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Abstract 
Research on continual computation centers on de-
veloping precomputation policies that can effectively 
harness available resources to solve future challenges. 
We focus on integrating a consideration of offline and 
real-time resources in continual computation. We re­
view precomputation policies for flexible procedures 
and present strategies that account for the expected 
future real-time refinement of a result following pre­
computation. Finally, we address policies that con­
sider the tradeoff between the efficiency of solving 
current and potential future challenges. 

1 Introduction 
Research on problem solving under bounded 
resources has focused primarily on real-time reason­
ing In contrast, work on 
continual computation centers on developing methods 
for harnessing the resources available in periods tra­
ditionally viewed as "idle time" between challenges 

Such policies have application to a variety of 
tasks ranging from generating contingency plans to 
prefetching web pages and computing ideal observar 
tions to make next in situation assessment or diagno­
sis. In this paper, we explore continual-computation 
policies that take into consideration both idle and 
real-time resources. The methods center on a con­
sideration of the expected value flux generated by 
problem-solving strategies. 

We first present several utility models that describe 
how strategies generate results of partial value with 
computation. For background and clarity, we shall 
review results described previously on ideal continual-
computation policies for these utility models. Then 
we present a new class of precomputation policies by 
integrating a consideration of future real-time refine-
ment that may follow the identification of a challenge. 
Finally, we examine the case of generalizing the meth­
ods to consider issues with trading the efficacy of real-
time problem solving for enhanced future responses. 

2 Ut i l i ty of Precomputation 

Assume we have access to probabilities, p(I\E), of 
seeing different problem instances / in the next pe­
riod, given some evidence E that has been observed. 
Inferring the likelihood of future instances can range 
from trivial to difficult depending on the application. 
We will not focus in this paper on the means for build­
ing probabilistic models or collecting statistical data 
for inferring or accessing the likelihood of problem 
instances (see [5] for examples of learning probabilis­
tic models for continual computation and [4] for a 
discussion of methods for computing likelihoods of 
future problem instances). Instead, we focus on the 
derivation of ideal policies that take as input like­
lihood information of any degree of precision about 
the occurrence of future problems. We seek to op­
timise the expected value of a system's response for 
the case where we have access to one or more flexible 
algorithms with the ability to generate partial results 
that have value to a user before a final, precise answer 
is reached. 

A flexible or anytime reasoning strategy S has the 
ability to refine an initial problem instance / or fur­
ther refine a partial result that has been previ­
ously generated [6, 2]. The expected value of compu­
tation (EVC) is the change in utility with computar 
tion [8,11]. EVC is computed as follows: 

(1) 

where represents a refinement of and 
represents the object-level value of the ini­

tial or previously refined partial result without 
consideration of the cost of computation. For the 
case where cost is deterministic and separable from 
the value of computation, the net EVC (NEVC) is 
just 

(2) 

where C{t) represents the cost of delay associated 
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from real-time computation, and use the phrase 
expected value of precomputation (EVP) to refer to 
the exvccted change in NEVC for actions taken to ad-
dress challenges in a future period. The EVP assoc-
iated with allocating offline resources, T, to refine the 
result associated with a potential future problem I is 

(3) 

We can characterize flexible computation strategies in 
terms of the rote at which they deliver future value 
with precomputation. We refer to the instantaneous 
rate at which EVP changes at point of allocating T 
seconds of precomputation time to solving problem / 
with strategy 5, as the EVP flux, 

(4) 

The EVP flux is the slope of the curve describing 
the utility associated with a computed partial result 
over time. For simplicity, we shall leave out the ar-
guments of EVP and use as shorthand to 
refer to the expected EVP flux associated with the 
strategy-instance pair after T seconds of precompu­
tation. Let us assume for convenience that the se­
lection of a strategy or sequence of strategies S is 
predefined or optimized for each problem instance, 
and use S* to refer to these strategies. We shall not 
dwell in this paper on the problem of choosing ideal 
strategies; such work has been a focus of research 
on real-time reasoning under varying and uncertain 
resources (e.g., see [2]). The choice of strategy does 
not influence the fundamental results on policies for 
continual computation. 

