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Abstract 
We present a model-based monitoring method 
for dynamic systems that exhibit both discrete 
and continuous behaviors. MIMIC [Dvorak 
and Kuipers, 1991] uses qualitative and semi­
quantitative models to monitor dynamic sys­
tems even with incomplete knowledge. Re­
cent advances have improved the quality of 
semi-quantitative behavior predictions, used 
observations to refine static envelopes around 
monotonic functions, and provided a semi­
quantitative system identification method. Us­
ing these, we reformulate and extend MIMIC to 
handle discontinuous changes between models. 
Each hypothesis being monitored is embodied 
as a tracker, which uses the observation stream 
to refine its behavioral predictions, its under­
lying model, and the time uncertainty of any 
discontinuous transitions. 
keywords: model-based monitoring; model re­
finement, hybrid systems 

1 Introduction 
Physical systems are by nature continuous. However, 
it is natural to simplify models by abstracting isolated 
regions of rapid change to instantaneous discontinuities 
separating regions of continuous behavior [Iwasaki et a/., 
1995; Nishida and Doshita, 1987]. Systems which exhibit 
both continuous and discrete behaviors are called hybrid 
systems, where a continuous segment of the system's be­
havior is called a mode of operation and a discontinuous 
change is called a transition between modes. 

Model-based monitoring relies on a comparison be­
tween the predicted behavior of a model and the ob­
served behavior of a physical system. Traditional moni­
toring approaches typically use a single precise model of 
the physical system. However, even if the system is be­
having properly, precise parameter values and functional 
relationships are often not known. More importantly, 
monitoring systems are designed to detect unexpected 
events or faults, after which knowledge of the system is 
by definition incomplete. A reliance on precise models 
leads to overly-specific predictions, sacrificing accuracy 

and coverage exactly when it is most important for the 
monitoring system to consider all possible scenarios. 

The MIMIC framework [Dvorak and Kuipers, 1991] 
addresses this need, first by using qualitative and semi­
quantitative (SQ) models in the QSIM representation 
[Kuipers, 1994] to express incomplete knowledge with 
a guarantee that all possible real-valued behaviors are 
covered; and second, by tracking multiple qualitatively-
distinct hypotheses in parallel. SQSIM [Kay, 1998] ex­
tends the semi-quantitative inference power of QSIM by 
deriving and reasoning with dynamic envelopes guar­
anteed to bound the real behaviors consistent with an 
SQ model SQUID [Kay, 1996; Kay et a/., 1999] is a 
semi-quantitative system identification method based on 
SQSIM that assimilates a set of observations to an SQ 
model over a single continuous mode. 

Time uncertainty at a mode transition has a partic­
ularly explosive effect on the uncertainty of predictions 
from the SQ model after the transition. Therefore, we fo­
cus our attention first on getting the most out of SQUID-
based tracking of a continuous mode hypothesis, and 
second, on detecting the mode transition and refining 
its time uncertainty. In our approach, the monitoring 
system starts with a coarse description of the physical 
system and uses the observation stream to refine the be­
havior prediction, its underlying model, and the time 
uncertainty of any discontinuous transition. After pre­
senting the details of our extension and reformulation 
of MIMIC, we present a non-trivial example and discuss 
related work. 

2 Tracking Piecewise Continuous 
Behaviors 

A tracker embodies a continuous mode hypothesis and 
confirms or refutes the hypothesis by unifying its predic­
tions with the observed behavior. When the observations 
provide sufficient new information, the tracker may be 
able to refine the imprecision in the underlying model, 
and thus make more precise predictions in the future. 

2.1 SQ System Identification 
A tracker is based on SQUID [Kay et a/., 1999], which 
refines an imprecise model (SQDE) by a process called 
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Figure 1: Trend matching compares the prediction and 
the observation corresponding to the level of detail in 
the behavior prediction derived by SQSIM (qualitative, 
segment and dynamic envelope description). Trends de­
scribe the observed data at the same levels. 

trend matching. Imprecision in the SQDE is represented 
by numerical intervals bounding possible values of un-
known parameters, and by static envelopes - functions 
bounding the possible graphs of unknown monotonic 
functions. 

Trend matching compares semi-quantitative trajec­
tory descriptions derived by SQSIM (the SQ prediction) 
and the corresponding properties of the observations (the 
SQ trend). To refine the underlying model, portions of 
the model space which cannot plausibly generate the ob­
servations are excluded. 

