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Abstract
Many modern companies wish to maintain knowl-
edge in the form of a corporate knowledge graph
and to use and manage this knowledge via a knowl-
edge graph management system (KGMS). We for-
mulate various requirements for a fully-fledged
KGMS. In particular, such a system must be ca-
pable of performing complex reasoning tasks but,
at the same time, achieve efficient and scalable rea-
soning over Big Data with an acceptable computa-
tional complexity. Moreover, a KGMS needs inter-
faces to corporate databases, the web, and machine-
learning and analytics packages. We present KRR
formalisms and a system achieving these goals.

1 Introduction
The so-called knowledge economy, characteristic for the cur-
rent Information Age, is rapidly gaining ground. According
to [Amidon et al., 2005], as cited in [Wikipedia, 2017a],
“The knowledge economy is the use of knowledge [...] to
generate tangible and intangible values. Technology, and, in
particular, knowledge technology, help to transform a part of
human knowledge to machines. This knowledge can be used
by decision support systems in various fields and generate
economic value.” The importance of knowledge as an es-
sential economic driving force has been evident to most cor-
porate decision makers since the late 1970s, and the idea of
storing knowledge and processing it to derive valuable new
knowledge existed in the context of expert systems. Alas, it
seems that the technology of those ‘early’ times was not suffi-
ciently mature: the available hardware was too slow and main
memory too tight for more complex reasoning tasks; database
management systems were too slow and too rigid; there was
no web where an expert system could acquire data; machine
learning, and, in particular, neural networks were ridiculed
as largely unsuccessful; ontological reasoning was in its in-
fancy and the available formalisms were much too complex
for Big Data applications. Meanwhile, there has been huge
technological progress, and also much research progress that
has led to a better understanding of many aspects of knowl-
edge processing and reasoning with large amounts of data.
Hardware has evolved, database technology has significantly
improved, there is a (semantic) web with linked open data,
companies can participate in social networks, machine learn-
ing has made a dramatic breakthrough, and there is a better
understanding of scalable reasoning mechanisms.

Because of this, and of some eye-opening showcase
projects such as IBM Watson [High, 2012], thousands of
large and medium-sized companies suddenly wish to manage
their own knowledge graphs, and are looking for adequate
knowledge graph management systems (KGMS).

The term knowledge graph originally only referred to
Google’s Knowledge Graph, namely, “a knowledge base used
by Google to enhance its search engine’s search results with
semantic-search information gathered from a wide variety
of sources” [Wikipedia, 2017b]. Meanwhile, further Inter-
net giants (e.g. Facebook, Amazon) as well as some other
very large companies have constructed their own knowl-
edge graphs, and many more companies would like to main-
tain a private corporate knowledge graph incorporating large
amounts of data in form of facts, both from corporate and
public sources, as well as rule-based knowledge. Such a cor-
porate knowledge graph is expected to contain relevant busi-
ness knowledge, for example, knowledge about customers,
products, prices, and competitors rather than mainly world
knowledge from Wikipedia and similar sources. It should be
managed by a KGMS, i.e., a knowledge base management
system (KBMS), which performs complex rule-based reason-
ing tasks over very large amounts of data and, in addition,
provides methods and tools for data analytics and machine
learning, whence the equation:

KGMS = KBMS + Big Data + Analytics

The word ‘graph’ in this context is often misunderstood to
the extent that some IT managers think that acquiring a
graph database system and feeding it with data is sufficient
to achieve a corporate knowledge graph. Others erroneously
think that knowledge graphs necessarily use RDF triple stores
instead of plain relational data. Yet others think that knowl-
edge graphs are limited to storing and analyzing social net-
work data only. While knowledge graphs should indeed be
able to manipulate graph data and reason over RDF and so-
cial networks, they should not be restricted to this. For exam-
ple, restricting a knowledge graph to contain RDF data only
would exclude the direct inclusion of standard relational data
and the direct interaction with corporate databases.

Not much has been described in the literature about the
architecture of a KGMS and the functions it should ideally
fulfil. In Section 2 we briefly list what we believe are the
main requirements for a fully fledged KGMS. As indicated in
Figure 1, which depicts our reference architecture, the central
component of a KGMS is its core reasoning engine, which
has access to a rule repository. Grouped around it are various
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modules that provide relevant data access and analytics func-
tionalities (see Section 2 for details). We expect a KGMS to
fulfil many of these functions.

The reasoning core of a KGMS needs to provide a lan-
guage for knowledge representation and reasoning (KRR).
The data format for factual data should, as said, match the
standard relational formalism so as to smoothly integrate cor-
porate databases and data warehouses, and at the same time
be suited for RDF and graph data. The rule language and
reasoning mechanism should achieve a careful balance be-
tween expressive power and complexity. In Section 3 we
present VADALOG, a Datalog-based language that matches
this requirement. VADALOG belongs to the Datalog± fam-
ily of languages that extend Datalog by existential quantifiers
in rule heads, as well as by other features, and restricts at the
same time its syntax so as to achieve decidability and data
tractability; see, e.g., [Calì et al., 2013; Calì et al., 2012a;
Calì et al., 2010; Calì et al., 2012b]. The logical core of the
VADALOG language corresponds to Warded Datalog± [Are-
nas et al., 2014; Gottlob and Pieris, 2015], which captures
plain Datalog as well as SPARQL queries under the entail-
ment regime for OWL 2 QL [Glimm et al., 2013], and is able
to perform ontological reasoning tasks. Reasoning with the
logical core of VADALOG is computationally efficient.

