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Abstract 
This paper presents a novel approach to non­
linear black-box system identification which 
combines Qualitative Reasoning (QR) methods 
with fuzzy logic systems. Such a method aims 
at building a good initialization of a fuzzy iden­
tifier, so that it will converge to the input-
output relation which captures the nonlinear 
dynamics of the system. Fuzzy inference pro­
cedures should be initialized with a rule-base 
predefined by the human expert: when such 
a base is not available or poorly defined, the 
inference procedure becomes extremely ineffi­
cient. Our method aims at solving the prob­
lem of the construction of a meaningful rule-
base: fuzzy rules are automatically generated 
by encoding the knowledge of the system dy­
namics described by the outcomes of its qual­
itative simulation. Both efficiency and robust­
ness of the method are demonstrated by its ap­
plication to the identification of the kinetics of 
Thiamine (vitamin B1) and its phosphoesters 
in the cells of the intestine tissue. 

1 Introduction 
The problem we address here is how QR techniques can 
be used to improve the performance of non-parametric 
approaches to nonlinear black-box System Identification 
(s1). Recently, due to the paucity of directly applica­
ble results, nonlinear s1 has received more and more 
attention in the control community with a consequent 
development of a number of new approaches capable 
to describe the nonlinear dynamics of a real system 
from input-output data. Neural networks, multi-variate 
splines and fuzzy logic systems are the most known ap­
proximation schemes used for learning an input-output 
relation from data [Jang, 1993; Khannah, 1990; Wang, 
1994]. Although these approaches are successfully ap­
plied to a variety of domains, they are affected by two 
main drawbacks: first, the model identification proce­
dure usually requires a large amount of data and is of­
ten extremely inefficient; second, the identification re­
sult, a nonlinear function, does not capture any struc­

tural knowledge. With the goal to overcome these draw­
backs, we propose a novel method which combines the 
qualitative and non-parametric modeling frameworks. 
Therefore, such a method is applicable whenever the 
incompleteness of the available structural knowledge of 
the system under study is not so strong as to pre­
vent from formulating a qualitative model of its dy­
namics through Qualitative Differential Equations (QDE) 
[Kuipers, 1994]. 

We believe that the efficiency and robustness of non­
linear black-box SI methods may improve only if they 
incorporate and exploit all available knowledge of the 
system, namely the structural and human knowledge, 
and the experimental one. Qualitative models and lin­
guistic rules represent properly the structural and human 
expert knowledge, respectively. As qualitative modeling 
formalism we have chosen QSIM [Kuipers, 1994] because 
of both its expressive power to represent QDE and its 
reasonable predictive capacity. As nonlinear identifiers 
we have chosen fuzzy logic systems since various classes 
of Fuzzy Systems (FS) can be proved to have the uni­
versal approximation property [Wang, 1994]. A clear 
advantage of using FS'S deals with their capability to 
incorporate in the same framework both linguistic de­
scriptions of the unknown system dynamics, in the form 
of IF-THEN rules, and experimental data. Moreover, the 
meaning of their parameters is linked to the input-output 
data. Fuzzy inference procedures are initialized with a 
rule-base which defines the structure of the input-output 
relation where parameters occur. When such a base is 
not available or poorly defined, also the fuzzy inference 
procedures may become extremely inefficient as the in­
ference structure has to be determined using only numer­
ical evidence. The method we propose aims at solving 
the central problem of the construction of a meaningful 
rule-base: Fuzzy Rules (FR) are automatically gener­
ated by encoding the knowledge of the system dynamics 
captured by its qualitative simulated behaviors. 
Such a method, which we label FS-QM, may be applied 
to a number of different domains. As a benchmark we 
have considered problems from the medical domain. In 
this paper we discuss the application of FS-QM for the 
identification of the kinetics of Thiamine (vitamin B\) 
and its phosphoesters in the cells of the intestine tissue. 
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2 Fuzzy System identification 
Fuzzy Systems possess good properties as approximators 
of continuous functions [Wang, 1994] and have been suc­
cessfully applied in the identification and control of non 
linear systems [Barada and Singh, 1998]. Herein, we use 
FS's to approximate continuous functions from 
the value of an output variable y defined on is 
inferred by using a Fuzzy Rule Base (FRB) with n input 
variables defined on such that 

As it is well known, the approximation properties of 
the FS depend on the choice of the operators that define: 
- the fuzzification of FRB antecedents (or inputs), that 
transforms a reaJ number into a fuzzy set with 
membership function defined over 
- the fuzzy inference engine (FIE), that maps the fuzzy 
sets in U into fuzzy sets in V through the FRB; 
- the defuzzification of FRB consequent (or output), that 
transforms into a real number the output of the applica­
tion of the FIE. 