There are three levels of abstracted properties of the 
trajectories, corresponding to the level of detail derived 
by the components of SQSIM: qualitative (QSIM), seg-
ment (Q2), and dynamic envelope (NSIM) descriptions 
(Figure 1). The qualitative description is defined by a 
sequence of symbols representing the deriva­
tive's sign (qdir) of the trajectory at time points and 
intervals between time points. The segment description 
specifies intervals bounding the trajectory at particular 
time points, i.e., magnitude and time ranges. The dy­
namic envelope description bounds the trajectory by a 
lower and an upper envelope. A trend represents the ab­
stracted properties of the observed data (Figure 1), i.e., 
symbols representing the qdir, bounding intervals on ex-
trema and bounding envelopes for monotonic segments. 

Figure 2: Tracker architecture. 

2.2 Tracker Archi tecture 
Figure 2 presents the architecture of a tracker. The 
tracker is initialized with the SQ prediction and the un­
derlying SQDE of the current mode. Information about 
the time boundary and the time uncertainty of the cur­
rent mode may be given. The tracker consumes an ob­
servation stream and it either produces a refined SQ pre­
diction and SQDE, or detects a discrepancy between the 
observation and the prediction. The observation stream 
is a sequence of samples: numeric values for variables at 
specified times derived by possibly noisy sensors. Sam­
ples do not necessarily appear at a constant rate, and 
need not be synchronized across variables. 

Trend forming generates an SQ trend describing 
each variable in the observation stream by breaking the 
samples into monotonic segments [Kay et o/., 1999]. The 
segments are determined by computing the slope of a 
linear least-squares fit to the data within a sliding win­
dow over the samples. Dynamic envelope descriptions 
for the t and I segments are generated by MSQUID, a 
neural network-based estimator for monotonic functions 
[Kay and Ungar, 1993; 1999], out to any given confidence 
bound. Each 8 segment is described by the segment's 
time interval and the minimum and maximum sample 
values over that interval. 

The goal is to detect the qualitative dynamics of the 
underlying signal in the noisy observation. In the cur­
rent implementation it is assumed that Gaussian noise of 
fixed mean and variance is superimposed on the "pure" 
signal. Each observed variable has an error model that 
specifies bounds on mean and variance for noise. 

Trend mapping compares the SQ trend derived from 
the observations with the SQ prediction by stepping 
through both sequences. If an inconsistency is detected 
between the trend and the prediction, the current hy­
pothesis is refuted, so the mapping process and the cur­
rent tracker are aborted. 
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Qualitative mapping generates a correspondence be­
tween the qdirs in the SQ prediction and the SQ 
trend. A successful correspondence may fail to be 
one-to-one because (i) the samples in the observa­
tion stream may end before some of the qualitative 
changes in the SQ prediction take place; (ii) the SQ 
prediction terminates with a mode change before 
the end of the current SQ trend, leaving data to 
correspond to the next mode; or (iii) the SQ predic­
tion may include small qdir changes which are not 
detectable in a noisy observation stream. 

Segment mapping ensures consistency of corresponding 
behavior segments in the SQ trend and the SQ pre­
diction, in the sense that their time and magnitude 
bounds overlap. Consistency of segments is checked 
by asserting the segment bounds of the SQ trend 
to the corresponding segments of the SQ predic­
tion and propagating these bounds to the other vari­
ables in the SQDE using Q2's interval propagation 
[Kuipers, 1994]. 

Dynamic envelope mapping ensures consistency by in­
tersecting the dynamic envelopes for corresponding 
monotonic segments of the trend and the prediction. 

Model refinement takes place when trend mapping 
decreases the bounds on some variables in the SQDE. 
Parameter imprecision is refined by using Q2 to derive 
bounds on independent variables from dependent ones. 
Q2 propagates intervals across model variables at time 
points and uses the (weak) Mean Value Theorem to 
propagate those bounds over time intervals. The dy­
namic envelopes in the SQ trend provide more informa­
tion than just magnitude and time bounds over mono-
tonic segments. Model refinement exploits this informa­
tion by introducing several instantaneous "snapshots" 
over the monotonic trend segments and propagating the 
smaller magnitude bounds at these time instants to other 
model variables. The number of "snapshots" affects the 
achieved refinement and is specified by the user. Func­
tional imprecision is refined by excluding portions from 
the static envelopes that are inconsistent with the (re­
fined) variable bounds. The trend matching techniques 
guarantee that portions of the model space are ruled out 
only when they are inconsistent with the observations 
[Kay et al, 1999]. 

