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Abstract

Abstract argumentation frameworks (AFs) are a
well-known formalism for modelling and deciding
many argumentation problems. Computational is-
sues and evaluation algorithms have been deeply
investigated for static AFs, whose structure does
not change over the time. However, AFs are often
dynamic as a consequence of the fact that argumen-
tation is inherently dynamic.

In this paper, we tackle the problem of incremen-
tally computing extensions for dynamic AFs: given
an initial extension and an update (or a set of up-
dates), we devise a technique for computing an ex-
tension of the updated AF under four well-known
semantics (i.e., complete, preferred, stable, and
grounded). The idea is to identify a reduced (up-
dated) AF sufficient to compute an extension of the
whole AF and use state-of-the-art algorithms to re-
compute an extension of the reduced AF only.

The experiments reveal that, for all semantics con-
sidered and using different solvers, the incremental
technique is on average two orders of magnitude
faster than computing the semantics from scratch.

1

Abstract argumentation has emerged as one of the major
fields in Artificial Intelligence [Bench-Capon and Dunne,
2007; Rahwan and Simari, 2009; Baroni ef al., 2011; Mod-
gil and Prakken, 2011].In particular, abstract argumentation
frameworks (AFs) [Dung, 1995] are a simple, yet power-
ful formalism for modelling disputes between two or more
agents. The formal meaning of an AF is given in terms of
argumentation semantics, which intuitively tell us the sets of
arguments (called extensions) that can profitably be exploited
to support a point of view in a discussion.

Although the idea underlying AFs is very simple and intu-
itive, most of the argumentation semantics proposed so far
suffer from a high computational complexity [Dunne and
Wooldridge, 2009]. Complexity bounds and evaluation al-
gorithms for AFs have been deeply investigated in the liter-
ature, as also witnessed by the International Competition on
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Computational Models of Argumentation (ICCMA) ! whose
aim is encouraging research and development of efficient al-
gorithms for computational models of AFs.

However, most research focused on ‘static’ frameworks,
whereas in practice AFs are dynamic systems [Baumann,
2011; Falappa et al., 2011; Liao et al., 2011; Baroni et al.,
2014b; Charwat et al., 2015]. In fact, typically an AF repre-
sents a temporary situation, and new arguments and attacks
can be added/retracted to take into account new available
knowledge. For instance, for disputes among users of online
social networks [Kokciyan et al., 2016], arguments/attacks
are continuously added/retracted by users to express their
point of view in response to the last move made by the adver-
saries (often disclosing as few arguments/attacks as possible).

Surprisingly, the definition of evaluation algorithms and
the analysis of the computational complexity taking into ac-
count such dynamic aspects have been mostly neglected,
whereas in these situations incremental computation tech-
niques could greatly improve performance. In many cases,
especially when few updates at a time are performed, the
changes made to an AF can result in small changes to the
set of its extensions, and recomputing the whole semantics
from scratch can be avoided.

With the aim of identifying the portion of an AF affected
by an update, the division-based method, proposed by [Liao
et al., 2011] and refined by [Baroni et al., 2014b], divides the
updated AF into two parts: affected and unaffected, where
only the status of affected arguments needs to be recomputed
after updates. Essentially, the set of affected arguments con-
sists of those that are reachable from the updated arguments.
Recently, focusing on unique-extension semantics, according
to which every AF has exactly one extension, in [Greco and
Parisi, 2016a; 2016b] we have introduced the concept of in-
fluenced set, where the initial extension of an AF is used
to further restrict the portion of the AF affected by an up-
date. However, the technique in [Greco and Parisi, 2016a;
2016b] only works for the grounded and ideal semantics and
does not apply to multiple-extensions semantics, which can
associate more than one extension to a given AF.

In this paper, we focus on the semantics considered at
the last argumentation competition (i.e., the three multiple-
extensions semantics complete, preferred, and stable, and the

'http ://argumentationcompetition.org
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unique-extension semantics grounded) and propose a general
approach for incrementally solving the following computa-
tional task: Given an AF Ay, an extension for Ay under se-
mantics S, and an update u, determine an extension of the up-
dated AF u(Ap) under S. In other words, we explore the pos-
sibility of incrementally solving the ICCMA computational
task S-SE: Given an AF, determine some S-extension.