In this paper we have exploited the singleton fuzzifier, 
the product-inference rule [Wang, 1994] and the Cen­
ter Average Defuzzifier [Mamdani, 1974]. Through these 
choices, it is possible to write the resulting FS in func­
tional form as: 

M represents the number of FR'S, while is the mem­
bership function associated with the linguistic variable 
of that appears in the j- th rule, and is the point in 
V where the correspondent membership function reaches 
its maximum value. 

In the following, we will exploit the class of FS with 
Gaussian membership functions, so that: 

Such a choice allows us to interpret the nonlinear func­
tion approximation problem with FS as the process of 
identifying the vector of parameters of a 
known nonlinear function from a set of data. More­
over, the FS defined by the equation (1) holds the univer-
sal approximation property [Wang, 1994]. The function 

Numeric values, which express the prior knowledge in­
cluded in the system, and which provide for an initial 
guess of the system dynamics, are assigned to the pa­
rameter vector in the construction phase of the FS. 
Given a set of experimental data, the estimate of is 
then refined through optimization procedures. 

In FS-QM, the description of the system dynamics is 
performed through rules that give the next value 
of the system output as a function of the values of the 
current inputs and output _ . Then, the output 
behavior can be described with a Non-linear AutoRe-
gressive eXogenous input model (NARX) of the kind: 

(2) 
where k is a discrete time index, is 
the measurement error and y(-) has the same meaning 
of equation (1). Since the model (2) is nonlinear in the 
model parameters, it is necessary to resort to nonlin­
ear identification techniques to estimate the vector 
Within the FS-QM framework a number of approaches 
may be considered. Herein, the FS is represented as 
a feedforward neural network, as described in [Wang, 
1994], and the identification of is performed by using 
the Back-Propagation (BP) technique. Such a technique 
allows us to estimate all the FS parameters through an 
iterative search in the solution space by employing a gra­
dient descent search. If not properly initialized, such a 
search procedure may be either trapped at a local mini­
mum or converge very slowly: FS-QM provides for a sig­
nificant initialization of BP algorithm, with a consequent 
fast convergence to the global minimum. 

(1) 3 The FS-QM method 
Fuzzy set theory and QR techniques share the motiva­
tion of facing too complex or ill-defined physical systems 
to be analyzed through conventional techniques. Then, 
the idea of unifying both frameworks with the goal of 
producing effective solutions to an extended range of 
application problems is a matter of course [Shen and 
Leitch, 1993; Vescovi and Trave-Massuyes, 1992]. Such 
works aim at developing qualitative simulation tech­
niques which are enriched by a fuzzy description of quan­
tities and functional relations. 

Our method, FS-QM, is grounded on the intuition that 
analogies between elements of the QsiM and fuzzy for­
malisms can be highlighted (Fig. 1). 

At a first level, namely the modeling one, given a phys­
ical system S characterized by state 
variables, the quantity space Li associated with the vari­
able Xi may find its semantic correspondence with the set 
of the linguistic values defined over the universe of dis­
course . The set , 
where is the cardinality of contains all signifi­
cant distinct qualitative magnitude values (qmag) of 
whereas the linguistic values associated with are rep­
resented by fuzzy sets characterized by the membership 
functions 
At a second level, more related to the simulated sys­
tem behavior, the qualitative system dynamics, which is 
described by the simulated Qualitative Behaviors (QB), 
may find its correspondence in fuzzy rule-bases. Each QB 
is defined by a sequence of qualitative states 
of the system, where | is a m-tuple of the qual­
itative values, Given the input 
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Figure 1: Analogies between the QSIM and FS for­
malisms. Bi-directional arrows indicate a semantic corre-
spondence, whereas the other ones have the usual mean­
ing. 

and output variables, all their possible dynamics are ex­
tracted from the behavior tree, suitably manipulated, 
and automatically mapped into rule sets where the input 
and output variables are, respectively, the antecedents 
and consequent in the IF-THEN rules. 
Remark 1. Let us observe that we map a quantity space, 
which is a set made up of landmarks and intervals, into 
fuzzy sets: then, apparently, we map a non-uniform set 
into a uniform one. Landmarks are symbolic names 
denoting particular real numbers that separate qualita­
tively distinct regions. However, in many applications, 
and in particular the medical domain we are interested 
in, a landmark value may not have a crisp representa­
tion but, in its turn, be defined by an interval with "soft" 
boundaries: as a matter of fact, we consider this case, 
and then we map a set made up of intervals into fuzzy 
sets. 