Assume that we have access to probabilities and 
performance profiles that provide a measure of the 
EVP flux, for each future problem instance 
I under consideration. Further, assume that a sys­
tem apportions fractions of the total available idle 
time to refining results for several potential future 
challenges. The overall EVP associated with multi­
ple allocations can be computed by integrating the 
expected flux for resources allocated to each instance 
and summing together the EVP derived from each 
problem, 

(5) 

Given uncertainty in the amount of idle time, we 
have, 

(6) 

Figure 1: Prototypical classes of utility for partial re­
sults include (a) smoothly increasing utility with de­
creasing returns, (b) piecewise linear with decreasing 
returns, and (c) linear utility. 

The goal of an automated reasoner endowed with the 
ability to reason about EVP is to leverage resources 
that are currently available to strategy-problem in­
stance pairs so as to maximize the overall EVP. In the 
general case, identifying policies for allocating offline 
resources that yield the maximal future value, EVP*, 
requires a consideration of the details of the proba­
bility distribution over idle time, p(T), and the appli­
cation of search or closed-form optimization methods 
to choose the best set of We seek precomputa­
tion principles, and associated policies, that forego 
the need for such optimization. 
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3 Policies for Prototypical 
Classes of Refinement 

We shall review ideal policies for three classes of flexi­
ble procedures, defined by the functional form of util­
ity models that describe the incremental value pro­
vided as they refine partial results. These classes 
include algorithms that refine results with constant 
flux, piecewise linear flux with decreasing returns, and 
smoothly increasing utility with decreasing returns. 
The utility models representing the performance pro-
files of these algorithms are displayed as representa-
tive curves in Figure 1. 

3.1 Constant Flux 
We first review ideal precomputation policies for the 
case of procedures that provide constant flux de­
scribed previously in [4]. 

Theorem 1 Idle-Time Partition for Linear EVP 
Flux. Given future problem instances that may 
challenge a system in the next period, and an EVP 
flux for the solution of each instance that is 



constant with time, the idle-time resource partition 
policy that maximizes the expected value at the start 
of the nest period is to apply all resources to the prob-
lem with the maximal EVP flux. That problem should 
be refined until a final result is reached, followed by 
the result with the nest highest product should be an­
alyzed, and to on, until the cessation of idle time or 
solution of all problems possible in the nest period. 

Proof: By definition, the allocation of time to each 
instance for strategies S applied to problem instances 
provide constant EVP fluxes for each 
instance based on the refinement of a sequence of par­
tial results. The total EVP can be rewritten as, 

(7) 

Fbr any amount of idle time 2\ the ideal policy is to 
apply all resources to the instance with the highest 
value of Any amount of time re-allocated to an­
other instance would diminish the total EVP because 
it would be multiplied with smaller valued products. 

When problem instance / associated with the 
largest product, is solved completely, it is removed 
from consideration and the same argument is made 
with the remaining problems. 

3.2 Prototypical Nonlinear Models 
Policies for procedures yielding flux described by 
piecewise linear and smoothly increasing utility mod­
els can be viewed as a generalization of the case of 
constant flux. Instead of associating problem in­
stances with constant levels of expected flux, we con­
sider the flux associated with subcomponents of prob­
lems, and consider ideal strategies for solving these 
components. Continual computation policies for such 
models with a focus on the application of prefetching 
documents are described in [5]. We review the earlier 
results generalized to the case of real-time reasoning, 
before moving on to consider new policies that include 
a consideration of real-time resources. 

Theorem 2 Idle-Time Partition for Piecewise Lin­
ear Utility with Decreasing Rate. Given problem 
instances that may be accessed in the nest pe-
riod, and EVP flux described by that is piece-
wise linear and where successive segments have posi­
tive slope but progressively smaller flux, the resource 
partition policy that maximizes the expected value at 
the start of the nest period is to continue to allocate 
resources to the linear segment drawn from the set of 
nest available linear segments of instances that has 
the maximal expected flux, and to continue to refine 
the problem associated with that segment, and then 

Figure 2: EVP analysis for case of piecewise linear 
utility with decreasing returns, (a) Consideration 
of future problems under uncertainty, (b) Mapping 
EVC to expectation, (c) Piecing together a contin­
ual computation policy considering expected flux of 
different segments. 

to move to the segment with the next highest expected 
value flux until all segments of all problems are solved 
or the cessation of idle time. 