Contributions. We introduce an incremental technique for
recomputing an extension of an updated AF under four popu-
lar semantics. The algorithm consists of three main steps: (i)
identification of a sub-AF, called reduced AF, on the basis of
the influenced set and additional information provided by the
initial extension (ii) using any non-incremental algorithm to
compute an extension of the reduced AF; and (iii) getting the
final extension by merging a portion of the initial extension
with that computed for the reduced AF.

We performed a thorough experimental analysis showing
the effectiveness of our approach for all the semantics con-
sidered, even in the case of sets of updates applied simulta-
neously. Specifically, for each semantics, we compared our
technique with the solver that won the ICCMA’15 competi-
tion for the computational task S-SE, and show that our tech-
nique outperforms the computation from scratch by two or-
ders of magnitude, on average.

2 Preliminaries

We assume the existence of a set Arg of arguments. An (ab-
stract) argumentation framework [Dung, 1995] (AF) is a pair
(A,X), where A C Argand ¥ C A x A is a binary rela-
tion over A whose elements are called attacks. Thus, an AF
is a directed graph where nodes correspond to arguments and
edges correspond to attacks. An argument is an abstract en-
tity whose role is entirely determined by its relationships with
other arguments.

Given an AF (A, X)) and arguments a,b € A, we say that a
attacks biff (a,b) € ¥, and that a set S C A attacks b iff there
is a € S attacking b. Weuse ST = {b|Ja € S : (a,b) € &}
to denote the set of all arguments that are attacked by S.

Moreover, we say that S C A defends a iff Vb € A such
that b attacks a, there is ¢ € S such that c attacks b.

A set S C A is said to be (i) conflict-free, if there are no
a,b € S such that a attacks b; (ii) admissible, if it is conflict-
free and it defends all its arguments.

An argumentation semantics specifies the criteria for iden-
tifying a set of arguments that can be considered “reasonable”
together, called extension. A complete extension (co) is an
admissible set that contains all the arguments that it defends.
A complete extension S is said to be: preferred (pr) iff it is
maximal (w.r.t. C); stable (st) iff it attacks each argument in
A\ S; grounded (gr) iff it is minimal (w.r.t. C).

Given an AF A and a semantics S € {co, pr, st, gr},
we use Es(A) to denote the set of S-extensions for .A.

All the above-mentioned semantics except the stable admit
at least one extension, and the grounded admits exactly one
extension [Dung, 1995]. It is well-known that, for any AF A,
Egr(A) C Eo(A) and Es: (A) C E,p(A) C Eco(A).

Example 1 The set of admissible sets for the AF Ay shown
in Fig.1 (where attack (c, f) does not belong to Agp) is
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Figure 1: AFs Ao and A = +(c, f)(Ao)

) s (A0) [ Es(A) |
co {{f. g}, {a, f, g}, {b, f,9}} | {9}, {a, g}, {b,f g}}
pr {{aafvg}v{bafag}} {{a7g}7{b7fvg}}
st {b, f, 93} {6, f. ot }
gr {{f 93} {{g}}

Table 1: Sets of extensions for Ag and A = +(c, f)(Ao).

{0, {0}, {9}.{a, g}, {b, 9}, {f 9}, {a,9, f},{b, g, f}}, and
Es(Ap) with § € {co, pr, st, gr} is as reported in the
second column of Table 1. ]

The argumentation semantics can be also defined in terms
of labelling [Baroni et al., 2011]. A labelling for an AF A =
(A, %) is a total function L : A — {IN, OUT, UN} assigning
to each argument a label. L(a) = IN means that argument
a is accepted, L(a) = OUT means that a is rejected, while
L(a) = UN means that a is undecided.

Letin(L) ={a|a€ AANL(a) =N}, out(L) ={a|a €
AAL(a) = out},andun(L) = {a|a € AAL(a) = UN}. In
the following, we also use the triple (in(L), out(L),un(L))
to represent the labelling L.

