISES each prob­
lem is solved multiple times using different random seeds 
(similar to [Nuijten and Le Pape, 1998] which also evalu­
ates a random restart algorithm). We report two results: 
(1) the best result , obtained using the best 
result on any single problem over the n different runs, 
and (2) the average result (ISESavg(n)), obtained using 
the average result on each problem over its n runs. 

5.2 P rob lem Set A 
Table 1 gives overall performance results on the J10, 
J20 and J30 problem classes of Problem Set A for the 
best performing ISES configuration (MaxRestart=30, 
quadratic sampling) and the B&B approach of 
[Schwindt, 1998] (labeled . The first column, 
{Novp), is interpreted differently in the case of each algo­
rithm: for , it indicates the number of problems 
solved to optimality; for ISES, it indicates the number 
of problems for which the same solution as was 
obtained. The second column, , gives the number 
of problems feasibility solved by both approaches. The 
last column, Nimpr, makes sense only for ISES, indicat­
ing the number of problems for which ISES finds better 
solutions than . Average ISES solution times on 
J10, J20, J30 problems were 0.87, 5.76 and 17.97 seconds 
respectively. 

We can observe the following: 
• On the smaller J10 and J20 problems the exact 

procedure dominates ISES, but on both 
the sets ISES finds all feasible solutions. 

• on J30 ISES finds 2 feasible solutions (on all runs) 
that elude and (on average) improves on 
20 solutions produced by 

• as problem size increases, from J10 to J30, ISES 
finds lower-makespan solutions than on in­
creasing numbers of problems. 

Table 2 shows the relative deviation of the makespans 
produced by ISES from those produced by B&B for both 

(with same configuration as 
above). We can see that: 

• the average deviation in solution quality across all 
problems is less that 1.6%. 

• the differential in solution quality progressively de­
creases as problem size is increased. 

In Table 3 we indicate the effects on solution quality of 
varying the MCS sampling strategy and the number of 
restarts on the J30 problem subset. It can be seen that 
increasing the number of restarts always has a positive 
effect, and that the more accurate (quadratic) sampling 
produces a significant improvement. 

On balance, the comparative results on Problem Set A 
suggest that ISES provides a scalable alternative to exact 
B&B solution procedures on "hard" RCPSP/max prob­
lems. It is worth mentioning that in [Franck and Neu­
mann, 1998] results with similar size problems (number 
of activities in the range {10,15,20} with similar param­
eters for PROGEN/max) are reported, and the heuristic 
approach proposed there compared quite badly with re­
spect to B&B. 

5.3 Prob lem Set B 
Table 4 reports performance results for ISES on Problem 
set B using the same metrics originally used in the B&B 
study of [Schwindt, 1998]. These include: 

• - the average relative deviation from the 
lower bound computed by using [Heilmann and 
Schwindt, 1997]; 

• the percentage of optimal solutions found 
(i.e., solutions that equal the best known lower 
bound or are proved optimal by a B&B); 

• - the percentage of problems solved to fea­
sibility. 

We compare the performance of ISES (MaxRestart=10, 
linear sampling) with all recently reported branch and 
bound approaches for RCPSP/max, including those of 
[De Reyck and Herroelen, 1998] (labeled B&BdRH), 
[Mohring ct a/., 1998] (labeled , [Schwindt, 
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1998] (labeled , and [Dorndorf et al, 1998] (la­
beled . We also include the above mentioned 
heuristic procedure of [Franck and Neumann, 1998] (la­
beled . In this case, no decomposition strat­
egy/priority rule pair was found to outperform all oth­
ers on all problems, so we include in Table 4 the results 
obtained by using the best performing decomposition 
scheme and, for each problem, taking the best solution 
found by 10 priority rules. 

Several observations follow from Table 4: 
• ISES is one of three approaches that is able to find all 

feasible solutions (98.06%) within a 100 second time 
bound. In this regard, ISES outperforms , 
previously the best heuristic procedure known for 
RCPSP/max. In fact, ISES also appears to be more 
robust than across all 15 runs performed 
with ISES, no more than 3 feasible solutions were 
ever missed on a single run. 