The overall system identification procedure proceeds 
in three main phases: 

QSIM model formulation and simulation, and definition 
of the fuzzy elements. The prior structural knowledge of 
the system at study must be organized so that its be­
havioral model can be defined. More precisely, the vari­
ables of interest and the network of interactions between 
them, along with their mathematical descriptions, must 
be specified: variables are described by their respective 
quantity spaces, whereas their interactions by a set of 
qualitative constraints which include both functional de­
pendencies and equations governing the system dynam­
ics. Then, an initial state of the system, which may 
describe a perturbation on it, has to be provided to sim­
ulate its behavior. An attainable envisionment, which 
does not generate any new landmarks, is performed to 
produce in one run all possible behaviors that could fol­
low from the given possibly incomplete specification, and 

shows us the entire range of possible system dynamics at 
once. The idea underlying the mapping of a QB into a set 
of PR's exploits the semantic correspondence between the 
elements of quantity spaces and linguistic values defined 
through fuzzy membership functions . Then, the fuzzy 
quantity spaces of the input-output variables, i.e the lin­
guistic variables associated with the quantity spaces of 
the input-output variables, and their corresponding 
have to be defined. Such definitions are suggested by 
the expert knowledge. 

Construction of the FS. The prior knowledge of the 
dynamics of the system captured by the QB'S derived 
at phase 1 together with the fuzzy quantity spaces are 
exploited to generate automatically a base of FR'S whose 
antecedents and consequent are the input and output 
variables used to quantitatively identify the dynamics of 
the system. The. choice of the FIE, the fuzzification and 
defuzzification methods, complete the definition of the 
FS. 

Identification of the FS from the experimental data. 
The generated rules, interpreted in accordance with the 
FIR selected at the previous phase, initialize an optimiza­
tion procedure for the identification of the parameters in 
the FS, which learns from the available experimental data 
an accurate input-output relation. 

3.1 Construction of the FS 
Given n input variables (n m), and the output 
variable y, a QB is automatically mapped into a FRB in 
the following steps of the method: 
1. from the time set T, draw out 
whose elements are the significant time-instants of both 

and y are the sets of distinguished time-
points of and y, respectively); 
2. from , where 
k is the cardinality of T: 
3. where k may be either a time-point or a 
time-interval, repeat: 

(d) consider the linguistic values, and therefore the 
membership functions which are associ­
ated with and respec­
tively; 

(e) generate a linguistic rule where are the an­
tecedents, y the consequent, and then the correspon­
dent FR where are the fuzzy sets. 

Remark 2. The number of rules generated in correspon­
dence with each QB is not greater than the cardinality 
of T. Identical rules may happen to be generated as 
variables may have the same qmag either at different 
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time-points or time-intervals: in such a case we group 
the equivalent rules and keep only one of them as repre­
sentative of an input-output relation. Qualitative values 
of the variables of interest which differ only in the value 
of the output variable are likely generated. Then, it is 
probable that some conflict rules, i.e. rules which have 
the same antecedents but a different consequent are pro-
duced. We store such rules and leave the conflicts be 
resolved in accordance with the degree of rule calculated 
on the data pairs [Wang, 1994]. 

Remark 3. The entire range of possible system dynam­
ics is captured by the whole tree of behaviors. Such 
a tree, as it includes all logically possible outcomes of 
the given qualitative information, may contain ambigu­
ous results and may be quite large to be efficiently ex­
plored. Such ambiguities, as well as the dimension of 
the behavior tree, may be significantly reduced by ad­
ditional knowledge, which is not explicitely expressed in 
the model. Moreover, let us remark that many behaviors 
in the tree may not present any difference as far as the 
input-output variables are concerned. Then, behavior 
aggregation procedures, which aim at taking the signif­
icant distinctions out of the tree, have to be performed 
to cope with the problem of an efficient generation of 
a complete and meaningful fuzzy rule base. Whenever 
reasonable physical assumptions allow us to define equiv­
alent behavior classes, the portion of tree considered is 
further reduced by keeping one representative for each 
class. In the extreme case, where all spurious behaviors 
are not filtered, the performance of FS-QM may get close 
to that one of a pure black-box FS initialized with the 
same number of rules. 