Proof: We extend Theorem 1 on the ideal alloc­
ation of resources for constant flux to each piecewise 
linear segment associated with the current state of 
refinement of a problem. We now consider portions 
of problem solving associated with each segment of 
the piecewise linear utility function model instead of 
the entire problem. We know that the instance that 
offers the maximal instantaneous expected flux will 
add the most to the overall expected utility and that 
all other instances will deliver less value now and—by 
definition of decreasing returns—at all other times in 
the future. Including any other segment in the in­
tegration represented by Equation 6 would lead to a 
smaller total EVP for any amount of idle time. Thus, 
we need only to check the next available segment for 
each incompletely solved problem to identify the best 
sequence of segments. Choosing any other segments 
would lead to a diminishment of the overall expected 
value at the start of the next period as compared with 
this policy. 

Thus, the policy for maximizing the contribution to 
the expected value in the next period will be to look 
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at all linear segments of all problems under consider­
ation and to continue to solve the segment associated 
with the highest flux, then refine the problem assoc­
iated with the segment with the next highest expected 
flux. 

Figure 2 summarizes the approach for creating 
ideal EVP policies for the case of piecewise linear and 
smoothly increasing utility. We transform the fluxes 
associated with the computing each problem instance 
into expected fluxes for solving future problems given 
uncertainty in their occurrence. An ideal policy is 
identified by continuing to expend all resources to 
solve the instance that delivers the greatest instanta­
neous flux. 

3.3 Smoothly Increasing U t i l i t y w i th 
Decreasing Returns 

We can easily generalize Theorem 2 to the case of util­
ity models represented as smoothly increasing func-
tions by taking the size of segments in the piecewise 
linear models to zero in the limit. 

Theorem S Partition of Resources for Smoothly De­
creasing Flux. Given problem instance-strategy pairs 
that may need to be addressed in the next period, and 
a value flux described by for the solution of 
each instance associated with for the 
solution of each instance associated, the resource par-
tition policy that maximizes the expected value at the 
start of the next period is to allocate resources to the 
problem with the maximal product of probability and 
instantaneous value flux, until all problems are solved 
or until the cessation of idle time. 

Proof: For situations where the expected flux is 
monotonically decreasing for all instances, the policy 
for maximizing the contribution to the expected value 
in the next period will be to continually pick the prob­
lem associated with the highest mean expected flux 
for any small quantity of expenditure. Because each 
instance has an expected flux that is monotonically 
decreasing with allocation of resources, the greatest 
currently available flux must be greater than the fu­
ture expected flux associated with this or any other 
instance. Thus, any other order of analysis with in-
flnitesmal amounts of resource will result in a lower 
overall EVP, • 

4 Influence of Future Real-
Time Refinement 

The EVP policies described above center on an opti­
mization of the expected value of the system at the 

time a new challenge is received. We now extend 
the policies to consider real-time computation. We 
start with a consideration of the prototypical real-
time problem of reasoning with a procedure that pro-
vides smoothly increasing utility with decreasing re­
turns in the context of cost that increases constantly 
with time. A graphical representation of this prob­
lem is displayed in Figure 3. As displayed in the fig­
ure, the strategy provides increasing value, but with 
decreasing marginal returns for the same amount of 
computation at increasingly greater levels of refine­
ment, until a final result is generated. We refer to 
this class of real-time reasoning problem as decreas-
ing return, constant cost scenarios. We first identify 
the ideal quantity of real-time deliberation for these 
problems. 

Theorem 4 Ideal Deliberation for Decreasing Re­
turns, Constant Cost Scenarios. For scenarios of de-
creasing returns and constant cost, action should be 
token immediately if the net EVC flux at the outset 
of a challenge is nonpositive; otherwise, real-time re-
finement should continue until the EVC flux is equal 
to the cost. 

A graphical depiction of the ideal halting time is 
represented in Figure 3. An instance is refined into 
partial results with computation or precomputa-
tion time T, eventually reaching the final, completely 
solved result, The EVC flux is equal to the 
rate at which cost is incurred at the ideal halting, 
At this time, the algorithm generates an ideal result, 

( I ) . Figure 3 shows the tangent to the utility curve 
at this point of refinement, representing the EVC flux 
at the ideal halting time. As displayed in the figure, 
the rate at which value is generated is balanced at 
this point of refinement by the rate at which cost is 
accrued. Continuing to perform real-time computer 
tion after this level of refinement is achieved would 
incur costs faster than gains in value. 