After discussing the logical core of VADALOG and its ben-
eficial properties in Section 3.1, we describe in Section 3.2
several features that have been added to it for achieving more
powerful reasoning and data manipulation capabilities. To
give just one example here, the language is augmented by
monotonic aggregations [Shkapsky et al., 2015], which per-
mits the use of aggregation (via summation, product, max,
min, count) even in the presence of recursion. This enables us
to swiftly solve problems such as the company control prob-
lem (studied e.g. in [Ceri et al., 2012]) as explained in the
following example, which will serve as a running example.

Example 1.1 (Running Example) Assume the ownership
relationship among a large number of companies is stored
via facts (i.e., tuples of a database relation) of the form
Own(comp1 , comp2 , w) meaning that company comp1 di-
rectly owns a fractionw of company comp2 , with 0 ≤ w ≤ 1.
A company x controls a company y if x directly owns more
than half of the shares of y or if x controls a set S of com-
panies that jointly own more than half of y. Computing a
predicate Control(x, y) expressing that company x controls
company y, is then achieved in VADALOG by two rules:

Own(x, y, w), w > 0.5 → Control(x, y)

Control(x, y),Own(y, z, w),

v = msum(w, 〈y〉), v > 0.5 → Control(x, z).

Here, for fixed x, the aggregate construct msum(w, 〈y〉)
forms the sum over all values w such that for some company
y, Control(x, y) is true, and Own(y, z, w) holds, i.e., com-
pany y directly owns fraction w of company z. �

In Section 4 we introduce the VADALOG KGMS, which builds
on the VADALOG language and combines it with existing
and novel techniques from database and AI practice such as
stream query processing, dynamic in-memory indexing and

Figure 1: KGMS Reference Architecture.

aggressive recursion control. The VADALOG system is Ox-
ford’s contribution to the VADA (Value Added Data Sys-
tems) research project [VADA, 2016; Furche et al., 2016;
Konstantinou et al., 2017], which is a joint effort of the uni-
versities of Edinburgh, Manchester, and Oxford. An outlook
on future research and developments is given in Section 5.

2 Desiderata for a KGMS
We proceed to briefly summarize what we think are the most
important desiderata for a fully-fledged KGMS. We will list
these requirements according to three categories, keeping in
mind, however, that these categories are interrelated.

2.1 Language and System for Reasoning
There should be a logical formalism for expressing facts and
rules, and a reasoning engine that uses this language, which
should provide the following features.
Simple and Modular Syntax: It should be easy to add and
delete facts and to add new rules. As in logic programming,
facts should conceptually coincide with database tuples.
High Expressive Power: Datalog [Ceri et al., 2012; Huang
et al., 2011] is a good yardstick for the expressive power of
rule languages. Over ordered structures (which we may as-
sume here), Datalog with very mild negation captures PTIME;
see, e.g., [Dantsin et al., 2001]. A rule language should thus
ideally be at least as expressive as plain recursive Datalog,
possibly with mild negation.
Numeric Computation and Aggregations: The basic logical
formalism and inference engine should be enriched by fea-
tures for dealing with numeric values, including appropriate
aggregate functions.
Probabilistic Reasoning: The language should be suited for
incorporating appropriate methods of probabilistic reasoning,
and the system should propagate probabilities or certainty
values along the reasoning process, that is, compute proba-
bilities or certainty values for derived facts, and make adjust-
ments wherever necessary. Probabilistic models may range
from simple triangular norm operators (T-norm – cf [Hájek,
1998]) over probabilistic database models [Suciu et al., 2011]
to Markov logic networks [Richardson and Domingos, 2006].
Ontological Reasoning: Ontological reasoning and query an-
swering should be provided. We have two yardsticks here.
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First, ontological reasoning to the extent of tractable descrip-
tion logics such as DL-LiteR should be possible. Recall that
DL-LiteR forms the logical underpinning of the OWL 2 QL
profile of the Web Ontology Language as standardized by
the W3C. Second, it should be expressive enough to cover
all SPARQL queries over RDF datasets under the entailment
regime for OWL 2 QL [Glimm et al., 2013].
Low Complexity: Reasoning should be tractable in data com-
plexity (i.e. when the rules are assumed to be fixed and the
fact base is considered the input). Whenever possible, the
system should recognize and take profit of rule sets that can
be processed within low space complexity classes such as
NLOGSPACE (e.g. for SPARQL) or even AC0 (e.g. for tra-
ditional conjunctive database queries).
Rule Repository, Rule Management, and Ontology Editor: A
library for storing recurring rules and definitions should be
provided, as well as a user interface for rule management in
the spirit of the ontology editor protégé [Noy et al., 2001].
Dynamic Orchestration: For larger applications, there must
be a master module to allow the orchestration of complex data
flows. For simple systems, the process must be easily specifi-
able. For complex systems, the process must be dynamically
controllable through intelligent reasoning techniques or ex-
ternal control facilities and tools (e.g. BPM).