Given an AF A = (A, Y), a labelling L for A is said to be
admissible (or legal) if Va € in(L) U out(L) it holds that (i)
L(a) = ouTiff 3b € A such that (b,a) € ¥ and L(b) = IN;
and (i) L(a) = IN iff L(b) = ouT for all b € A such that
(b,a) € 3. Moreover, L is a complete labelling iff conditions
(i) and (ii) hold for all a € A.

Between complete extensions and complete labellings
there is a bijective mapping defined as follows: for each
extension E there is a unique labelling L = (E,ET, A\
(E U E™)) and for each labelling L there is a unique exten-
sion in(L). We say that L is the labelling corresponding to
E. For instance, in Example 1, ({a, f, g}, {b,d, e, h},{c}) is
the labelling corresponding to the extension {a, f, g}, while
<{b7 f? g}7 {a’ C? d? 67 h}7 ®> Corresponds to {b7 f’ g}'

In the following, we say that the status of an argument a
w.rt. a labelling L (or its corresponding extension in(L))
is IN (resp., OUT, UN) iff L(a) = IN (resp., L(a) = OUT,
L(a) = UN). We will avoid to mention explicitly the labelling
(or the extension) whenever it is understood.

Updates. Performing an update on an AF .4, means mod-
ifying it into an AF A by adding or removing arguments or
attacks. In the following, we will present our results by fo-
cusing on updates consisting of adding/deleting one attack
between arguments of Ay. Then we will show in Section 4.2
that the results for single attack updates extend to the case
of multiple updates. In fact, applying a set of updates can
be reduced to applying a single update. In our experimental
analysis we considered both single and multiple updates.
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update [ Lo (b) 1
+(a, b) [ IN T uww T oUT |
IN co, pr, st, gr
Lo(a) UN co, gr co, pr,gr
ouT co, pr, st co,gr co, pr, st, gr

Table 2: Cases for which Ey € Es(u(Ag)) for u = +(a, b).

update [ Lo (b) 1
—(a, b) [ IN UN OUT |
IN NA NA
Lo(a) UN NA co, pr,gr
ouT co, pr, st,gr co, pr,gr co, pr, st, gr

Table 3: Cases for which Ey € Es(u(Ao)) foru = —(a,b).

We use +(a,b), with a,b € Ag and (a,b) & %o, (resp.
—(a, b), with (a,b) € X) to denote the addition (resp. dele-
tion) of an attack (a,b), and u(Ag) to denote the application
of update v = +(a, b) to AF Ay (where + means either + or
—). Applying an update u to an AF implies that its semantics
(set of extensions or labellings) changes, as shown by Table 1
which reports the sets of extensions for the AFs of Figure 1
before and after performing the update +(c, f).

Concerning the addition (resp. deletion) of a set of iso-
lated arguments, it is easy to see that if A is obtained from
Ay through the addition (resp. deletion) of a set .S of isolated
argument, then, let Fy be an extension for Ay, £ = Ey U S
(resp. E = Ep \ S) is an extension for A that can be triv-
ially computed. Of course, if arguments in S are not isolated,
for addition we can first add isolated arguments and then add
attacks involving these arguments, while for deletion we can
first delete all attacks involving arguments in S. Thus we do
not consider these kinds of update in the following.

3 Arguments Influenced by an Update

In this section, we first provide some sufficient conditions en-
suring that a given S-extension for an AF 4 continues to be
an S-extension for the updated AF u(.A). Then, we introduce
the influenced set which intuitively consists of the set of argu-
ments whose status may change after performing an update.

Updates preserving a given initial extension. Given an up-
date +(a, b) and an initial extension Fy corresponding to Ly,
for each pair of initial statuses Lo(a) and Lg(b) of the ar-
guments involved in the update, Tables 2 and 3 tell us the
semantics for which Ej is still an extension after the update.

Proposition 1 Let Ay be an AE, S a semantics, Ey €
Es(Ap) an extension of Ay under semantics S, Lg the la-
belling corresponding to Ey, and u an update. If S is in the
cell (Lo(a), Lo(b)) of Table 2 and v = +(a, b) (resp., of Ta-
ble 3 and uw = —(a, b)), then Ey € Es(u(Ap)).

The results in Tables 2 and 3 concerning gr follow from
those in [Boella et al., 2009a; 2009b], where the principles
according to which the grounded extension does not change
when attacks are added/removed have been studied.