Given the behavior tree, the algorithm for the gen­
eration of the FRB which describes the overall system 
dynamics is performed as follows: 
1. selection of an individual behavior; 
2. generation of the FRB which corresponds to each in­
dividual behavior; 
3. union of all the FRB's generated at step 2, and filtering 
of the equivalent rules. 

4 An application of the FS~QM method 
We consider the problem of describing the kinetics of 
Thiamine (vitamin B\) and its phosphoesters in the 
cells of the intestine tissue of rats, which are known 
to have human-like Thiamine metabolism. Thiamine 
is transported in the extracellular fluids in two differ­
ent chemical forms, simple Thiamine (Th) and Thiamine 
Mono-Phosphate (ThMP), and is transformed within the 
cells through an enzyme-mediated chemical reaction in 
a higher energy form that is used in the carbohydrates 
metabolism. The chemical reaction is nonlinear, and 
modeling through ordinary differential equations is ham­
pered by identification problems. By using FS-QM we 
build an approximator of the system dynamics, that can 
be of crucial help in describing syndromes with Thiamine 
deficiency, like severe liver diseases. 

Figure 2: Compartmental model of the Thiamine kinet­
ics in the intestine tissue. 

A compartmental model of the Thiamine kinetics in 
the intestine tissue is shown in Fig. 2 [Rindi et a/., 1980]. 
The variables and represent the amount of Th 
and ThMP in the plasma, respectively. Th is directly 
transformed into the Thiamine Pyro-Phosphate (ThPP). 
ThMP is firstly transformed into 7%, and then from Th 
to ThPP. Finally, ThPP is dephosphorilated to ThMP. 
The flow variables (chem­
ical reactions) express nonlinear saturable relationships 
between quantities entering and leaving a compartment. 
The data set available for the identification of the ap­
proximator is quite rich as we have data on each state 
variable of the model in Fig. 2. We can completely ex­
press the Thiamine intracellular kinetics by subdividing 
the overall identification phase into the identification of 
three approximators as follows: 

(3) 
(4) 

(5) 
In the following we will describe in detail how the ap­
proximator of ThPP (5) has been derived. 

The Th - ThPP pathway can be modeled through a 
single QDE. The chemical reactions from Th to ThPP 
and from ThPP to ThMP are denoted by and 

respectively. Th acts as input to the sub­
system considered. The qualitative model is described 
by: 

(6) 

where: 
1. Th is a triangular shaped function of time, which 
represents the input signal. Its quantity space is defined 
as , where Th* is the saturation threshold of 
fi(Th). 
2. ThPP has quantity space , where 
ThPP* is the saturation threshold of 
3. Both are represented in QSJM 
by the functional constraint . From the physiology, 
we know that 

Since the data used for the system identification come 
from experiments with tracers, the initial value of the 
variables involved in the simulation is set to 0. The sim­
ulation of the QSIM model produces a tree of 36 quiescent 
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Figure 3: Qualitative simulation results of the Th -
ThPP pathway model: each column reports the plot 
of a representative behavior of Th and ThPP. 

behaviors: 16 of them are filtered out as physiologically 
inconsistent with the hypothesis (ThPP*). 
Among the remaining behaviors, four of them (Fig. 3) 
are representative of all the possible behaviors of Th 
and ThPP. The complete FRB automatically derived 
from the qualitative behaviors identifies the number M 
of fuzzy rules as equal to 15. 

5 Results 
A simulator of the intracellular Thiamine kinetics has 
been achieved through two phases: an identification 
phase, in which the parameters of the derived FS are 
refined by using BP algorithm on a first set of data, and 
a forecasting phase, in which the identified FS has been 
used as simulator, and its results are matched for vali­
dation against a new data set. 

The data used for identification come from an exper­
iment on a group of rats whose intestine tissue was an­
alyzed after an intravenous bolus of of thiazole-

Thiamine, with a radioactivity of 1.25 for a 
period of 240 h, sampled with irregular time intervals. 

The performance of the approximator obtained 
by using FS-QM has been compared with that one iden­
tified by using only the data (denoted by FS-BB), as pro­
posed by Wang [Wang, 1994]. The comparison has been 
performed through the calculation, in both and 
norms, of the absolute errors between the data and the 
calculated values. 