2.2 Accessing and Handling Big Data
Big Data Access: The system must be able to provide effi-
cient access to Big Data sources and systems and fast reason-
ing algorithms over Big Data. In particular, the possibility of
out-of-memory reasoning must be given in case the relevant
data does not fit into main memory. Integration of Big Data
processing techniques should be possible where the volume
of data makes it necessary (see e.g. [Shkapsky et al., 2016]).
Database and Data Warehouse Access: Seamless access to
relational, graph databases, data warehouses, RDF stores, and
major NoSQL stores should be granted. Data in such reposi-
tories should be directly usable as factual data for reasoning.
Ontology-based Data Access (OBDA): OBDA [Calvanese et
al., 2011] allows a system to compile a query that has been
formulated on top of an ontology into one directly on the
database. OBDA should be possible whenever appropriate.
Multi-Query Support: Where possible and appropriate, par-
tial results from repeated (sub-)queries should be evaluated
once [Roy et al., 2000] and optimized in this regard.
Data Cleaning, Exchange and Integration: Integrating, ex-
changing and cleaning data should be supported both directly
(through an appropriate KRR formalism that is made avail-
able through various applications in the knowledge reposi-
tory), and by allowing integration of third-party software.
Web Data Extraction, Interaction, and IoT: A KGMS should
be able to interact with the web by (i) extracting relevant web
data (e.g. prices advertised by competitors) and integrating
these data into the local fact base, and (ii) exchanging data
with web forms and servers that are available through a web
interface. One way to achieve this will be discussed in Sec-
tion 3.2. Similar methods can be used for interacting with the
IoT through appropriate network accessible APIs.

2.3 Embedding Procedural and Third-Party Code
Procedural Code: The system should have encapsulation
methods for embedding procedural code (proprietary and
third party) written in a variety of programming languages
and offer a logical interface to it.
Third-Party Packages for Machine Learning, Text Mining,
NLP, Data Analytics, and Data Visualization: The system
should be equipped with direct access to powerful existing
software packages for machine learning, text mining, data
analytics, and data visualization. Given that excellent third-
party software for these purposes exists, we believe that a
KGMS should be able to use a multitude of such packages
via appropriate logical interfaces.

3 The VADALOG Language
As said before, VADALOG is a KR language that achieves
a careful balance between expressive power and complexity,
and it can be used as the reasoning core of a KGMS. In Sec-
tion 3.1 we discuss the logical core of VADALOG and some
interesting fragments of it, while in Section 3.2 we discuss
how this language can be extended with additional features
that are much needed in real-world applications.

3.1 Core Language
The logical core of VADALOG is a member of the Datalog±
family of knowledge representation languages, which we call
Warded Datalog±. The main goal of Datalog± languages is
to extend the well-known language Datalog with useful mod-
eling features such as existential quantifiers in rule heads (the
‘+’ in the symbol ‘±’), and at the same time restrict the rule
syntax in such a way that the decidability and data tractability
of reasoning is guaranteed (the ‘-’ in the symbol ‘±’).

The core of Datalog± languages consists of rules known as
existential rules or tuple-generating dependencies, which es-
sentially generalize Datalog rules with existential quantifiers
in rule heads; henceforth, we adopt the term existential rule.
An example of such an existential rule is

Person(x) → ∃yHasFather(x, y),Person(y)

which encodes that every person has a father who is also a
person. In general, an existential rule is a first-order sentence

∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄))

where ϕ (the body) and ψ (the head) are conjunctions of
atoms with constants and variables.

The semantics of a set of existential rules Σ over a database
D, denoted Σ(D), is defined via the well-known chase proce-
dure. Roughly, the chase adds new atoms to D (possibly in-
volving null values used for satisfying the existentially quan-
tified variables) until the final result Σ(D) satisfies all the ex-
istential rules of Σ. Notice that, in general, Σ(D) is infinite.
Here is a simple example of the chase procedure.

Example 3.1 Consider the database D = {Person(Bob)},
and the existential rule

Person(x) → ∃yHasFather(x, y),Person(y).
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The database atom triggers the above existential rule, and the
chase adds in D the atoms

HasFather(Bob, ν1) and Person(ν1)

in order to satisfy it, where ν1 is a (labeled) null represent-
ing some unknown value. The new atom Person(ν1) triggers
again the existential rule, and the chase adds the atoms

HasFather(ν1, ν2) and Person(ν2),

where ν2 is a new null. The result of the chase is the instance

{Person(Bob),HasFather(Bob, ν1)} ∪⋃
i>0

{Person(νi),HasFather(νi, νi+1)},

where ν1, ν2, . . . are (labeled) nulls. �

Given a pair Q = (Σ,Ans), where Σ is a set of existential
rules and Ans an n-ary predicate, the evaluation of Q over
a database D, denoted Q(D), is defined as the set of tuples
over the set CD of constant values occurring in the database
D that are entailed by D and Σ, i.e., the set

{〈t1, . . . , tn〉 | Ans(t1, . . . , tn) ∈ Σ(D) and each ti ∈ CD}.

The main reasoning task that we are interested in is tuple in-
ference: given a database D, a pair Q = (Σ,Ans), and a
tuple of constants t̄, decide whether t̄ ∈ Q(D). This problem
is very hard; in fact, it is undecidable, even when Q is fixed
and only D is given as input [Calì et al., 2013]. This has led
to a flurry of activity for identifying restrictions on existen-
tial rules that make the above problem decidable. Each such
restriction gives rise to a new Datalog± language.