If a mode change is manifested by a discontinuous 
change of an observed variable or a sudden sign change of 
its slope, the change becomes explicit in the purely qual­
itative trend, and is easy to detect. Otherwise, segment 
and dynamic envelope trend mapping should eventually 
refute the current model, but excessive imprecision in 
the model and uncertainty in the data could prevent the 
change from being recognized. 

Once a mode change has been detected, the tracker for 
the next mode is initialized with the variable values at 
the transition point. The new tracker attempts to create 
a mapping between its SQ prediction and the remaining 
segments of the observed trend. Time uncertainty in 
the mode change affects the current tracker and more 

dramatically the following tracker, in an important way. 

3 Refining the Time Uncertainty of 
Discontinuous Changes 

We assume that there are three possible causes for dis­
continuous changes in the model of a complex system: (i) 
the autonomous operation of the plant moves from one 
operating mode to another; (ii) the plant operator takes 
a known action; and (iii) an unexpected and externally 
caused event such as a failure takes place. In the first 
two cases, the current and following modes are known. 
In the third case, we assume that a separate diagnosis 
engine proposes a set of fault hypotheses, which MIMIC 
tracks in parallel. 

A discontinuous change happens in an instant. Unfor­
tunately, with imprecise models and noisy and finitely 
sampled observations, we may never be able to deter­
mine the precise instant when the change takes place. 
The best we can do is determine time bounds on the 
instant when the change occurred. 

For matching a piecewise continuous model to a 
stream of observations, it is particularly important to 
make the time bounds on discontinuous changes as pre­
cise as possible. Time uncertainty on a mode change af­
fects the entire correspondence between prediction and 
observation in the following mode, resulting in propa­
gating uncertainty. Figure 6(c) shows how weak time 
bounds on a discontinuous change can result in ex­
tremely weak bounds on the prediction of the follow­
ing mode. Therefore, we focus on improving these time 
bounds. 

3.1 Intersecting Trend and Prediction 
We focus here on refining time uncertainty of a mode 
change based on the intersection of SQ trend and SQ 
prediction. After semi-quantitative reasoning has pro­
vided bounds on the transition time, advanced filtering 
techniques based on statistical or digital signal process­
ing may be applicable. 

When there is time uncertainty, the mapping between 
the SQ trend and the SQ prediction is not fixed. The 
SQ prediction can be shifted relative to the SQ trend by 
any offset within the range of the time uncertainty. 

However, a mapping is only valid if the SQ trend seg­
ment and the SQ prediction segment have a non-empty 
intersection for every time-point t in the SQ trend. This 
is exploited to derive refined bounds on the time uncer­
tainty of discontinuous changes (Figure 3). 

For | segments, the mapping is valid as long as (i) the 
upper envelope of the trend is above the lower envelope 
of the prediction and (ii) the lower envelope of the trend 
is below the upper envelope of the prediction. More for­
mally, we can determine the lower bound and the 
upper bound respectively, as follows: 
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1 ref ine-t ransi t ion(tu , mode,-, modej, SQtrend) 
2 behs <- generate-behaviors(modej) 
3 for each behavior beh in behs do 
4 t <- t u 
5 repeat 
6 refine 4- false 
7 tn <- intersect(beh, SQtrend) 
8 if ( t n = 0) then 
9 refute beh 

10 elseif ( t n < t) then 
11 t <- t n 
12 refine <~ true 
13 re-assign samples to modei and mode, 
14 re-track mode, 
15 inherit refinements from modei to beh 
16 endif 
17 until not (refine) 
18 endfor 

Figure 3: Deriving bounds on the time uncertainty by 
intersecting the SQ prediction and the SQ trend. Figure 4: Incremental refinement of the initial time un­

certainty tu between modei and modej. 

where i s the observed trend f o r i s 
the prediction, shifted by , Over- and under-bars rep­
resent the upper and lower dynamic envelopes, respec­
tively. Similar conditions hold for and segments. 

This intersection process is applied to all segments of 
the mode. Improvements in time uncertainty propagate 
from segment to segment by interval arithmetic and in­
tersection of bounding intervals. 