If the number of BP loops (nl) is kept low , 
we get absolutely better results of the FS-QM over FS-
BB both in the identification and forecasting phase. For 
a greater number of loops, both methods show similar 
performance (Fig. 4): for , the errors calcu­
lated go to zero in both cases with a slight difference in 
convergence velocity. 

In spite of the comparable identification performance, 
in the forecasting phase performs quite well, 
whereas the approximator obtained by FS-BB is not able 
to reproduce the data of ThPP measured in different ex­
perimental settings. This is not surprising and may be 
explained by two occurrences: the data are noisy, and 

Figure 4: Identification phase - Comparison of the results 
obtained with 30 loops of BP by applying both FS-QM and 
FS-BB on the experimental data set. 

the number of samples is smaller than the number of pa­
rameters to be identified. This means that FS-BB, which 
relies only on data, is more likely driven to learn also the 
noise. Fig. 5 and Fig. 6 compare the results obtained by 
both methods when applied to simulate the kinetics of 
ThPP in response to two different input values for Th, 
which correspond to the values of Th injected on two 
groups of diabetic rats, one of them under therapy. As 
it is highlighted by the plot comparison, the performance 
of the FS-QM approximator is good, while the FS-BB ap­
proximator does not reproduce at all the dynamics of 
ThPP. 

Figure 5: Forecasting phase - Comparison of the two ap­
proximators obtained with 100 loops of BP in forecasting 
the dynamics of ThPP in diabetic rats. 

6 Open problems and conclusion 
The application of FS-QM to simulate the dynamics of 
nonlinear systems has given good results which confirm 
its validity in terms of efficiency and robustness. How­
ever, several problems are still open. First of all, the 
method requires for a better mathematical formalization 
which defines its range of validity and applicability. Im­
portant issues which need a thorough study are listed 
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Figure 6: Forecasting phase - Comparison of the two ap­
proximators obtained with 100 loops of BP in forecasting 
the dynamics of ThPP in diabetic rats under therapy. 

below: 
Membership functions - The choice of the membership 
functions is a crucial step of both the design and the 
identification of a FS. Gaussian Membership Functions 
(G-MF'S) guarantee the Universal Approximation Prop­
erties [Wang, 1994], and are functions of only two param­
eters (mean and variance). Moreover, G-MF's provide 
for good generalization properties as they ensure com­
pleteness , even when the fuzzy rule 
base spans only a subset of the Cartesian products of the 
input space. On the other hand, G-MF's are symmetric 
and with a maximum value located in a single point: this 
means that some desirable properties, such as different 
shapes of the associated with either a landmark or an 
interval, cannot be represented. In order to preserve the 
advantages coming from G-MF'S but to improve the ca­
pability of expressing prior knowledge, in the future we 
will investigate the use of Pseudo-trapezoidal functions 
[Zeng and Singh, 1996]. 

Time - The major problem deals with the definition of 
the mapping of the sampling time set into the qualita­
tive time set, i.e. of the mapping of the measurement 
grid into the "event" one. This is feasible only if the 
experiment has been designed so that the data set is in­
formative enough to produce the system dynamics. Such 
an issue would be facilitated if semi-quantitative infor­
mation on qualitative times would be available. 

Hybrid models - The more complete is the a-priori knowl­
edge exploited in modeling, the closer to the solution 
is the initial guess generated, with a consequent im­
proved efficiency of FS-QM. A semi-quantitative for­
mulation and simulation of the model [Kuipers, 1994; 
Shen and Leitch, 1993] is hence preferable. Unfortu­
nately, the quantitative information may be insufficient 
for a semi-quantitative formulation with the mentioned 
approaches. Therefore, methods for dealing with hybrid 
models, where different knowledge sources can coexist 
would be the ideal way to get as much information as 
possible from the prior knowledge. 

Other identification procedures - An interesting strategy 
to be investigated consists in fixing the parameters t 

and of the vector so that only the parameters 
are estimated from the data. Since the equation (1) is 
linear in the parameters , it is possible to resort to 
efficient linear methods, such as ordinary least squares. 
This choice allows us to preserve the structure of the FS 
initialized on the basis of the a-priori knowledge rep­
resented by the qualitative model, but could prevent 
from identifying a really "good" approximation of the 
unknown function. Therefore, possible optimal solutions 
could be given by two-step identification procedures. 
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