In the following, given an AF Ay and an S-extension Ej
for it, we say that an update v is irrelevant w.r.t. Ey and S iff
the conditions of Proposition 1 hold. Otherwise, u is relevant.
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Example 2 Consider Ay of Figure 1 and its sets of exten-
sions listed in the second column of Table 1. Ey = {b, f, g}
is an extension according to semantics S € {co,pr,st}.
Thus, Ly(¢) = ouT and Lo(f) = IN, and using Proposi-
tion 1 it follows that for update u = +(c, f) Ep is still an
extension of u(A4g) (see the last column of Table 1). Thus
+(c, f) is irrelevant w.r.t. Ey and S. However, +(c, f) is rel-
evant w.r.t. Fy = {a, f, g} and all the semantics (in this case
Lo(c) = UN and Lo(f) = IN, and no semantics is listed in
the cell (UN, IN) of Table 2). 0

It is important to note that Tables 2 and 3 are not meant to
be exhaustive, as more conditions can be found for which an
S-extension is preserved after an update. For instance, for the
grounded semantics, the initial extension is preserved also if
Lo(a) = ouT and Lo(b) = IN and argument @ of updated
+(a, b) is not reachable from b. Here we provided a simple
set of conditions that can be easily checked by just looking
at the initial labelling L. Our technique can be trivially ex-
tended by considering a more general set of such conditions.

Influenced set. For irrelevant updates, the influenced set will
be empty (in this case, the initial extension will be immedi-
ately returned as an extension of the updated AF by our algo-
rithm). If none of the conditions of Proposition 1 holds (i.e.,
the update is relevant), then the influenced set may turn out
to be not empty. In such case, the influenced set will be used
to delineate a portion of the argumentation framework, called
reduced AF, that we will use to recompute (a portion of) an
extension for the updated AF.

Given an AF A = (A, ¥) and an argument b € A, we use
Reach,(b) to denote the set of arguments that are reachable
from b in the graph A.

Definition 1 (Influenced set) Let A = (A, ¥) be an AF, u =
+(a,b), E an extension of .4 under semantics S, and let

0 ifu is irrelevant w.r.t. E and S or
Az,b)eXst.z£aNz e EN
z & Reach,(b);

{b} otherwise;

it1(u, A,E) =Tij(u, A, E) U{y | I(z,y) € Lst.x €
Zi(u, A,E) A\ Alz,y) € ¥ s.t.z € ENz¢& Reach(b)}.
The influenced set of u wrt. A and E is Z(u, A, E) =
Z,(u, A, E)such that Z,,(u, A, E) = L, 11 (u, A, E). O
Example 3 Consider the the AF Ay = (A4, Xo) of Figure 1
and the update u = +(c, f). We have that Reach, (f) =
Ag \ {g,h}. The influenced set depends on the initial ex-
tension chosen. For the extension {b, f, g} of Example 2,
we have that the influenced set is empty as w is irrelevant.
For the extension Ey = {a,f,g}, the influenced set is
Z(u, Ao, Eo) = {f,e}. Indeed, d & Z(u, Ay, Ey) since it
is attacked by g € Ey which is not reachable from f. Thus
the arguments that can be reached from d do not belong to
Z(u,Ag, Ey). If we consider the initial grounded extension
{f, g}, then {f, e} turns out to be the influenced set again. O

- IO(ua -A7 E):

4 Incremental Computation of Extensions

Given the influenced set, we define a subgraph, called re-
duced AF, that will be used to compute the status of the in-
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fluenced arguments, thus providing an extension that will be
combined with that of initial AF to obtain an extension of the
updated AF, for every semantics S € {co, pr, st, gr}.

For any AF A = (A, %) and set S C A of arguments,
we denote with II(S, A) = (S, X N S x S) the subgraph
of A induced by the nodes in S. Moreover, given two AFs
A; = (A1,%1) and Ay = (Ay, 35), we denote as A LAy =
(A1 U Ay, %1 UX,y) the union of the two AFs.