Let us now consider EVP and continual-
computation policies for problem solving captured by 
such decreasing returns, constant cost situations. We 
refer to the partial result generated at the ideal time 
indicated for halting, for a particular cost function 
c, strategy S, and instance J, per Theorem 4 as the 
ideal real-time result, ( I ) . The ideal real-time re­
sult is insensitive to the amount of resources allocated 
to precomputation of a problem instance because the 
rate at which cost is accrued is constant. 

Applying idle-time resources to scenarios of de­
creasing returns with constant cost can be viewed as 
a means of achieving cost-free refinement Consider 
the value of precomputation for the case where a sys­
tem knows that it will face a problem with probability 
1.0. The NEVC at the time the ideal real-time result 
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Figure 3: Graphical analysis of ideal halting time for 
real-time computation for the case of refining an in-
stance with partial results that show decreasing re-
turns in the context of constant cost. Cost is dis­
played on a negative scale for clarity. 

is computed is simply the expected utility associated 
with an action in the world associated with (J), 

less the total cost accrued so far in com-
puting the result. The total cost is simply the product 
of the rate at which cost is accrued and the amount 
of real-time resources expended on the problem prior 
to generating the ideal real-time result. 

We can now analyze the value of precomputation in 
light of the prospect of future real-time reasoning to 
further refine a result. Precomputing a result of the 
quality represented by (I) removes the cost func-
tion for the time allocated to precomputing the result. 
Thus, the precomputation adds value to the ultimate 
utility that will be achieved when the result reaches 
the level of refinement represented by (I) with a 
flux equal to the rate at which real-time cost would 
have been accrued without precomputation. This flux 
is computed as the product of the probability of the 
instance and the cost. 

Figure 4 displays graphically the impact of precom­
putation on the value of the result. The updated rea­
soning problem is represented by the solid lines por­
trayed in contrast to the broken lines, representing 
the situation before precomputation. As displayed 
in the figure, the cost function only begins to "tug" 
down on the net value of the result when real-time 
reasoning begins. Precomputation reduces the re­
quired real-time computation and raises the ultimate 
value of the ideal real-time result by the total amount 
of cost saved. Two small vertical arrows in Figure 4 
represent the source and quantity of the jump in util­
ity achieved with precomputation-

We now consider the case of continuing to refine the 
result with precomputation beyond the ideal real-time 
result. Additional precomputation applied to refining 
a result beyond ( I ) adds additional value to the 

Figure 4: Graphical analysis of the influence of pre­
computation. Before the ideal real-time result is 
generated, a flux equal to the probability of the in­
stance and the cost boosts the utility of the result. 
Additional precomputation boosts the result at the 
expected flux delivered directly by the strategy. 

ultimate result at the cost-free rate associated with 
the instantaneous flux provided by the strategy in 
return for resources allocated beyond those required 
to achieve the ideal real-time result. Figure 4 demon­
strates graphically how refining a result with precom­
putation beyond the ideal real-time result adds value 
in accordance with the flux delivered by the strategy 
in these regimes. 

In summary, we must consider two situations for 
computing the EVP associated with precomputing in­
stances for scenarios of decreasing returns, constant 
cost: If the level of refinement of a result reached with 
precomputation is less than the value represented by 

( I ) , the value flux is the product of the rate at 

which cost is accrued and the probability of being 
challenged with the instance. For refinement of a 
result by precomputation beyond the quality repre­
sented by (J), the value flux is the product of the 
probability of seeing the problem instance and the 
EVC flux associated with the strategy for increas-
ing amounts of precomputation time following the 
achievement of (J). 

Given our analyses of these two situations, we can 
develop policies for the general case of multiple prob­
lem instances and uncertainty. Given a set of po-
tential future problem instances under uncertainty, 
we can adapt Theorem 4 to provide a policy for pre­
computation that takes into consideration future real-
time reasoning. The policies consider all instances 
under uncertainty, noting for each instance whether 
the partial result achieved so for with precomputation 
fells short of the quality of the associated ( l ) . 