3.2 Incremental Refinement 

When there is a great deal of time uncertainty about the 
transition from one mode to another, many samples in 
the observation stream fall within the uncertainty inter­
val, and thus cannot be unambiguously assigned to one 
of the adjacent segments of monotonic change. After 
time uncertainty is decreased, some samples can now be 
assigned to a definite adjacent segment. The additional 
information helps refine the mode the segment belongs 
to, and its underlying model. Improvements to the ad­
jacent modes can, in turn, lead to further decreases in 
time uncertainty of the transition. And so on until no 
further improvement results. 

The algorithm for incremental refinement of the time 
uncertainty between two adjacent modes i and j is pre­
sented in Figure 4. The trend/prediction intersection 
(line 7) is performed for each behavior in the succeeding 
mode. If the trend is inconsistent with the behavior at 
the qualitative level or no valid mapping can be found for 
any time offset within the time uncertainty the behavior 
is refuted (line 9). Since each behavior is independently 
intersected with the trend this method results in different 
refinements on the uncertainty interval for each behavior 
of the succeeding mode. 

4 Overall Monitoring System 
The overall monitoring system tracks multiple hypothe-
ses in parallel. The hypotheses may represent different 
nominal or fault models of the plant, or they may repre­
sent different qualitative behaviors predicted from semi­
quantitative simulation of a particular model. 

A particular hypothesis is a sequence of mode hy­
potheses The 
monitoring system alternates between tracking a partic­
ular mode hypothesis \ and refining the time 
uncertainty of the mode transition at Several track­
ers and their hypotheses may be refined in parallel (Fig­
ure 5). The achieved refinements (SQ prediction and 
SQDE) are passed to the tracker manager which instanti­
ates new trackers and refines the time uncertainty of the 
mode transition. As discussed in Section 3, we assume 
that the models for new modes are known. Information 
from the observation stream, such as the satisfaction of 
a condition that autonomously moves the system to an­
other mode or a signal indicating an operator action, 
allows the tracker manager to choose the model(s) for 
the new mode. Fault models may also be proposed at 
any time by a separate diagnosis engine. 

Model refinements such as improved variable bounds 
or static envelopes may be inherited from one model 
to the next across a mode transition. In the cur­
rent implementation, the user specifies the variables and 
functional relations whose refinements can be inherited. 

The degree of model precision is important for the 
fault detection performance of our monitoring system. 
However, with imprecise models, uncertain observation 
and limited observability we may never be able to detect 
all faults or distinguish between every possible hypoth­
esis. In order to achieve a sufficiently precise prediction 
for fault detection, (i) our initial knowledge about the 
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Figure 5: Overall monitoring system. 

system must be precise enough or (ii) we must collect 
enough data from the "healthy" physical system to re­
fine its model to the required degree of precision. 

5 Experimental Results 
We demonstrate the refinement capabilities of our mon­
itoring system using a two tank system. In this example 
(Figure 6(a)), we start with a filled upper tank and an 
empty lower tank; the drains of both tanks are open and 
the upper tank is filled at a constant inflow rate. When 
the amount in the upper tank drops below a limit the in­
flow rate is increased. This scenario is modeled as a tran­
sition between two operating modes (Figure 6(b)). Only 
imprecise information is known about this scenario, i.e., 
intervals for variables and bounding envelopes for func­
tional relations. Since both tanks remain unchanged, 
the refinements of the variables o and b as well as of the 
functional relations / and g are inherited from the first 
to the second mode. 

SQSIM predicts 9 different behaviors for the two tank 
scenario; 5 of them include the region transition. Only 
one is consistent with the SQ trend; the other trackers 
are refuted. Figure 6(c) shows the predicted dynamic 
envelopes for the amount in the lower tank for the sur­
viving prediction. SQSIM predicts the time of the mode 
transition as [1.68, in/ ] . 

The observations are generated by numeric simulation 
of an ODE, adding Gaussian noise with fixed mean and 
variance to the samples. The exact model for deriving 
the samples is given as 
with =95, = 0, c = 9 and an inflow rate 
if a = 25 before and if a = 60 after the transition. The 
samples are generated at a rate of 20 Hz. 

Figure 6(d) shows the samples and bounding envelopes 
derived by trend forming for the variable 6. MSQUID 

Table 2: Achieved refinements dependent on the ob­
served variables including noise with = 0 and var = 2. 

constructs the bounding envelopes around the observa-
tions to achieve a certainty of 95%. This figure also 
presents the final refinement achieved by the monitor­
ing system. The dynamic envelopes for- b are refined 
to 18% of their initial area and the time uncertainty 
is refined to [3.78,4.14] after two iterations of the re­
finement algorithm1. Observations for a, 6, of a and of b, 
with noise = 0 and var = 1, are used in this case. 
Note the propagation of refinements through the SQDE, 
i.e., the dynamic envelopes in the first segment are nar­
rower than the bounding envelopes of the observation of 
6. Due to time uncertainty, the dynamic envelopes in 
the second mode are wider than the bounding envelopes 
of the observation. 