Definition 2 (Reduced AF) Let 4y = (A4p,Xo) be an AF,
Ey € Es(Ap) an extension for Ay under a semantics S €
{co, pr, st, gr}, and v = £(a,b) an update. Let u(Ay) =
(A, X) be the AF updated using u. The reduced AF for Ag
w.r.t. Eg and u (denoted as R(u, Ag, Fo)) is as follows.
- R(u, Ao, Fy) is empty if Z(u, Ao, Ep) is empty.
- R(U,Ao,Eo) = H(I(U,Ao,EQ),u<A0)) L .Al (] AQ
where:
i) Aj is the union of the AFs ({a, b}, {(a,b)}) s.t. (a,b) €
Y, a ¢ I(u, Ag, Ep), a € Ep,and b € Z(u, Ao, Ep);
ii) Az is the union of the AFs ({c}, {(c,¢)}) s.t. there is
(e,c) S E’ € ¢ I(U,Ao,Eo), € g (EO U E(—)i_)’ and
¢ € Z(u, Ao, Eo). O

Hence, AF R(u, Ay, Ep) contains, in addition to the sub-
graph of u(Ap) induced by Z(u,.Ap, Ep), additional nodes
and edges containing needed information on the “external
context”, i.e. information about the status of arguments which
are attacking some argument in Z(u, A, Ey). Using fake ar-
guments/attacks to represent external contexts has been ex-
ploited in [Baroni ef al., 2014a] where decomposability prop-
erties of argumentation semantics are investigated.

Example 4 For our running example, if Ey = {a, f, g} and
u = +(c, f), the reduced AF R(+(c, f), Ao, Ep) consists
of the subgraph induced by Z(u, Ao, Ey) = {f,e} plus
the edge (f, f) as there is the attack (c, f) in the updated
AF from an uninfluenced argument c labelled as UN toward
the influenced argument f. Hence, R(+(c, f), Ao, Eo) =

O

{e, 11:A(, 1), (F,€)})-

Theorem 1 Let Ay be an AF, and A = u(Ag) be the AF
resulting from performing update v = +(a,b) on Ay. Let
Ey € Es(Ap) be an extension for Ay under a semantics S €
{co, pr, st, gr}. Then, if Es(R(u, Ao, Eo)) is not empty,
then there is an extension E € Eg(A) for the updated AF
A such that E = (Eg \ Z(u, Ao, Eo)) U E4 where Eq is an
S-extension for reduced AF R (u, Ay, Ey) .

Example 5 Continuing our example, for the preferred se-
mantics, let By = {a, f,g} and u = +(c, f), we have that
I(’U,, AOa EO) = {f7 6}, and R(+(Ca f)7 -A07 EO) = <{€) f}a
{(f, ), (f,e)}). Thus, using the theorem, there is an exten-
sion E of the updated AF such that E = ({a, f,g}\{f,e})U
E,; where E; = () is a preferred extension of the reduced AF.
In fact, E = {a, g} € & (u(Ao)). O

It is worth noting that the set of extensions of an AF can be
empty only for the stable semantics. Thus, in the case that this
happens for the reduced AF (i.e., Es(R(u, Ao, Ep)) = 0), the
theorem does not give a method to determine an extension of
the updated AF, as shown in the following example.
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Algorithm 1 Incr-Alg(Ag, u, S, Ey, Solvers)

Input: AF Ay = (Ao, Xo), update u = +(a, b),
semantics S € {co, pr, st, gr}, extension Ey € Es(Ao),
function Solvers(A) returning an S-extension for AF A if it
exists, L otherwise;
Output: An S-extension E € Es(u(Ao)) if it exists, L otherwise;
. S = I(u7 .Ao7 Eo);
if (S = 0) then
return Fy;
Ad = R(U, A07 EO)a
Let E4 = Solvers(Ag);
if (Eq # 1) then
return £ = (Eo \ S) U Eg;
else
return Solvers(u(Ao));

R AR

Example 6 Let Ay = ({a,b,c,d,e}, {(a,), (b, ), (b,d),
(¢c,d), (c,e),(e,c)}). Tts stable extensions are {a,c} and
{a,d,e}. For update u = +(d, d), depending on the initial
extension, the influenced set is either Z(u, A, {a,c}) = 0 (as
u is irrelevant w.r.t. {a,c} and st) or Z(u, A, {a,d,e}) =
{d}. Thus, starting from the extension {a,c} we di-
rectly know {a, c} is a stable extension of the updated AF.
However, starting from {a,d, e}, the reduced AF will be
R(u, Ao, {a,d,e}) = ({d},{(d,d)}), which has no stable
extension. In this case, the theorem does not provide a stable
extension of the updated AF, thought a stable extension exists:
that obtained by starting from the initial extension {a, c}.