Warded Datalog±: The Logical Core of VADALOG. The
logical core of VADALOG relies on the notion of wardedness,
which gives rise to Warded Datalog± [Gottlob and Pieris,
2015]. In other words, VADALOG is obtained by extending
Warded Datalog± with additional features of practical utili-
tythat are discussed in the next section.

Wardedness applies a restriction on how the “dangerous”
variables of a set of existential rules are used. Intuitively, a
“dangerous” variable is a body-variable that can be unified
with a labeled null value when the chase algorithm is applied,
and it is also propagated to the head of the rule. For example,
given the set Σ consisting of the existential rules

P (x)→ ∃z R(x, z) and R(x, y)→ P (y),

the variable y in the body of the second rule is “dangerous”
(w.r.t. Σ) since starting, e.g., from the database D = {P (a)},
the chase will apply the first rule and generateR(a, ν), where
ν is a null that acts as a witness for the existentially quanti-
fied variable z, and then the second rule will be applied with
the variable y being unified with ν that is propagated to the
obtained atom P (ν). The goal of wardedness is to tame the
way null values are propagated during the construction of the
chase instance by posing the following conditions:

1. all the “dangerous” variables should coexist in a single
body-atom α, called the ward, and

2. the ward can share only “harmless” variables with the
rest of the body, i.e., variables that are unified only with
database constants during the construction of the chase.

Warded Datalog± consists of all the (finite) sets of warded
existential rules. The rule in Example 3.1 is clearly warded.
Another example of a warded set of existential rules follows:

Example 3.2 Consider the following rules encoding part of
the OWL 2 direct semantics entailment regime for OWL 2 QL
(see [Arenas et al., 2014; Gottlob and Pieris, 2015]):

Type(x, y),Restriction(y, z) → ∃wTriple(x, z, w)

Type(x, y), SubClass(y, z) → Type(x, z)

Triple(x, y, z), Inverse(y, w) → Triple(z, w, x)

Triple(x, y, z),Restriction(w, y) → Type(x,w).

It is easy to verify that the above set is warded, where the un-
derlined atoms are the wards. Indeed, a variable that occurs
in an atom of the form Restriction(·, ·), or SubClass(·, ·), or
Inverse(·, ·), is trivially harmless. However, variables that
appear in the first position of Type, or in the first/third posi-
tion of Triple can be dangerous. Thus, the underlined atoms
are indeed acting as the wards.

Let us now intuitively explain the meaning of the above set
of existential rules: The first rule states that if a is of type b,
encoded via the atom Type(a, b), while b represents the class
that corresponds to the first attribute of some binary relation
c, encoded via the atom Restriction(b, c), then there exists
some value d such that the tuple (a, d) occurs in the binary
relation c, encoded as the atom Triple(a, c, d). Analogously,
the other rules encode the usual meaning of subclasses, in-
verses and the effect of restrictions on types. �

Let us clarify that Warded Datalog± is a refinement of
Weakly-Frontier-Guarded Datalog±, which is defined in the
same way but without the condition (2) given above [Baget et
al., 2011]. Weakly-Frontier-Guarded Datalog± is highly in-
tractable in data complexity; in fact, it is EXPTIME-complete.
This justifies Warded Datalog±, which is a (nearly) maximal
tractable fragment of Weakly-Frontier-Guarded Datalog±.

Warded Datalog± enjoys several favourable properties that
make it a robust core towards more practical languages:

- Tuple inference under Warded Datalog± is data tractable; in
fact, it is PTIME-complete when the set of rules is fixed.

- Warded Datalog± captures Datalog without increasing the
complexity. Indeed, a set Σ of Datalog rules is trivially
warded since there are no dangerous variables (w.r.t. Σ).

- Warded Datalog± generalizes central ontology languages
such as the OWL 2 QL profile of OWL, which in turn re-
lies on the prominent description logic DL-LiteR.

- Warded Datalog± is suitable for querying RDF graphs. Ac-
tually, by adding stratified and grounded negation to Warded
Datalog±, we obtain a language, called TriQ-Lite 1.0 [Gott-
lob and Pieris, 2015], that can express every SPARQL query
under the entailment regime for OWL 2 QL.

Other Swift Logics. Although polynomial time data com-
plexity is desirable for conventional applications, it can be
prohibitive for “Big Data” applications; in fact, this is true
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even for linear time data complexity. This raises the question
whether there are fragments of Warded Datalog± that guar-
antee lower data complexity, but at the same time maintain
the favourable properties discussed above. Of course, such a
fragment should be weaker than full Datalog since Datalog
itself is already PTIME-complete in data complexity. On the
other hand, such a fragment should be powerful enough to
compute the transitive closure of a binary relation, which is
a crucial feature for reasoning over graphs, and, in particular,
for capturing SPARQL queries under the entailment regime
for OWL 2 QL. Therefore, the complexity of such a refined
fragment is expected to be NLOGSPACE-complete.