1284 UNCERTAINTY AND PROBABILISTIC REASONING 



Theorem 5 Continual Computation Policy for De­
creasing Returns, Constant Cost Scenarios. For 
scenarios characterized by decreasing returns in a 
constant cost context, it is ideal to allocate offline 
computational resources to solving instances in order 
of the product of the probability of the instance and 
the cost of delay when refinement is below the utility 
associated with (I) and the product of the instan­
taneous rate of refinement and the probability of the 
instance when the value is greater than 

Proof: For a constant probability of being challenged 
by an instance, the EVP flux for results of lesser qual­
ity than (J) is a constant determined as the product 
of the probability of the instance and the cost of delay. 
The EVP flux for results refined beyond the quality of 

is the product of the probability and the instan­
taneous flux provided by precomputation. The EVP 
flux in regimes where quality is higher than 
is smoothly decreasing and is smaller than the flux 
for refinement up to Drawing upon Theorems 
1 and 4, the maximal total EVP, will be obtained 
by continuing to select available instances with the 
highest expected EVP flux. Given that the EVP flux 
associated with strategies either provide constant or 
decreasing EVP flux with the allocation of precompu­
tation time, any other order will lead to a suboptimal 
EVP. • 

5 Redirecting Resources to Fu­
ture Problems 

So far, we have considered the allocation of available 
idle time solely for solving future problems. We have 
assumed that real-time computation is fully dedicated 
to solving a current challenge until reaching an ideal 
halting time. We can generalize the continual com­
putation policies by considering the value of allowing 
real-time resources to be allocated to precomputa­
tion of future problems before a current problem is 
completed. Such a generalization considers trading 
a loss in the quality or timeliness of the response to 
current challenges for an enhanced expected response 
to future challenges. Such re-allocations can increase 
the overall expected value of a system's performance. 
It is worthwhile allocating resources from current to 
future problems when the EVP of potential future 
problems outweighs the EVC associated with solving 
the current problem. 

The boost in EVP associated with the redirection 
of real-time problem solving to precomputing the so-
lution of potential future problems depends on the 
amount of idle time that will be available before the 
next challenge arrives. If there will be sufficient idle 

time to precompute a majority of important future 
problem instances, little may be gained by an imme-
diate transfer of real-time resources to precomputa-
tion* Thus, we must model the probability distribu-
tion over the available idle time, and use this infor­
mation to compute the expected value of the transfer 
of resources to the future problems. 

Let us use EVP*(r) to refer to the expected value 
of precomputation derived by following an ideal EVP 
policy (iVe., a policy dictated by the results described 
earlier), given the availability of T seconds of idle 
time between the completion of the current problem 
and the arrival of the next challenge. Suppose we 
are in the process of computing a response to a cur­
rent challenge. The probability distribution over idle 
time, p{T\E), can be determined from the probabil­
ity distributions over the computation time required 
to complete the current analysis and over the time 
the next problem instance will be faced by the sys­
tem. Assume that we have access to such probabilis­
tic information, based on data collected on the per­
formance of reasoning procedures and on the rates at 
which different classes of problem instances are faced 
by an agent in an environment or specific setting. 
Given p(T\E), we compute the instantaneous change 
in EVP with computation of future challenges for dif­
ferent idle times T and sum over the uncertainty in 
idle time to generate an expected value flux at differ­
ent values of idle time, 

(8) 

where represents a time-sensitive discount function 
that yields a discount rate, 

In real-time, we consider the instantaneous EVC 
flux associated with current problem solving with the 
instantaneous expected flux of solving future prob­
lems for small amounts of resource. If the current 
EVC flux is greater than the expected flux of solv­
ing future problems we continue to solve the current 
problem with the resource. However, if solving future 
problems has greater flux, we allocate the resource to 
computing future problems. We make the myopic as­
sumption at each step that the probability distribu­
tion over idle time is determined by the time required 
to finish the current analysis. Thus, at each step of 
the analysis we consider an estimate of the revised 
time required for solving the current problem in 8. 
We can now build an overall EVP policy for allocat­
ing resources to each problem by considering the flux 
associated with each problem instance and continuing 
to choose the instance with the highest instantaneous 
flux. 
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6 Summary 
We presented continual-computation policies for har-
nessing idle resources to enhance the future expected 
value of computation. We reviewed policies for sev­
eral classes of refinement and developed an analysis 
and associated policy for folding in a consideration of 
additional refinement with future real-time resources. 
Finally, we described an approach to making decisions 
about redirecting resources being used solve a current 
challenge so as to precompute responses to potential 
future problems. 

We are pursuing extensions to this work in several 
areas. Opportunities for ongoing research in contin­
ual computation include folding into the analyses a 
consideration of multiple periods in the future, rea­
soning about the explicit handling of sequences of 
challenges, and taking into consideration risk prefer-
ence for handling uncertainty about the probability 
of future challenges. 
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