It is worth noting that, if we consider the preferred seman-
tics, for which the starting extensions are again {a,c} and
{a, d, e}, a preferred extension of the updated AF can be ob-
tained no matter what starting extension is chosen. In particu-
lar, as the preferred extension for reduced AF ({d}, {(d,d)})
is the empty set, it follows that ({a,d, e} \ {d}) U = {a,d}
is a preferred extension of the updated AF. O

4.1 Incremental Algorithm

Our algorithm for computing an extension of an updated
AF is shown in Algorithm 1. Besides taking as input an initial
AF Ay, an update u, a semantics S € {co, pr, st, gr}, and
an extension Fy € Es(Ap), it also takes as input a function
that computes an S-extension for an AF, if any. In particular,
function Solvers(A) will be used to compute an extension of
the reduced AF, which will be then combined with the portion
of the initial extension that does not change in order to obtain
an extension for the updated AF (as stated in Theorem 1).

More in detail, Algorithm 1 works as follows. First, the in-
fluenced set of Ay w.r.t. update » and the given initial exten-
sion Ey is computed (Line 1). If it is empty, then Fy will be
still an extension of the updated AF under the given semantics
S, and thus it is returned (Line 3). Otherwise, the reduced AF
Ay is computed at Line 4, and function Solverg is invoked to
compute an S-extension of Ay, if any. If S € {co, pr, gr},
then A, will have an extension F;, which is combined with
Ey \ S at Line 7 to get an extension for the updated AF. For
the stable semantics, if s+ (R(u, Ao, Fo)) is not empty, then
the algorithm proceeds as for the other semantics (Line 7).
Otherwise, function Solvers is invoked to compute a stable
extension of the whole updated AF u(Ay), if any.
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Theorem 2 Let Ay be an AF, uw = =£(a,b), and E; €
Es(Ap) an extension for Ay under S € {co, pr, st, gr}.
If Solvers is sound and complete then Algorithm 1 computes
E € Es(u(A)) if Es(u(Ag)) # 0, otherwise it returns L.

4.2 Applying Multiple Updates Simultaneously

We now show how our approach extends to the case of mul-
tiple updates. In fact, performing a set of updates U =
{+(a17b1)a"'v+(ambn)’ _(a/lvbll)v 7_( ;nv m)} on
Ay can be reduced to performing a single update + (v, w) on
an AF whose definition depends on both the set of updates U
and the initial S-extension E), as detailed in what follows.

Given a set U of updates for an AF 4y, and an S-extension
Ey for Ay, we use U™ to denote the subset of U consisting of
the relevant updates (that is, the updates in U for which the
conditions of Proposition 1 do not hold).

Definition 3 (AF for applying a set of updates) Let A
(A,X) be an AF, and Ej an S-extension for A. Let

o X" :{(a17b1)7...7(an, )}C (AXA)\E, and

o X7 = {(a}, b)), ..., (ap,, b;,)} C 8
such that X7 N X~ = () be two sets of attacks. Let U =
{+(as, bi) (@i, bi) € X} U {=(a;,b;) [(a;,b;) € X7} be

a set of updates, and U* C U be the set of relevant updates
wrt. Egand S. Then, Ay = (AY,%Y) denotes the AF
obtained from A as follows:
AV = AU {ay| +(anh) € U} Uz |
—(aj,b;) € U*} U {v,w,w'}, where all z;,y;, 2}, y},
w, w’, and v are new arguments not occurring in A, and

o XV = (2 \27) U{(ai,b) |+ (ai,b;) € (U\U*)}U
{(auxl)v(xw 1) (yu ) ‘ +(ai7bi) € U*} U
{(G‘J7 ])7( ]7y])7(y_]7b ) ‘ (G‘J’b]) € U*} U