Such a fragment of Warded Datalog±, dubbed Strongly-
Warded, can be defined by carefully restricting the way re-
cursion is employed. Before giving the definition, let us recall
the standard notion of the predicate graph of a set Σ of exis-
tential rules, which essentially encodes how the predicates in
Σ interact. The predicate graph of Σ, denoted PG(Σ), is a
directed graph (V,E), where the node set V consists of all
the predicates occurring in Σ, and we have an edge from a
predicate P to a predicate R iff there exists σ ∈ Σ such that
P occurs in the body of σ and R occurs in the head of σ.
Consider a set of nodes S ⊆ V and a node R ∈ V . We say
that R is Σ-reachable from S if there exists at least one node
P ∈ S that can reach R via a path in PG(Σ). We are now
ready to introduce strong-wardedness.

A set of existential rules Σ is called strongly-warded if Σ
is warded, and, for each σ ∈ Σ of the form

ϕ(x̄, ȳ) → ∃z̄ P1(x̄, z̄), . . . , Pn(x̄, z̄),

there exists at most one atom in ϕ(x̄, ȳ) whose predicate is
Σ-reachable from {P1, . . . , Pn}. Strongly-Warded Datalog±
consists of all the (finite) sets of existential rules that are
strongly-warded. Intuitively, in a strongly-warded set of exis-
tential rules, each rule σ is either non-recursive, or it employs
a mild form of recursion in the sense that an atom generated
by σ during the construction of the chase instance can affect
exactly one body-atom of σ. Let us clarify that the additional
syntactic condition posed on warded existential rules in or-
der to obtain strongly-warded existential rules, is the same
as the condition underlying Piecewise Linear Datalog; see,
e.g., [Afrati et al., 2003].

It can be shown that our main reasoning task of tuple
inference under Strongly-Warded Datalog± is NLOGSPACE-
complete in the data complexity.1 Moreover, this refined lan-
guage remains powerful enough for capturing OWL 2 QL,
and, extended by a mild form of negation, can express every
SPARQL query under the entailment regime for OWL 2 QL.
As already explained above, the NLOGSPACE data complex-
ity immediately excludes full Datalog. However, Strongly-
Warded Datalog± includes some important and well-studied
fragments of Datalog: (i) Non-Recursive Datalog, where the
underlying predicate graph is acyclic, and (ii) IDB-Linear
Datalog, where each rule can have at most one intensional
predicate (i.e., it appears in the head of at least one rule) in its
body, while all the other predicates are extensional.

1More details about the NLOGSPACE upper bound, as well as
additional results on Strongly-Warded Datalog±, which is still under
investigation, will be announced soon in a forthcoming paper.

A lightweight fragment of Strongly-Warded Datalog± that
is FO-Rewritable is Linear Datalog±, where each existential
rule can have exactly one body-atom [Calì et al., 2012a]. FO-
Rewritability means that, given a pair Q = (Σ,Ans), we can
construct a (finite) first-order query QFO such that, for ev-
ery database D, Q(D) coincides with the evaluation of QFO

over D. This immediately implies that tuple inference un-
der Linear Datalog± is in AC0 in data complexity. Despite its
simplicity, Linear Datalog± is expressive enough for express-
ing every OWL 2 QL axiom. However, it cannot compute the
transitive closure of a binary relation, which is unavoidable to
ensure FO-Rewritability. This makes it unsuitable for query-
ing RDF graphs under the entailment regime for OWL 2 QL.

Additional Modeling Features. To obtain the logical core of
VADALOG, the languages discussed above, namely Warded,
Strongly-Warded and Linear Datalog±, are enriched with
useful modeling features without paying a price in complex-
ity. In fact, we consider negative constraints of the form
∀x̄(ϕ(x̄)→ ⊥),whereϕ is a conjunction of atoms, and⊥ de-
notes the truth constant false . We also consider equality con-
straints (i.e., equality-generating dependencies) of the form
∀x̄(ϕ(x̄) → xi = xj), where ϕ is a conjunction of atoms,
and xi, xj are variable of x̄, providing that they do not interact
with the existential rules. This class of equality constraints is
known as non-conflicting; see, e.g., [Calì et al., 2012b]. No-
tice that if we consider arbitrary equality constraints, without
any restrictions, then our main reasoning task becomes very
quickly undecidable [Chandra and Vardi, 1985].