• all B&B approaches except find higher 
percentages of optimal solutions than ISES. How­
ever, with regard to deviation from lower bound 
solutions ISES ranks third behind B&BD98 
and B&Bs98, and is in fact fairly comparable to 

with a 300 second time limit. (Note that 
is influenced by the number of feasible so­

lutions found; solving the more difficult problems 
typically increases the deviation [Dorndorf et a/., 
1998]). 

• Contrasting the performance of ISES at different 
time limits, significant improvement is obtained in 
increasing the time limit from 100 to 300 seconds 
but the further increase to 500 seconds achieves only 
limited further improvement. 

The clearly dominating procedure on Problem Set B 
is of [Dorndorf et a/., 1998]. It is interesting 
to note that this approach exploits resource constraint 
propagation rules that could be straightforwardly added 
to ISES. We are currently investigating this possibility. 

The average solution times obtained for ISES at each 
different time limit give some additional insight into its 

behavior on this problem set, and are as follows: 43.91 
seconds (100 second limit), 72.21 seconds (300 second 
limit) and 84.79 seconds (500 second limit). The fact 
that average solution times rise fairly slowly in propor­
tion to increases in the time limit indicates that there 
are only a relatively small percentage of problems that 
cannot be efficiently solved. For example, in examining 
particular runs of ISES, the percentage of solvable prob­
lems that require over 100 seconds for solution is seen to 
be 25%. 

Finally, Table 5 indicates the performance effect of in­
corporating the more-comprehensive quadratic MCS sam­
pling strategy with a 500 second time bound. In this 
case, the average solution time increases just slightly to 
91.49 seconds, and as Table 5 shows, there is virtually no 
improvement in solution quality. This ineffectiveness can 
also be explained by recalling the prior discussion of the 
characteristics of Problem Set B. The level of resource 
contention in these problems is only small to moderate, 
resulting in contention peaks that are relatively smooth 
and contain few MCSs. Accordingly, there are few MCSS 
that are not found by linear sampling and a more accu­
rate strategy adds very little. 

6 Conclusions 
This paper investigates the use of an iterative sampling 
procedure to solve RCPSP/max, a complex optimiza­
tion problem. The ISES procedure uses a combination 
of constraint-guided greedy search and randomization. 
The greedy search procedure utilizes analysis of "min­
imal conflict sets" (MCSs) to identify where additional 
ordering constraints are required to avoid resource con­
tention. MCS analysis is integrated with least commit­
ment principles related to retaining temporal flexibility 
to provide heuristics for focusing the search. Randomiza­
tion is introduced in a way that incorporates the bias of 
these greedy search heuristics. This provides a basis for 
smoothing the decisions of the deterministic algorithm 
and for broadening the search to include heursitically 
equivalent search paths in the space, thus enhancing the 
probability of finding better quality solutions. 

A further contribution is represented by the approx­
imate computation of MCSs, which avoids the basic ex-
ponential computation and attempts to first select the 
most critical minimal conflicts at a low polynomial cost. 

ISES has been compared with the best existing ap­
proaches to RCPSP/max. It outperforms several sys-
tematic and heuristic approaches on different reference 
problem sets. In particular, ISES is shown to perform 
quite well in situations where, due to problem character­
istics such heavy resource contention, the search space is 
quite large and becomes a serious obstacle for systematic 
approaches. In this case, our non-systematic random ap-
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proach demonstrates an advantageous trend in compar­
ison to the best known systematic algorithm (in terms 
of both the number and the quality of the solutions pro­
vided) as problem size is increased. It is worth noting 
that our method relies mainly on its composite search 
strategy and heuristics, rather than on a set of propa-
gation rules for early pruning of the search space. The 
addition of the latter could be an interesting direction 
for future research. 
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