{(w, i) | +(as,b;) €U} U

{(w' ) | —(a;,b;) €U} U{(w,w")}. DO
Theorem 3 Let Ay = (Ao, X0) be an AF, and U a set
of updates. Let A be the AF obtained from Agy by per-
forming all updates in U on it. Then, for any semantics
S € {co,pr,st,gr}, E € Es(A) iff there is EV €
Es(+(v,w)(AG,)) such that EY N Ay = E

5 Implementation and Experiments

We implemented a C++ prototype and, for each semantics S,
compared the performance of our technique with that of the
solver that won the last ICCMA competition for the computa-
tional task S-SE: Given an AF, determine some S-extension.

Datasets. We used the ICCMA’15 benchmarks. The
benchmark AFs have three different AFs’ structures: (i)
TestSetGr consists of AFs with a very large grounded ex-
tension and many arguments in general; (ii) TestSetSt
consists of AFs with many complete/preferred/stable exten-
sions; and (iii) TestSetSCC consists of AFs with a rich
structure of strongly connected components. In particular,
for each of these test sets, three classes of AFs of different
sizes were defined: Small, Medium, and Large. How-
ever, TestSetStLarge was removed from the competi-
tion as the majority of the solvers could not solve any of

those AFs. For space limitations, we presents the results
obtained for TestSetGrSmall and TestSetGrLarge,
and TestSetStSmall and TestSetStMedium, but
similar results were obtained also for the other datasets.

Methodology. For each semantics S, for each AF Ag =
(Ao, Xo) in each dataset, we considered every S-extension
Ey of Ap as an initial extension. Then, when consider-
ing single updates, we randomly selected an update of the
form +(a,b), while for multiple updates we randomly gen-
erated a set U of single updates. Next, we computed an
S-extension E for the updated AF u(Ap) by calling Algo-
rithm 1, where, for each semantics S, we used as Solvers the
solver that won the ICCMA’15 competition for the task S-
SE: CoQuiAAS [Lagniez et al., 2015] for S=co and S=gr,
Cegartix [Dvorék et al., 2014] for S = pr, and ASPARTIX-
D [Gaggl and Manthey, 2015] for S = st. Then, the av-
erage run time of our algorithm to compute an S-extension
was compared with the average run time of the best ICCMA
solver to compute an S-extension for u(Ag) from scratch.
All experiments have been carried out on an Intel Core i7-
3770K CPU 3.5GHz with 12GB RAM running Ubuntu 14.04.

Results. Figure 2 reports the average run times (log scale)
of the competitors and Incr-Alg for different semantics and
datasets. In particular, the graphs also report the run times
of Incr-Alg for recomputing the extensions after performing
sets S’ of updates simultaneously, with |S| being a percent-
age of the number of attacks in the initial AFs. The run
times of the competitors for these cases were almost equal
to their run times for single updates, and are not shown for
the sake of readability of the graphs. Besides the data points,
for each series, Figure 2 also shows the (solid) lines obtained
by linear regression. However, some datasets consist of clus-
ters of AFs that differ substantially on the number of argu-
ments/attacks, and thus in these cases the linear regression
line would just connect the centroids of the clusters, becom-
ing not useful. For this reason, we only show the largest clus-
ter for TestSetStSmall (the other one consists of only
3 data points), and the two clusters of TestSet StMedium
separately (the former for S = pr and the latter for S = st).
Moreover, the results obtained for the complete semantics
are not shown as they were analogous to those obtained for
the grounded semantics. Also, considering updates consisting
of adding/removing arguments does not affect the efficiency.
The experiments also showed that, on average, the size
of the reduced AF w.r.t. that of the input AF is about 9%
for single updates and 52% for multiple updates with about
1% of the attacks updated. Moreover, considering also addi-
tion/removal of arguments does not affect the efficiency.
From these results, we can draw the following conclusions:

— Our algorithm significantly outperforms the competitors
that compute the extensions from scratch for single up-
dates. In fact, on average, our technique is two orders of
magnitude faster than them. Moreover, the harder the com-
putation from scratch is, the larger the improvements are.
That is, the results show that the improvements obtained
for S € {st, pr} go beyond those for S € {gr, co}.