3.2 Extensions

In order to be effective for real-world applications, we extend
the logical core of VADALOG described above with a set of
additional features of practical utility. Although the theoret-
ical properties of the language are no longer guaranteed, our
preliminary evaluation has shown that the practical overhead
for many of these features remains reasonable in our stream-
ing implementation. In the future, we plan to perform a more
thorough complexity analysis and isolate sets of features for
which beneficial complexity upper bounds are met and run-
time guarantees are given.
Data Types: Variables and constants are typed. The language
supports the most common simple data types: integer, float,
string, Boolean, date. There is also support for composite
data types, such as sets.
Expressions: Variables and constants can be combined into
expressions, which are recursively defined as variables, con-
stants or combinations thereof, for which we support many
different operations for the various data types: algebraic sum,
multiplication, division for integers and floats; containment,
addition, deletion of set elements; string operations (contains,
starts-with, ends-with, index-of, substring, etc.); Boolean op-
erations (and, or, not, etc.). Expressions can be used in rule
bodies (1) as the left-hand side (LHS) of a condition, i.e.,
the comparison (>,<,>=,<=,<>) of a body variable with
the expression itself; (2) as the LHS of an assignment, i.e.,
the definition of a specifically calculated value, potentially
used as an existentially quantified head variable. In our run-
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ning example, variable v is calculated with the expression
msum(w, 〈y〉) and used in the condition v > 0.5.
Skolem Functions: Labeled null values can be suitably cal-
culated with functions defined on-the-fly. They are assumed
to be deterministic (returning unique labeled nulls for unique
input bindings), and to have disjoint ranges.
Monotonic Aggregations: VADALOG supports aggregation
(min, max, sum, prod, count), by means of an extension to
the notion of monotonic aggregations [Shkapsky et al., 2015],
which allows adopting aggregation even in the presence of re-
cursion while preserving monotonicity w.r.t. set containment.
The company control example shows the use of msum, which
calculates variable v, as the monotonically increasing sum of
the quota w of company z owned by y, in turn controlled by
x. The sum is accumulated so that above the threshold 0.5,
we have that x controls z. Recent applications of VADALOG
in challenging industrial use cases showed that such aggrega-
tions are very efficient in many real-world Big Data settings.
Data Binding Primitives: Data sources and targets can be
declared by adopting input/output annotations, a.k.a. bind-
ing patterns. Annotations are special facts augmenting sets
of existential rules with specific behaviours. The unnamed
perspective used in VADALOG can be harmonized with the
named perspective of many external systems by means of
bind and mapping annotations, which also support projection.
A special query bind annotation also supports binding pred-
icates to queries against inputs/outputs (in the external lan-
guage, e.g., SQL-queries for a data source or target that sup-
ports SQL). In our example, the extension of the Own predi-
cate is our input, which we denote with an @input(“Own”)
annotation. The actual facts then may be derived, e.g., from a
relational or graph database, which we would respectively ac-
cess with the two following annotations (the latter one using
neo4j’s cypher graph query language):

@bind(“Own”, “rdbms”, “companies.ownerships”).

@qbind(“Own”, “graphDB”,
“MATCH (a)-[o:Owns]->(b)
RETURN a,b,o.weight”).

A similar approach is also used for bridging external machine
learning and data extraction platforms into the system. This
uses binding patterns as a form of behaviour injection: the
atoms in rules are decorated with binding annotations, so that
a step in the reasoning process triggers the external compo-
nent. We give a simple example using the OXPath [Furche et
al., 2013] large-scale web data extraction framework (devel-
oped as part of the DIADEM project [Furche et al., 2014]) –
an extension of XPath that interacts with web applications to
extract information obtained during web navigation. In our
running example, assume that our local company ownership
information is only partial, while more complete information
can be retrieved from the web. In particular, assume that a
company register acts as a web search engine, taking as input
a company name and returning, as separate pages, the owned
companies. This information can be obtained as follows:2

2Concretely, the first position of the Own predicate is bound to
the $1 placeholder in the OXPath expression.

@qbind(“Own”, “oxpath”,
“doc(′http://company_register.com/ownerships′)
/descendant::field()[1]/{$1}
/following::a[.#=’Search’]/{click/}

/(//a[.#=’Next’]/ {click/})∗
//div[@class=’c’]:<comp>
[./span[1]:<name=string(.)>]
[./span[3]:<percent=string(.)>]").

The above examples show a basic bridging between the tech-
nologies. Interesting interactions can be seen in more sophis-
ticated scenarios, where the reasoning process and external
component processing is more heavily interleaved.

Probabilistic Reasoning: VADALOG offers support for the ba-
sic cases in which scalable computation can be guaranteed.
Facts are assumed to be probabilistically independent and a
minimalistic form of probabilistic inference is offered as a
side product of query answering. Facts can be adorned with
probability measures according to the well-known possible
world semantics [Suciu et al., 2011]. Then, if the set of exis-
tential rules respects specific syntactic properties that guar-
antee probabilistic tractability (namely, a generalization of
the notion of hierarchical queries [Suciu et al., 2011]), the
facts resulting from query answering are enriched with their
marginal probability, safely calculated in a scalable way. In
the following extension to our running example, we use prob-
abilistic reasoning to account for uncertain ownerships (e.g.,
due to unreliable sources), prefixing the facts with their like-
lihood, so as to derive non-trivial conclusions on company
control relationships:

0.8 :: Own(“ACME”, “COIN”, 0.7)
0.3 :: Own(“COIN”, “SAVERS”, 0.3)
0.4 :: Own(“ACME”, “GYM”, 0.55)
0.6 :: Own(“GYM”, “SAVERS”, 0.4).

In total, the language allows bridging logic-based reasoning
and machine learning in three ways. First, the language sup-
ports scalable probabilistic inference in basic cases as seen
above. Second, the extensions to the core language provide
all the necessary features to abstract and embed advanced
inference algorithms (e.g. belief propagation) so that they
can be executed directly by the VADALOG system, and hence
leverage its optimization strategies. Third, for the more so-
phisticated machine learning applications, data binding prim-
itives allow a simple interaction with specialized libraries and
systems as described before.