The effect of observability is shown in Table 1. This 
table presents the achieved refinements dependent on the 
observed variables. The degree of refinement is defined 
by the ratio of the predicted and refined areas for vari­
ables and functional relations. For the variables a and 6, 
the area is specified by the dynamic envelopes over the 
observation time. For the functional relations / and g, 
the area is specified by the bounding functions (static 
envelopes) over the range of / and g. The achieved re­
finement of the time uncertainty is represented by tc. 
As the number of observed variables increases the re­
finement improves and extends to more variables and 
functional relations. Table 2 presents the reduced refine­
ments caused by an increase of noise in the observation. 

6 Conclusion 
We have presented a method for monitoring dynamic 
systems that exhibit both discrete and continuous be­
haviors. The monitoring system refines the behavior pre­
diction, the underlying model and the time uncertainty 
of discontinuous changes. The hypothesis is refuted and 
pruned from the tracking set when refinement eliminates 
all possible values for any parameter. 

Trend matching uses a statistical best fit to observed 
lIn our experiments incremental refinement never required 

more than 3 iterations; it usually stopped after 1 or 2. 
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(b) Imprecise model with mode transition (d) Refined behavior and time uncertainty 

Figure 6: A two tank scenario (a), modeled as an autonomous mode transition (b), its prediction (c) of the upper 
and lower bounds (dynamic envelopes) for b, and the refined bounds and time uncertainty (d). In both graphs, the 
solid lines represent the predicted or refined dynamic envelopes. The dotted box represents the time uncertainty 
of the mode change; the dashed lines represent the bounding envelopes of the observations (d). Due to the time 
uncertainty of the discontinuous change the prediction of the second mode can start at any time within the dashed 
box. For the sake of readability, they start in the middle (c) and at the right end (d) of the dashed box, respectively. 
data, plus bounding envelopes out to any desired confi- defined behavior templates no refinement can be per-
dence bound. Portions of the model space are removed 
only when they are inconsistent with these bounds. This 
gives a good (and adjustable) compromise between ag­
gressiveness and robustness in handling noise and unin-
formative data. 

Related work has been done by [Mosterman et a/., 
1998]. In their framework for model-based diagnosis 
the physical system is modeled by a temporal causal 
graph. Qualitative candidate models are derived from 
this representation and parameter estimation techniques 
are applied to fit the candidate models to the obser­
vation. TrenDx [Haimowitz and Kohane, 1993] is a 
monitoring system which uses a semi-quantitative rep­
resentation of a behavior and attempts to fit data to 
this behavior representation. Since TrenDx uses pre­

formed. PRET [Bradley and Stolle, 1996] automatically 
constructs a precise ODE model of a physical system. 
PRET focuses on system identification and not on mon­
itoring. Loiez and Taillibert [Loiez and Taillibert, 1997] 
use piecewise polynomial functions, so-called temporal 
band sequences, to bound the observation stream. The 
behavior of components in analog circuits is modeled by 
sums of temporal functions including derivatives of any 
order. This approach is only able to detect discrepancies 
but not to predict the behavior of the system. Mcllraith 
et al. [Mcllraith et a/., 1999] present an approach for 
diagnosing hybrid systems where all mode transitions, 
i.e., the history of executed actions, are known. Can­
didate generation and model estimation are based on 
the model-based diagnosis framework of [Mosterman et 

RINNER AND KUIPERS 1085 



a/., 1998] and the tracker framework is adopted to refine 
multiple candidates. 

Furthermore, our monitoring method is directly ap­
plicable to fault diagnosis in dynamic systems. Fault 
hypotheses can be proposed for monitoring based on 
initial weak information such as the signs of discrep­
ancies between observations and predictions, by using 
existing methods such as [de Kleer and Williams, 1987; 
Ng, 1991]. Automatic model-building methods can select 
relevant model-fragments from a background knowledge 
base to express initially weak knowledge about a fault 
as an SQDE [Crawford et al, 1990; Rickel and Porter, 
1994]. The observation stream is then used to refine or 
refute each proposed model. 
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