— Our algorithm remains faster than the competitors even
when recomputing an extension after performing a quite
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Figure 2: Run times (ms) of ICCMA solvers and Incr-Alg for differ-
ent semantics S over different datasets (showed on the top of each
graph) versus the number of attacks.

large number of updates simultaneously. In particular, in
the graphs we show the threshold percentages of updated
attacks up to which the incremental approach for multiple
updates is faster than the computation from scratch.

— Finally, our experiments have also shown that for sets of
updates regarding a relevant portion of the input AF (on
average at least 1% of the attacks for S € {st, pr} and
0,1% of the attacks for S € {gr, co}) recomputing ex-
tensions after applying them simultaneously is faster than
recomputing extensions after applying them sequentially.
Indeed, the green lines in the graphs are mostly below the
(dashed) orange lines representing the run times of recom-
puting extensions after applying the updates sequentially.

6 Related Work

There have been several significant efforts coping with dy-
namics aspects of abstract argumentation. [Cayrol et al.,
2008; 2010] have addressed the problem of revising the set
of extensions of an AF, and studied how the extensions can
evolve when a new argument is considered. They focus on
adding only one argument interacting with one initial argu-
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ment (i.e. an argument which is not attacked by any other ar-
gument). [Bisquert et al., 2013] have studied the evolution of
the set of extensions after performing a change operation (ad-
dition/removal of arguments/interaction). Dynamic argumen-
tation has been applied to decision-making of an autonomous
agent by [Amgoud and Vesic, 2012], where it is studied how
the acceptability of arguments evolves when a new argument
is added to the decision system.

Other relevant works on dynamic aspects of AF include
the following. [Baumann, 2011] have proposed an approach
exploiting the concept of splitting of logic programs to deal
with dynamic argumentation. The technique considers weak
expansions of the initial AF, where added arguments never
attack previous ones. [Baumann and Brewka, 2010] have in-
vestigated whether and how it is possible to modify a given
AF so that a desired set of arguments becomes an extension,
whereas [Oikarinen and Woltran, 2011] have studied equiv-
alence between two AFs when further information (another
AF) is added to both AFs. [Baumann, 2012] have focused on
expansions where new arguments and attacks may be added
but the attacks among the old arguments remain unchanged,
while [Baumann, 2014] have characterized update and dele-
tion equivalence, where adding/deleting arguments/attacks is
allowed (deletions were not considered by [Oikarinen and
Woltran, 2011; Baumann, 2012]).

7 Conclusion and Future Work

We introduced a technique enabling any non-incremental al-
gorithm to be used as an incremental one for computing some
extension of dynamic AFs. Our work advanced existing ap-
proaches for computing extensions of dynamic AFs from two
standpoints: (i) we considered general forms of updates (i.e.,
not limited forms of updates such as for instance weak ex-
pansions [Baumann, 2011]) and (ii) we identified a tighter
portion of the updated AF to be examined for recomputing
the semantics. For instance, the reduced AF is significantly
smaller than the conditioned AF (CAF) in [Liao et al., 2011].
Additional experiments showed that the size of CAF is 91%
of the size of the initial AF, while the size of the reduced AF
is only 9%. Also, using the reduced AF is more efficient than
using CAF: the run time of our technique turned out to be
only 1% of the run time of using ICCMA solvers taking as
input CAFs, that is, still two orders of magnitude faster.

Future work will be devoted to (i) applying our technique
to other argumentation semantics and (ii) extending it to cope
with other computational problems, such as enumerating all
the extensions and deciding credulous/sceptical acceptance.
As regard (i), our technique could be extended to deal with
the ideal semantics [Dunne, 2009], for which experiments us-
ing ConArg [Bistarelli et al., 2016] as non-incremental solver
showed performance improvements. As for (ii), preliminary
experiments showed that on average only about 4% of the ex-
tensions of the updated AF are lost if we start from the set
of all extensions of the initial AF. However, as even the loss
of one extension may change the justification status of argu-
ments, we plan to investigate restrictions on the structure of
AFs guaranteeing that no extension is lost.
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