Post-processing Annotations: Since specific computations are
often needed after the result has been produced, VADALOG
supports many of them by means of annotations for the fol-
lowing features: ordering of the resulting values, as set se-
mantics is assumed on the output, and yet a particular order-
ing of the facts may be desired by the consumer: for example,
@orderby(“Control”, 1) sorts the obtained control facts
by the controlling company; deduplication, in specific condi-
tions (e.g. in presence of calculated values), the output may
physically contain undesired duplicates; non-monotonic ag-
gregations on the final result, without the limitations induced
by recursion; and certain answers.
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4 The VADALOG System
The functional architecture of the VADALOG system, our
KGMS, is depicted in Figure 1. The knowledge graph is orga-
nized as a repository, a collection of VADALOG rules, in turn
packaged in libraries. Rules and libraries can be edited and
administered through a dedicated management user interface.
The external sources are supported by means of a collection
of transducers, intelligent adapters that allow active interac-
tion with the sources in the reasoning process.

The VADALOG system fulfils the requirements presented
in Section 2. The Big Data characteristics of the sources and
the complex functional requirements of reasoning are tackled
by leveraging the underpinnings of the core language, which
are turned into practical execution strategies. By combin-
ing these strategies with a highly engineered architecture, the
VADALOG system achieves high performance and an efficient
memory footprint.

4.1 The Reasoning Process
In this section we give some indications about how our system
exploits the key properties of Warded Datalog±, explained in
Section 3.1, in the reasoning process. We focus on the generic
reasoning task of computing the certain answers to a conjunc-
tive query (CQ) over a knowledge graph (i.e., a database and
a set of existential rules). Note that for Warded Datalog±, the
problem of computing the certain answers can be reduced to
the problem of tuple inference since CQs can be added to the
set of rules while preserving wardedness.

A useful representation of the instance obtained by the
chase is the so-called chase graph [Calì et al., 2012a], a di-
rected acyclic graph where facts are represented as nodes and
the applied rules as edges. It is implicit in the reasoning al-
gorithms devised for Warded Datalog± that after a certain
number of chase steps (which, in general, depends on the in-
put database), the chase graph exhibits specific periodicities
and no new information, relevant to query answering, is gen-
erated. Notice, however, that this number of chase steps is
a loose upper bound, while in practice, redundancies appear
much earlier. The VADALOG system adopts an aggressive re-
cursion and termination control strategy, which detects such
redundancy as early as possible by combining compile-time
and runtime techniques.

At compile time, thanks to wardedness, which limits the
interaction between the labeled nulls, the engine rewrites the
program in such a way that joins on specific values of labeled
nulls will never occur (harmful join elimination).

At runtime, the system adopts an eager optimal pruning
of redundant and potentially non-terminating chase branches,
structured in two parts, detection and pruning. In detection,
whenever a rule generates a fact that is isomorphic to a pre-
viously generated one, the sequence of applied rules, namely
the provenance, is stored. In pruning, whenever a fact ex-
hibits the same provenance as another one and they are iso-
morphic, the fact is not generated and the chase graph is cut
off from that node on. Due to wardedness, the provenance
information needed is bounded.

Moreover, our technique is somehow lifted, in the sense
that it highly exploits the structural symmetries within the
chase graph: for termination purposes, facts are considered

equivalent if they have the same provenance and originate
from isomorphic facts. This is a great advantage in terms
of performance and memory footprint. In particular, many
homomorphism checks are avoided.

4.2 The Architecture
In order to have an efficient KGMS that is also effective and
competitive in real-world applications, the VADALOG sys-
tem adopts the described warded-enabled principles and tech-
niques, which guarantee termination and contain redundancy.
We adopt a specialized in-memory architecture that makes the
most of the existing experience in DBMS development.

From a set of VADALOG rules (rewritten at compile time as
explained), we generate a query plan, i.e., a graph having a
node for each rule and an edge whenever the head of a rule
appears in the body of another one. Some special nodes are
marked as input or output, when corresponding to datasets
in external systems or atoms of the reasoning task, respec-
tively. The query plan is optimized with a range of variations
on standard techniques, for example, pushing selections and
projections as close as possible to the data sources. Finally,
the query plan turned into an access plan, where generic rule
nodes are replaced by the most appropriate implementations
for the corresponding low level operators (e.g. selection, pro-
jection, join, aggregation, evaluation of expression, etc.). For
each operator a set of possible implementations are available
and are activated according to common optimization criteria.

The VADALOG system uses a pull stream-based approach
(or pipeline approach), where the facts are actively requested
from the output nodes to their predecessors and so on down
to the input nodes, which eventually fetch the facts from the
data sources. The stream approach is essential to limit the
memory consumption or, at least make it predictable, so that
the system is effective for large volumes of data.

Our setting is made more challenging by the presence of
multiple interacting rules in a single rule set and the wide
presence of recursion. We address this by means of a special-
ized buffer management technique. We adopt pervasive local
caches in the form of wrappers to the nodes of the access plan,
where the facts produced by each node are stored. The local
caches work particularly well in combination with the pull
stream-based approach, since facts requested by a node suc-
cessor can be immediately reused by all the other successors,
without triggering further backward requests. Also, this com-
bination realizes an extreme form of multi-query optimiza-
tion, where each rule exploits the facts produced by the oth-
ers, whenever applicable. To limit memory occupation, the
local caches are flushed with an eager eviction strategy that
detects when a fact has been consumed by all the possible
requestors and thus drops it from the memory. Cases of ac-
tual cache overflow are managed by resorting to standard disk
swap heuristics (e.g. LRU, LFU, etc.).

Local caches are also fundamental functional components
in the architecture, since they transparently implement the de-
scribed recursion and termination control. Indeed, the pull
stream-based mechanism is completely agnostic to the termi-
nation conditions, and simply produces data for the output
nodes as long as the input ones provide facts: it is the respon-
sibility of the local caches to detect periodicity and hence to
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# companies all-rand (s) query-rand (s) all-real (s) query-real (s)
10 0.381 0.342 0.2 0.19

100 0.352 0.34 0.21 0.2
1K 0.555 0.491 0.36 0.25

10K 1.319 1.046 0.85 0.47
50K 3.69 2.76 2.36 1.81
100K 7.688 6.834 N/A N/A
1M 14.39 8.12 N/A N/A

Figure 2: Reasoning times for the company control scenario.

control termination and cut off computation once a known
pattern reoccurs. In this way, we locally inhibit the produc-
tion of redundant facts.

For the joins, the VADALOG system adopts a cycle-aware
extension of the standard nested loop join, suitable for the
stream-based approach and efficient in combination with the
local caches on the operands. However, in order to guarantee
good performance, the local caches are enhanced by dynamic
(i.e. runtime) in-memory indexing; in particular, the caches
involved in the joins can be indexed by means of hash indices
created at runtime so as to activate an even more efficient hash
join implementation.

4.3 Systems Status and Performance
Our system currently fully implements the core language
and is already in use for a number of industrial applications.
Many extensions, especially those important for our partners,
are already realized, but others are still missing or under de-
velopment and will be integrated in the future. Our partners
show appreciation for the performance of the system, and we
are in the process of conducting a full-scale evaluation. How-
ever, we want to give a glimpse on the results so far.

In particular, for the company control scenario from our
running example, Figure 2 reports promising results. We
considered 7 purely randomly generated company ownership
graphs (following the Erdős-Rényi model, relatively dense)
from 10 to 1M companies and 5 real-world-like graphs (den-
sity and topology resembling the real-world setting), from 10
to 50K companies. For each random graph we performed two
kinds of evaluations: all-rand, where we compute the con-
trol relationship between all companies and report the reason-
ing time in seconds; query-rand, where we make 50 separate
queries for specific pairs of companies and report the average
reasoning time in seconds. For each real-world-like graph,
we make the same evaluations, all-real and query-real, re-
spectively. Results are extremely promising and suggest that
the engine has very good performance for both batch and in-
teractive applications on large knowledge graphs.

4.4 Related Systems
There are a wide variety of existing tools that are related to
the VADALOG system. On one side, we have the progeny
of data exchange/cleaning/integration/query answering sys-
tems [Baget et al., 2015; Geerts et al., 2014; Gottlob et al.,
2014; Leone et al., 2012; Pichler and Savenkov, 2009], whose
most recent representatives provide excellent specific chase
implementations [Benedikt et al., 2017]. However, they are
not suitable to address the KGMS requirements due to the
lack of emphasis on scalability guarantees, insufficient cover-
age of important business-desired features and a general ten-
dency towards prototypical architectures, which do not make

them ideal for enterprise settings. Similar observations can
be made for existing Datalog systems [Leone et al., 2006].

Another set of related tools is Datalog-based systems. In
particular, RDFox [Motik et al., 2014] and LogicBlox [Aref
et al., 2015] deserve special attention. The former is a high-
performance RAM-based Datalog engine, while the latter
comes with the philosophy of extending the usual notion of a
DBMS to support analytical applications. Both systems are
extremely good reasoning engines, demonstrated by high per-
formance in benchmarks [Benedikt et al., 2017] and feature
coverage, respectively. Although they share with the VADA-
LOG engine the view of adopting novel and enhanced algo-
rithms from the Datalog reasoning experience and database
systems design practices, in the VADALOG system we put
central emphasis on the adopted language. Our system is the
first to exploit the theoretical underpinnings of wardedness.

5 Conclusion
In this paper, we have formulated a number of requirements
for a KGMS, which led us to postulate our reference archi-
tecture (see Figure 1). Based on these requirements, we in-
troduced the VADALOG language whose core corresponds to
Warded Datalog±. The basic VADALOG language is extended
by features for numeric computations, monotonic aggrega-
tion, probabilistic reasoning, and, moreover, by data binding
primitives used for interacting with the corporate and exter-
nal environment. These binding primitives allow the reason-
ing engine to access and manipulate external data through the
lens of a logical predicate. The external data may stem from
a corporate database, may be extracted from web pages, or
may be the output of a machine-learning program that has
been evaluated over previously computed data relations. We
then introduced the VADALOG system, which puts these swift
logics into action. This system exploits the theoretical under-
pinning of Warded Datalog± and combines it with existing
and novel techniques from database and AI practice.

Many core features of the VADALOG system are already in-
tegrated and show good performance. Our plan is to complete
the system in the near future. We believe that the VADALOG
system is a well-suited platform for applications that integrate
machine learning (ML) and data analytics with logical rea-
soning. We are currently implementing applications of this
type and will report about them soon.
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